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Self-averaging and weak ergodicity breaking of diffusion in heterogeneous media
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Diffusion in natural and engineered media is quantified in terms of stochastic models for the heterogeneity-
induced fluctuations of particle motion. However, fundamental properties such as ergodicity and self-averaging
and their dependence on the disorder distribution are often not known. Here, we investigate these questions
for diffusion in quenched disordered media characterized by spatially varying retardation properties, which
account for particle retention due to physical or chemical interactions with the medium. We link self-averaging
and ergodicity to the disorder sampling efficiency Rn, which quantifies the number of disorder realizations
a noise ensemble may sample in a single disorder realization. Diffusion for disorder scenarios characterized
by a finite mean transition time is ergodic and self-averaging for any dimension. The strength of the sample
to sample fluctuations decreases with increasing spatial dimension. For an infinite mean transition time,
particle motion is weakly ergodicity breaking in any dimension because single particles cannot sample the
heterogeneity spectrum in finite time. However, even though the noise ensemble is not representative of the
single-particle time statistics, subdiffusive motion in q � 2 dimensions is self-averaging, which means that
the noise ensemble in a single realization samples a representative part of the heterogeneity spectrum.

DOI: 10.1103/PhysRevE.96.022156

I. INTRODUCTION

The diffusion of particles in a fluid or gas at rest is described
through Brownian motion, characterized by a linear increase
of the mean-square displacement and Gaussian displacement
statistics. Fick’s laws form the basis for the quantification
of tracer motion and chemical interactions between diffusing
species. These mechanisms, however, are very different for dif-
fusion in heterogeneous media, in which particle motion may
be hindered due to spatial variability in the medium properties
[1,2]. In fact, anomalous diffusion is a ubiquitous phenomenon
[1,3–5], observed in natural and engineered media, which
are intrinsically heterogeneous. Diffusion in heterogeneous
media refers to processes as diverse as radionuclide migration
in low-permeability geological media [6–10], surface and
solid-state diffusion [11–13], natural gas production from
tight reservoirs [14–16], contaminant and heat transfer in
the subsurface [17–21], the motion of charge carriers in
amorphous semiconductors [22], and the transmission of light
in optical media [23], as well as the motion of endogenous and
artificial tracers in living cells and cell membranes [24–29].

Stochastic modeling of particle motion in quenched ran-
dom systems is particularly challenging because particles
sample the disorder only by diffusion, whose efficiency in
turn is affected by the medium properties. The fundamental
assumption underlying the use of stochastic models for the
prediction of particle motion is that the ensemble behavior
may be representative for the behavior in a single realization.
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This may refer to the representation of the temporal statistics
of a single-particle trajectory through a noise ensemble, or
to the representation of particle statistics in a single-medium
realization through the disorder ensemble statistics. The
former relates to the notion of ergodicity [30], the latter to
the notion of self-averaging [1].

Self-averaging can only apply to infinite systems, which are
characterized by statistically stationary disorder distributions
so that diffusing particles have the possibility to sample
a representative part of the disorder spectrum in a single
realization. The lack of self-averaging for finite size quenched
trap models has been recently discussed by Akimoto et al. [31].
Infinity of space and statistical stationarity, however, are only
necessary conditions for self-averaging. It critically depends
on the sampling efficiency and thus on the diffusion process,
which in turn is affected by the heterogeneity [32]. Despite
its fundamental nature, only few studies address the problem
of self-averaging in q-dimensional quenched random media,
specifically the evolution of the variance of the mean square
displacement, for diffusive and subdiffusive systems.

