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An XY model, generalized by inclusion of up to an infinite number of higher-order pairwise interactions
with an exponentially decreasing strength, is studied by spin-wave theory and Monte Carlo simulations. At
low temperatures the model displays a quasi-long-range-order phase characterized by an algebraically decaying
correlation function with the exponent η = T/[2πJ (p,α)], nonlinearly dependent on the parameters p and α

that control the number of the higher-order terms and the decay rate of their intensity, respectively. At higher
temperatures the system shows a crossover from the continuous Berezinskii-Kosterlitz-Thouless to the first-order
transition for the parameter values corresponding to a highly nonlinear shape of the potential well. The role of
topological excitations (vortices) in changing the nature of the transition is discussed.
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I. INTRODUCTION

The Mermin-Wagner theorem [1,2] prevents any spon-
taneous breakdown of continuous symmetries for two-
dimensional (2D) systems with short-range interactions, such
as a standard XY model. Nevertheless, it does not prevent
a topological Berezinskii-Kosterlitz-Thouless (BKT) phase
transition, due to the vortex-antivortex pairs unbinding [3,4],
to a quasi-long-range-order (QLRO) phase characterized by a
power-law-decaying correlation function.

Several modifications and generalizations of the XY model
have been proposed, mostly by including higher-order terms
to the Hamiltonian, motivated theoretically (critical properties
and universality) as well as experimentally (modeling of some
systems, such as liquid crystals [5,6], the superfluid A phase
of 3He [7], and high-temperature cuprate superconductors
[8]). Inclusion of a biquadratic term, i.e., the system with the
Hamiltonian H = −J1

∑
〈i,j〉 cos(φi,j ) − J2

∑
〈i,j〉 cos(2φi,j ),

has been shown [5,7,9–12] to lead to the separation of the
dipole phase at lower and the quadrupole phase at higher
temperature, for sufficiently large biquadratic coupling. The
order-disorder phase transition was determined to belong to
the BKT universality class, while the dipole-quadrupole phase
transition had the Ising character.

Recent series of studies [13–15] revealed that the model, in
which the biquadratic term was generalized to a nematiclike
coupling of the order q > 2, i.e., H = −J1

∑
〈i,j〉 cos(φi,j ) −

(1 − J1)
∑

〈i,j〉 cos(qφi,j ) and 0 � J1 � 1, leads to a quali-
tatively different phase diagram for q > 3, with additional
ordered phases originating from the competition between
the ferromagnetic and pseudonematic couplings and includes
phase transitions belonging to the 2D Potts, Ising, or BKT
universality classes.

Further generalization, motivated by orientational transi-
tions in liquid crystals, lead to taking the kth-order Legendre
polynomials of the dipole term, i.e., the Hamiltonian H =
−∑

〈i,j〉 Pk(cos(φi,j )). With the increasing value of k, one may
expect a qualitative change in the nature of the transition. In
particular, a rigorous proof has been provided that the transition
becomes first order for large enough values of k in models
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with O(n) symmetry for n � 2 [16,17]. Nevertheless, for the
O(2) case the studied values of k = 2 and 4 indicated that the
behavior is always described by the BKT-like transition, just
like in the standard XY model [18,19]. This is in contrast to
the O(3) case, in which a strong first-order phase transition
was observed for k = 4 [20,21].

Another nonlinear model [22–26], the potential shape of
which can be controlled by a single parameter p2, in the
form H = 2J

∑
〈i,j〉(1 − [cos2(φi,j /2)]p

2
), was introduced in

an effort to enable tuning its properties between the standard
XY model belonging to the BKT universality and the q-state
Potts model, which for large q shows a first-order phase
transition. Indeed, for large p (proportional to the Potts q),
such a model has been shown to undergo a first-order phase
transition.

In the present study we introduce a generalized XY model
that takes into account effects of up to an infinite number of
higher-order (multipolar) terms with an exponentially vanish-
ing influence. In spite of belonging to the same universality
class (having the same symmetry of the order parameter and
same lattice dimensionality) as the standard XY model, we
demonstrate that the model can display either the BKT or the
first-order phase transition from the QLRO to the paramagnetic
phase, depending on the parameters that control the degree of
nonlinearity of the potential.

II. MODEL

The considered model assumes only nearest-neighbor
pairwise ferromagnetic interactions with the potential

Hi,j (p,α) = −
p∑

k=1

Jk cosk φi,j , (1)

where φi,j = φi − φj is an angle between the nearest-neighbor
spins, and the respective exchange interactions decay as Jk =
α−k , where α > 1.

For an infinite number of the higher-order terms, i.e.,
p → ∞, the Hamiltonian reduces to

H(α) = J (α)
∑
〈i,j〉

Hi,j (α) = −J (α)
∑
〈i,j〉

cos φi,j

α − cos φi,j

, (2)
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MILAN ŽUKOVIČ AND GEORGII KALAGOV PHYSICAL REVIEW E 96, 022158 (2017)

−3 −2 −1 0 1 2 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

φ
i,j

H
i,j
(α

)

α → ∞
α=1.5
α=1.1
α=1.05
α=1.02
α=1.01

(a)

α → ∞

p → ∞

α = 1.01

−3 −2 −1 0 1 2 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

φ
i,j

H
i,j
(p

,α
)

p=1
p=2
p=4
p=8
p=16
p→∞

p = 1

p → ∞

(b)

α = 1.01

FIG. 1. Potential functions of the cases of (a) p → ∞ for several values of α and (b) a fixed α = 1.01 and various values of p.

where 〈i,j 〉 denotes the sum over nearest-neighbor spins and
J (α) = α − 1 is an exchange interaction parameter chosen to
normalize the weights Jk (scaling them so they add up to 1).

For a finite number of the multipolar interaction terms, the
system Hamiltonian can be expressed as

H(p,α) = J (p,α)
∑
〈i,j〉

Hi,j (p,α)

= −J (p,α)
∑
〈i,j〉

cos φi,j

[
1 − ( cos φi,j

α

)p]
α − cos φi,j

, (3)

where J (p,α) = (α − 1)/(1 − α−p).
Thus, while in the case of p → ∞ there is only one

parameter, α, if the sum is truncated there are two parameters,
α and p, that can be used to change the shape of the respective
potentials through changing the number of the higher-order
terms and/or their weights. The shapes of the potentials in
both cases are shown in Fig. 1, for different values of the
parameters α and p. The case with p → ∞ [Fig. 1(a)] reduces
to the conventional XY model when the interaction terms
decay extremely fast, i.e., for α → ∞, with the potential
acquiring a cosine form. With the decrease in α, the potential
well gets narrower with a width tending to zero as α → 1. In
the model with a finite p, a similar effect on the potential
shape can be observed by increasing the number of the
higher-order interaction terms, for sufficiently small values
of α [Fig. 1(b)]. In this case, in the limit of p → ∞ the width
of the potential well will depend on the value of α, as shown in
Fig. 1(a).

It is worth noticing that, for the case of a finite p and a
small α, one can also observe a local minimum at φ = ±π

[see Fig. 1(b)]. The latter is apparently related to the presence
of the nematic term, the interaction strength of which is the
second largest and for α → 1 it becomes comparable with
the bilinear one. Therefore, care should be exercised when
selecting the Monte Carlo (MC) method particularly in the case
of the presence of higher-order interactions with comparable
strengths, when for p > 2 even multiple local minima may
develop, in order to prevent getting stuck in one of those
especially at low temperatures.

III. METHODS

A. Spin-wave approximation

Let us consider a large scale asymptotic behavior of
the two-point correlation function g(x1 − x2) ≡ 〈cos(φ(x1) −
φ(x2))〉 = Re〈exp i{φ(x1) − φ(x2)}〉 in the model defined
through the more general form of the Hamiltonian, given
by Eq. (3). Let x be the coordinate vector of the ith spin
and a be the lattice vector. At low temperatures one can
assume smoothness of the field φ(x), and thus we may put
φ(x + a) − φ(x) = (a · ∇)φ(x) + O(a2). Having expanded
the Hamiltonian up to the second order in a, we find the
low-temperature approximation