Motivated by experimental results on single-particle track-
ing, the ergodicity of particle motion in fluctuating envi-
ronments has received considerable attention [27,30,33,34]
with specific focus on subdiffusive motion [34–38]. Weak
ergodicity breaking in disordered media is related to long
waiting times between particle transitions [33], which impedes
significant disorder sampling in finite time. The latter has put
the continuous time random walk (CTRW) [19,30,39] in the
spotlight as a model for subdiffusive particle motion. The
CTRW renews particle waiting times at each random walk step
independently and thus can be seen as an annealed disorder
model. Subdiffusion in the CTRW is weakly ergodicity
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breaking as a consequence of aging, this means non-
stationarity of particle displacement caused by diverging parti-
cle waiting times [35,40]. For the same reason, subdiffusion in
quenched random trap models, which show CTRW behavior
in q > 2 dimensions, has been found to be weakly ergodicity
breaking [38,41]. Bertin and Bouchaud [42] analyze weak
ergodicity breaking and localization of subdiffusion in the
q = 1-dimensional quenched random trap model. Massignan
et al. [26] study ergodicity breaking of subdiffusion in a
q = 1-dimensional inhomogeneous environment. Only few
works address the ergodicity in q � 1-dimensional quenched
disorder under diffusive and subdiffusive conditions despite
its central importance for the understanding of diffusion in
heterogeneous media.

In this paper we study self-averaging and ergodicity for
diffusion in q–dimensional quenched random media. Diffu-
sion is hindered due to spatially varying retardation properties,
which account for physical and chemical interactions with the
medium. This disorder model is equivalent to the quenched
random trap model [1,32]. The nature of average particle
motion in the quenched random trap model depends on the
dimensionality q of space [1], which is strongly related to
the notion of the average number Sn of distinct sites visited
as a function of step number n of the random walk. The
latter determines the efficiency of the diffusion process for
disorder sampling in a single medium realization. For q > 2,
average particle motion describes a CTRW because particles
do in average not return to the same site that has already been
visited. For q < 2 this is different. Particle motion describes
a CTRW-like behavior, which however is characterized by
dependence of subsequent waiting times because particles may
return to the same site with finite probability. Clearly, this
property has an impact on the sampling efficiency and thus
self-averaging property.

This paper extends previous work [32,38], which focused
on the questions of self-averaging and weak ergodicity
breaking for disorder scenarios leading to subdiffusive average
behaviors. Here, we derive a general framework for the
analysis and quantification of self-averaging and ergodicity for
arbitrary disorder distributions, characterized by diffusive and
subdiffusive average behaviors. We study particle motion in
single-disorder realizations to illustrate the impact of medium
heterogeneity on the segregation of particle distributions and
their sample to sample fluctuations. Ergodicity and self-
averaging are quantified systematically in terms of the noise
variance of the time-averaged mean-square displacement in
single-medium realizations (ergodicity), and the disorder vari-
ance of the noise mean-squared displacement (self-averaging).
We derive analytical expressions for the disorder variance
of the mean square displacement and the noise variance
of the time-averaged mean-square displacement under both
diffusive and subdiffusive conditions. Note that the concepts of
ergodicity and self-averaging are different. Ergodicity refers to
the equivalence between temporal average and noise average,
this means average over all particles in a given disorder
realization. Self-averaging on the other hand denotes the
property that the mean square displacement, defined as a
noise average in a single realization, may be represented by its
disorder average. Under self-averaging conditions, the mean
square displacement is asymptotically independent of the

specific disorder realization. Thus, it may be weakly ergodicity
breaking but self-averaging.

The paper is organized as follows. Section II describes the
diffusion problem, presents the coarse-graining procedure, and
derives explicit expressions for the noise average, a central part
of the paper. Furthermore, it defines the disorder average in
terms of the coarse grained particle trajectories. Section III
discusses the disorder scenarios under consideration and
illustrates the behavior of the mean square displacement and
particle distributions in the average over all disorder realiza-
tions as well as in single-disorder realizations. Section IV
analyzes self-averaging for different heterogeneity scenarios
and derives explicit expressions for the variance of the mean
square displacement. Section V discusses the ergodicity of
single-particle trajectories in terms of the noise variance of the
time-averaged mean-square displacement.