Hsw = J sw
∑

x

∑
a

1

2
{(a · ∇)φ(x)}2

= J sw
∑

x

a2 1

2
{∇φ(x)}2 → J sw

2

∫
d2x{∇φ(x)}2, (4)

where J sw = α/(α − 1) − p/(αp − 1). We now see that an
asymptotic expression for the correlation function g(x1 − x2)
can be easily deduced by the Gaussian integration over all
possible field configurations,

g(x1 − x2) =
∫ ∏

x

dφ(x) exp

(
−J sw

2

∫
d2x{∇φ(x)}2

+ i{φ(x1) − φ(x2)}
)

(5)

= exp

(
− 1

J sw

∫
d2k

(2π )2

1 − exp(ik · (x1 − x2))

k2

)

= exp

(
− 1

2πJ sw
ln

eγ |x1 − x2|
2a

)
, (6)

where γ is the Euler-Mascheroni constant and the momentum
integral has to be regularized in the ultraviolet region 0 �
|k| � 1/a. As a result, large distance |x1 − x2| � |a| power
asymptotics reads as

〈cos(φ(x1) − φ(x2))〉 ∼
(

a

|x1 − x2|
)ηsw

, (7)
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where the corresponding exponent ηsw = T/(2πJ sw). We note
that the resulting form of the correlation function exponent is
also applicable to the specific case of the well studied bilinear-
biquadratic model [5,7,9–12], with p = 2 and α = J1/J2.

B. Monte Carlo

We employ MC simulations with the standard Metropolis
dynamics for spin systems on a square lattice of a linear
size L, imposing the periodic boundary conditions. For
thermal averaging we take NMC MC sweeps after discarding
another N0 = 0.2NMC MC sweeps for thermalization. To
obtain temperature dependencies of various thermodynamic
quantities the simulations start in the paramagnetic phase at
sufficiently high temperatures T (measured in units J/kB ,
where kB is the Boltzmann constant), and then proceed to lower
temperatures with the step �T . To maintain the system close
to the equilibrium, at each T − �T simulations are initialized
using the last configuration obtained at T .

Close to the phase transition points we also perform
finite-size scaling (FSS) analysis by using the reweighting
techniques [27,28], in order to identify the order and the
universality class of the transition. Since in the criticality the
integrated autocorrelation time τ is expected to dramatically
increase, we make sure that sufficiently long simulation
times are taken especially for larger lattice sizes. For reliable
estimation of statistical errors we employed the 	 method [29],
which focuses on the explicit determination of the relevant
autocorrelation functions and times and gives more certain
error estimates than for example the binning techniques.

Typical values of the parameters are L = 24 − 72, NMC =
2 × 105 MC sweeps, and �T = 0.025, for the standard MC
simulations, and up to NMC = 1 × 107 MC sweeps, for the
reweighting. We avoided using larger lattice sizes, as tunneling
times between the coexisting phases at first-order transitions
can become enormous [see the inset of Fig. 4(c)].

We calculated the following quantities: the internal energy
per spin, e = 〈H〉/L2; the specific heat per site, c,

c = 〈H2〉 − 〈H〉2

L2T 2
; (8)

the magnetization,

m = 〈M〉/L2 =
〈∣∣∣∣∑

j

exp(iφj )

∣∣∣∣
〉/

L2; (9)

the magnetic susceptibility,

χ = 〈M2〉 − 〈M〉2

L2T
; (10)

and the fourth-order magnetic Binder cumulant U ,

U = 1 − 〈M4〉
3〈M2〉2

. (11)

At the standard BKT to the paramagnetic phase transition the
magnetization (susceptibility) is expected to vanish (diverge)
as a power law, characterized by the exponent η = 1/4. The
latter can be estimated by FSS of the respective quantities, as
follows:

m(L) ∝ L−η/2 (12)

and

χ (L) ∝ L2−η. (13)

On the other hand, if the transition is of first order, then
the internal energy e and the magnetization m will show
a discontinuous behavior, the thermodynamic functions like
the susceptibility χ are supposed to scale with volume, i.e.,
χ (L) ∝ L2, and the Binder cumulant is expected to plunge to
negative values [30].

A proper order parameter for the algebraic BKT phase
is the helicity modulus ϒ (or spin-wave stiffness) [31–33],
which quantifies the resistance of the systems to a twist in the
boundary conditions. It is defined as the second derivative of
the free energy density of the system with respect to the twist
τ along one boundary axis, which, for example, for the present
XY model with the Hamiltonian (2) results in the following
expression:

ϒ = 1

L2

∑
〈i,j〉x

(α − 1)α[2α cos φi,j + cos(2φi,j ) − 3]

2(α − cos φi,j )3

− β

L2

⎡
⎣∑

〈i,j〉x

(α − 1)α sin φi,j

(α − cos φi,j )2

⎤
⎦

2

, (14)

where the summation
∑

〈i,j〉x is taken over the nearest
neighbors along the direction of the twist.

In order to directly study the topological excitations
(defects) we evaluate a defect density ρ. Let us recall that
a vortex (antivortex) is a topological defect which corresponds
to the spin-angle change by 2π (−2π ) going around a closed
contour enclosing the excitation core. In the MC simulation
they are identified by summation of the angles between
the adjacent four spins on each square plaquette for each
equilibrium configuration. Thus, the summation equal to 2π ,
−2π , and zero means that in the plaquette there is a vortex,
antivortex, and no topological defect, respectively [34]. Then
the defect density ρ is obtained as a thermodynamic average
of the absolute value of the vorticity (taking into consideration
both vortices and antivortices) summed over the entire lattice
and normalized by the system volume L2.

IV. LOW-TEMPERATURE BEHAVIOR

The spin-wave (SW) approximation predicts the existence
of the QLRO phase characterized by a power-law-decaying
correlation function, given by Eq. (7). The exponent ηsw is
formally similar to that of the standard XY model ηsw

XY , i.e.,
linearly dependent on the temperature; however, through the
interaction J sw it is also nonlinearly dependent on the parame-
ters p and α. The reduced exponent ηsw/ηsw

XY = J sw
XY /J sw as a

function of the parameters p and α is depicted in Fig. 2(a). One
can notice that inclusion of just a few higher-order interaction
terms causes a drastic drop of the exponent, followed by a
leveling off if their couplings relative to the bilinear term
are very small, i.e., for larger α. On the other hand, if the
interactions at the higher-order terms are comparable with the
bilinear one, i.e., for α → 1, the exponent is further decreased
with inclusion of more and more terms.

We also confront the spin-wave theory exponents ηsw with
those obtained from MC simulations, for selected parameter
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FIG. 2. (a) SW approximation of the correlation function exponent ηsw normalized per that of the XY model, shown in the (p-α) parameter
plane. (b) The exponent η as a function of temperature, obtained from the SW theory (dashed lines) and MC simulations (symbols), for selected
parameter values.

values. In Fig. 2(b) we show temperature dependencies
of both ηsw and ηmc, for the two cases (α,p) = (2,2)
and (α,p) = (2,∞). As expected, the correspondence is

very good at low temperatures but for T � 0.15 the spin-
wave approximation apparently underestimates the exponent
values.
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FIG. 3. Temperature dependencies of the internal energy, magnetization, and helicity modulus for L = 24, p → ∞, and several values
of α. In (c), the inset shows the same figure on a log-log scale.
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FIG. 4. Energy histograms and FSS analysis for (a), (b) α = 1.03 and (c), (d) α = 1.02. The histograms are reweighted to the temperatures
at which the peaks are of equal height. The insets in the right panels show the respective Binder cumulants. The inset in (c) demonstrates huge
tunneling times for larger sizes; e.g., for L = 96 they are of the order of 1 × 106 MC sweeps.

V. PHASE TRANSITIONS

A. Infinite series model

The effect of a varying parameter α on magnetic and
thermodynamic properties of the model can be observed in
Fig. 3, in which temperature dependencies of the internal
energy, the magnetization, and the helicity modulus are plotted
for various values of α and a fixed value of L = 24. For α = 2,
the effect of the higher-order terms in the Hamiltonian is almost
negligible and the behavior of all the quantities resembles
that of the standard XY model. Namely, they show a smooth
variation in the vicinity of the transition point, as expected
for the BKT transition. With decreasing α the effect of the
higher-order terms becomes more pronounced and makes
changes of the quantities at the transition more dramatic. In
particular, as α approaches the limiting value of 1, all start
showing an apparently discontinuous behavior, typical for a
first-order phase transition.