II. DIFFUSION IN HETEROGENEOUS MEDIA

Particle transport in a q-dimensional quenched random
medium, characterized by a spatially random diffusion co-
efficient D(x), can be described by the Langevin equation,

dx(t)

dt
=

√
2D[x(t)]ξ (t), (1)

which is characterized by a multiplicative noise. We employ
here and in the following the Ito interpretation. The Gaussian
white noise has zero mean and covariance 〈ξi(t)ξj (t ′)〉 =
δij δ(t − t ′). The angular brackets denote the noise average over
all particles. The particle distribution p(x,t) = 〈δ[x − x(t)]〉 is
then transported according to the Fokker-Planck equation [43],

∂p(x,t)

∂t
− ∇2D(x)p(x,t) = 0. (2)

The diffusion coefficient in Eq. (2) is given by D(x) =
κθ (x)−1, where κ is the constant molecular diffusion coef-
ficient. The quenched retardation coefficient θ (x) accounts
for particle retention due to physical and chemical inter-
actions with the medium and thus represents the medium
heterogeneity. Equation (2) describes diffusion under spatially
variable retardation properties. The retardation coefficient is
modeled here as a stationary spatial random field which is
characterized by the characteristic correlation scale � and the
distribution pθ (θ ) of point values θ (x). Note that we consider
here two stochastic processes. The temporal stochastic process
ξ (t), which defines the noise ensemble, and the spatial
stochastic process θ (x) which defines the disorder ensemble.
We consider in the following deterministic initial conditions
of instantaneous particle injection at t = 0 at x = 0. As
discussed in the Introduction and also below, particles sample
the medium heterogeneity, which is represented by the disorder
ensemble, due to diffusion, which is represented by the noise
ensemble. Note that under certain experimental conditions the
initial particle position in a single-disorder realization may be
uncertain and an additional average over the initial particle
locations may be required. In such a case, the noise ensemble
samples part of the heterogeneity from the beginning. On the
other hand, there may be situations, for example leachage of a
contaminant in an underground repository, for which the initial
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positions are well confined and thus may be denominated
deterministic.

The mean-square displacement in a single-medium realiza-
tion is defined by m(t) = 〈x(t)2〉. From Eq. (1), we obtain

m(t) = 2
∫ t

0
dt ′

∫ t

0
dt ′′〈

√
D[x(t ′)]D[x(t ′′)]ξ (t ′) · ξ (t ′′)〉.

Using the Ito interpretation of the stochastic integral, we obtain
the compact expression

m(t) = 2q

∫ t

0
dt ′〈D[x(t ′)]〉, (3)

because 〈D[x(t)]ξ (t)〉 = 0. We set now D(x) = κθ (x)−1 and
define

ds = dt θ [x(t)]−1. (4)

Thus, we can write m(t) in the form

m(t) = 2κq〈s(t)〉. (5)

In the following, we use the variable transform t → s as the
basis for the coarse-graining of the Langevin Eq. (1).

A. Coarse graining

The Langevin Eq. (1) can be written in the Ito interpretation
as

dx(t) =
√

2κθ [x(t)]−1dtη(t), (6)

where

η(t) = 1√
dt

∫ t+dt

t

dt ′ξ (t ′) (7)

is a Gaussian random vector with zero mean and unit variance
such that 〈ηi(t)ηj (t)〉 = δij . Using the transformation (4), we
can separate Eq. (6) into the two equations:

dx(s) =
√

2κdsη(s), dt(s) = θ [x(s)]ds. (8)

This means we have separated the nonlinearity from the
spatial particle movement and transferred it to the evolution of
the particle time with s. The process s(t) = max{s|t(s) � t}
denotes the operational time that passes to reach the clock
time t .

It is natural to choose the correlation scale � of θ (x) as
the spatial coarsening scale. This gives for the coarse grained
equations of motion

xn+1 = xn + � ηn+1, tn+1 = tn + θ (xn)	sn. (9)

The random vector ηn has unit length, is always aligned with
one of the axes of the coordinate system, and its ensemble
mean is zero. Thus, Eq. (9) describes a random walk on a
q–dimensional lattice. The operational time increment 	sn is
the first passage time to the boundaries of a region of size
� by regular diffusion. The distribution of the first passage
time 	sn is cut-off exponentially for times larger than the the
characteristic diffusion time τκ = �2/(2qκ) over the length
scale �. Thus, we approximate the first passage time PDF by
the exponential distribution [44],

ψ0(	sn) = τ−1
κ exp(−	sn/τκ ). (10)

The transition time over the length � is given by

τ (xn) = θ (xn)	sn, (11)

which is a quenched random variable. Equation (9) describes
a time-domain random walk (TDRW) [9,45,46], which can be
seen as a spatially inhomogeneous CTRW [44,47] because the
transition time depends on the particle position. The choice
of the coarse-graining scale as the correlation scale of the
heterogeneous retardation field θ (x) implies that all τ (xn)
and τ (xn′) are independent for n �= n′. This means that the
distribution of τ (xn) can be characterized by the one-point
probability density function (PDF) ψ(τ ) of transition times,
which is given by

ψ(τ ) =
∫ ∞

0
dθθ−1pθ (θ )ψ0(τ/θ ). (12)

It is fully determined in terms of the distribution pθ (θ ) of
point values of θ (x). This is an important fact because it allows
relating the statistics of the medium heterogeneity to average
particle motion as outlined in Sec. III. With these definitions,
Eq. (9) is also equivalent to the quenched random trap
model [1].

The space-time trajectory of a particle diffusing in the
heterogeneous medium is obtained from Eq. (9):

xn =
n−1∑
k=0

�ηk, tn =
n−1∑
k=0

τ (xk). (13)

It is worth noticing that here the sequence of τ (xk) is in general
not composed of independent time increments, because parti-
cles may visit the same site more than once [1], depending on
the dimensionality of space. This distinguishes the TDRW
(9) from a classical CTRW characterized by completely
independent random time increments. This point is discussed
in more detail in Sec. II C below. The particle position at time t

is given by x(t) = xnt
, where nt = max(n|tn � t) denotes the

number of steps needed to reach time t by the time random
walk in Eq. (9). Likewise, the operational time s(t) to arrive
at time t is given by s(t) = snt

. The particle density in this
coarse-grained framework is given by p(x,t) = 〈δ(x − xnt

)〉.
We can expand p(x,t) as

p(x,t) =
∞∑

n=0

〈δ(x − xn)I(tn � t < tn+1)〉, (14)

where the indicator function I(tn � t < tn+1) is 1 if the
statement in the parenthesis is true and 0 else. Furthermore,
the mean-square displacement, Eq. (5), is now given in terms
of the coarse grained trajectory, Eq. (9), as

m(t) = �2〈nt 〉. (15)

B. Noise average

The average diffusion behavior and its self-averaging prop-
erties depend on the efficiency of the random walker to sample
the disorder, which in turn depends on the sampling efficiency
due to the random noise in single-medium realizations. It is
intuitive that a random walker explores a larger number of new
sites as a function of random walk steps in q = 3 than in q = 1
spatial dimensions. In the following, we quantify this notion.
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First, we consider the coarse-grained trajectory Eq. (13) in a
single-disorder realization.

As outlined in the previous section, subsequent transition
times τ (xk) are in general not independent because particles
may return to the same position after a certain number of
steps. The recurrence of the random walk may be described
by the average number of independent sites visited Sn [1,48].
The number Sn depends on the dimensionality of space in
accord with Polya’s theorem. For q < 2 spatial dimensions,
Sn ∼ nq/2, for q = 2, Sn = n/ ln(n) and for q > 2, Sn ∼ n.
Thus, as outlined in Bouchaud and Georges [1], the τ (xk)
in Eq. (13) may be grouped into families of independent
τi with n/Sn members each. If all members of a family
are approximated by the same value τi , the trajectories for
single-disorder realizations can be rewritten as

xn =
n∑

i=1

�ηi , tn =
Sn∑
i=1

n

Sn

τi, (16)

where the τi are distributed according to Eq. (12). In a
single-disorder realization, the set of available τi to form a
replica of tn depends on the volume sampled by the random
walkers after n steps. This property and the independence of
subsequent transition times are the basis for the formalization
of the noise average as described below, and of the disorder
ensemble average as outlined in the next section.