In order to confirm that the observed behavior indeed
corresponds to the crossover from the continuous to the
first-order transition, next we study the character of the energy
distribution and perform a FSS analysis in the concerned region
of the parameter space. In Fig. 4 we present the results for

α = 1.03 [Figs. 4(a) and 4(b)] and α = 1.02 [Figs. 4(c) and
4(d)]. In the left panels, the plots of the energy histograms
for different sizes L are reweighted to the temperature at
which both peaks are of equal height. In both cases, the
plots indicate a bimodal distribution that is characteristic for
a discontinuous first-order transition. Nevertheless, there is
a significant difference between them. We note that at the
first-order transition as L increases the heights of the peaks
are expected to increase at the cost of the dip (barrier) between
them, which should tend to zero and the distance between
the peaks should approach a finite value, corresponding to
the latent heat released at the discontinuous transition. This is
exactly what we witness in the case of α = 1.02 [Fig. 4(c)];
however, the behavior for α = 1.03 is quite different. Namely,
from Fig. 4(a) we can see that with the increasing lattice size
the height of the peaks virtually does not change: the dip
between them does not get deeper and it becomes narrower
as the peaks continue to move towards each other. Thus we
believe that the observed double-peak structure for α = 1.03
is just a finite-size effect and in the thermodynamic limit it will
vanish. We note that such a pseudo-first-order behavior was
also observed in some other systems, such as the four-state
Potts and J1-J2 Ising models [35].
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FIG. 5. (a) The defect density ρ as a function of temperature, for several values of α. The insets show typical snapshots just below (lower
panel) and just above (upper panel) the transition point, depicting vortices (white squares) and antivortices (black squares), for α = 1.01.
(b) ρ as a function of α, for three values of T and two values of L.

The above conjecture is furthermore corroborated by FSS
analysis and the behavior of the Binder cumulant. In particular,
for the case of α = 1.03 the FSS relations [Eqs. (12) and (13)]
give the estimate of the exponent η in accordance with the value
1/4 expected for a standard BKT phase transition [Fig. 4(b)],
while for α = 1.02 the magnetic susceptibility scales with
volume [Fig. 4(d)], as it should in the case of a first-order
transition. A smooth variation of the Binder cumulant within
positive values in the former case and an abrupt descent to
negative values in the latter case (see insets) provide additional
evidence for such a scenario.

The crossover to the first-order behavior can be understood
by elucidation of the role of the topological defects in a varying
potential shape, tuned by the parameter α. In Fig. 5(a) we
present temperature dependencies of the defect density ρ,
for selected values of α. It is evident that, at the transition
temperature from the BKT to the paramagnetic phase, ρ

anomalously increases. The increase becomes particularly
dramatic (resembling a jump) for the values of α close to 1.
A sudden increase of the defects at the transition for α = 1.01
is illustrated in the insets of Fig. 5(a). The snapshot in the
lower panel is taken just below the transition temperature and
shows just a few vortex-antivortex pairs. The snapshot in the
upper panel, taken just above the transition point, shows a great
number of dissociated vortices (white squares) and antivortices
(black squares).

It is also interesting to study the behavior of topological
excitations with the parameter α. In Fig. 5(b) we show depen-
dencies of the defect density ρ on α, for selected temperatures
T = 0.5, 0.7, and 0.9. One can notice a sharp increase of
the defect density as α → 1 (note the semilogarithmic scale),
which seems to approach a common saturation value of
ρs = 1/3 (dotted line). Two sets of curves obtained for two
different values of L, L = 24 and 32, that almost collapse
on each other demonstrate that the behavior is practically
independent of the lattice size.

Similar behavior has also been reported for the modified
XY model, introduced by Domany et al. [22] and explained
in later studies [23,26]. The abrupt increase of the defects,
resulting in a first-order transition, is related to the shape of

the potential well. Namely, for certain values of the parameter
the well becomes very narrow which suppresses formation
of defect pairs at low temperatures and thus facilitates their
dramatic proliferation at the transition point. We believe that a
similar mechanism is responsible for the crossover to the first-
order transition also in the present model. The nonlinearity
of the potential well is controlled by the parameter α and, as
shown in Fig. 1(a), for the values close to 1 it becomes narrow
enough to lead to the discontinuous phase transition.

We note that besides the integer vortices studied above, it
is reasonable to assume also the presence of various fractional
vortices, resulting from the higher-order terms. Since our
model involves a large number of them we did not attempt to
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FIG. 6. Phase boundary as a function of the parameter α, sepa-
rating the BKT and paramagnetic (P) phases. The (pseudo)transition
temperatures are obtained from maxima of the specific heat curves,
for L = 24. The solid symbols represent the first-order transition
points and the dashed line the transition temperature of the standard
XY model.
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temperatures at which the peaks are of equal height. The insets show the respective Binder cumulants.

evaluate all their individual densities. Nevertheless, in Fig. 3(c)
one can see that in the temperature dependencies of the
helicity modulus there are no anomalies, such as, for example,
in Ref. [15], except the one related to the transition to the
paramagnetic state. This fact, along with the behavior of other
evaluated quantities, indicates that the integer and fractional
vortices unbind at the same temperature corresponding to the
transition point between the BKT and paramagnetic phases.

Finally, the approximate phase diagram in the T -α pa-
rameter plane is depicted in Fig. 6. Rough estimates of
(pseudo)transition temperatures are obtained as positions of
maxima of the specific heat curves from several independent
MC runs, for L = 24 [36]. The solid circles represent the
first-order transition points at α = 1.01 and 1.02, and the
dashed line shows the transition temperature of the standard
XY model, which is expected to be recovered in the limit
of α → ∞. We note that these pseudotransition temperatures
slightly overestimate the true thermodynamic limit values [see,
e.g., Figs. 4(a) and 4(c)]. Overall, the decreasing α shifts the
transition temperature from the paramagnetic (P) to the BKT
phase to lower values and eventually also changes the nature
of the transition to the first-order one.

B. Truncated series model

Above we demonstrated that the first-order transition is
a result of the increased influence of higher-order terms.
Next, we are interested in whether their infinite number is
an indispensable ingredient for the first-order character of the
transition or if it can also persist when only a finite number
of the terms is considered. We showed that for p → ∞ the
first-order transition exists if α � 1. On the other hand, the case
of p = 2 is well known to show the standard BKT transition
for any value of α [5]. Therefore, for a fixed α � 1 one can
expect a crossover between the two regimes at some value
of pc.

In Fig. 7 we present the behavior at the transition for the
cases of p = 50 [Figs. 7(a) and 7(b)] and p = 100 [Figs. 7(c)
and 7(d)], at the value of α = 1.01. The respective features
are very similar to those observed in Fig. 4, for the infinite p

case with α = 1.03 and α = 1.02, respectively. Namely, for
α = 1.01 and p = 50, all the measured quantities point to the
continuous transition belonging to the BKT universality class,
while for α = 1.01 and p = 100, the transition is clearly of
the first order. Therefore, for α = 1.01 the crossover value can
be very roughly estimated as 50 < pc < 100.
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VI. SUMMARY

We employed spin-wave theory and Monte Carlo sim-
ulations to study effects of inclusion of higher-order
nearest-neighbor pairwise interactions with an exponentially
decreasing intensity, Jk = α−k , where α > 1 and k = 2, . . . ,p,
in the standard XY model. At low temperatures, the spin-wave
theory predicts a quasi-long-range-order phase character-
ized by an algebraically decaying correlation function with
the exponent ηsw = T/(2πJ sw), where J sw = α/(α − 1) −
p/(αp − 1).

At higher temperatures, we showed that, in spite of
belonging to the same universality class as the standard
XY model, the studied generalized model can display qual-
itatively different behaviors, depending on the parameters p

and α that control the degree of nonlinearity. In particular,
for a relatively small number of the higher-order terms p and
relatively fast decay of Jk , the critical behavior is qualitatively
similar to that of the XY model; i.e., the system shows the

Berezinskii-Kosterlitz-Thouless transition to the paramagnetic
phase. Nevertheless, for α → 1 and p large enough (not
necessarily infinite), i.e., the parameter values corresponding
to a highly nonlinear shape of the potential well, the transition
changes to the first order. We demonstrated that the change of
the transition order can be related to the behavior of topological
excitations (vortices). Namely, in the parameter region where
the potential well becomes very narrow the formation of
vortex pairs at low temperatures becomes suppressed which
facilitates their abrupt, discontinuous increase at the transition
point.
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