To determine the noise average, we consider Eq. (15) for
the mean-square displacement. It can be expanded according
to

m(t) = �2
∞∑

n=0

n〈I(tn � t < tn+1)〉, (17)

where we used Eq. (14). The noise average can be written as
the average over all particles released in a disorder realization,
such that

m(t) = �2
∞∑

n=0

n

⎧⎨
⎩ lim

N→∞
1

N

N∑
j=1

I
[
t (j )
n � t < t

(j )
n+1

]
⎫⎬
⎭, (18)

where t
(j )
n denotes the time of the j th particle after n steps,

which is defined by Eq. (16). To simplify the sum over the
particles j , we first note that the t

(j )
n are given by the sum

of waiting times τi , which in turn are determined by the
disorder explored by the particles. Furthermore, we note that
the average number of different sites sampled by the ensemble
of random walkers after n steps is given by Vn = (2n)q/2,
which corresponds to the characteristic volume explored by the
random walkers after n steps. This means that the t

(j )
n are series

of τi which are sampled from the same set of Vn statistically
independent copies. Next, we recall from Eq. (16) that a replica
of tn is formed of Sn independent τi , which are drawn from a
set of Vn independent copies. Thus, the number of copies of
tn which can be formed from Vn members τi is equal to the
binomial coefficient Bn = (

Vn

Sn

)
. The number of independent

replica of tn that can be formed from Vn members on the
other hand, is equal to Rn = Vn/Sn. Consequently, the number
of families with members, who are statistically independent
is given by Bn/Rn. Then, since each of the Bn/Rn families
explore in average the same disorder, they are in average the

same. This means that the number of independent replica of tn
in a sample of N is Rn. Thus, the sum in the curly brackets of
Eq. (18) can be substituted after regrouping as

N∑
j=1

I
[
t (j )
n � t < t

(j )
n+1

] =
Rn∑
k=1

N

Rn

I
[
t (k)
n � t < t

(k)
n+1

]
. (19)

Equation (18) for m(t) then simplifies to [41]

m(t) = �2
∞∑

n=0

n

Rn

Rn∑
k=1

I
[
t (k)
n � t < t

(k)
n+1

]
, (20)

where the t (k)
n are independent replica of tn. Each replica is

formed according to Eq. (16), where the τi are independent
identically distributed random variables characterized by the
PDF in Eq. (12). Equation (20) captures the impact of noise
on the disorder sampling in a single-medium realization. In
general, we obtain for the noise average of the kth power nk

t

of the number of steps needed to arrive at time t ,

〈
nk

t

〉 ≈
∞∑

n=0

nk

Rn

Rn∑
k=1

I
[
t (k)
n � t < t

(k)
n+1

]
. (21)

Similarly, the particle density, Eq. (14), in a single realization
may be approximated in terms of independent replica of tn as

p(x,t) =
∞∑

n=0

〈δ(x − xn)〉 1

Rn

Rn∑
i=1

I
(
t (i)
n � t < t

(i)
n+1

)
. (22)

These expressions form the basis for the quantification of
the disorder average mean-squared displacements, its self-
averaging properties and ergodicity in the following sections.

The key quantity for the determination of the impact of
diffusion on disorder sampling in single-disorder realizations
and thus the average diffusion behavior is the number of
independent replica of tn that can be formed in a single
realization,

Rn = (2n)q/2

Sn

. (23)

The sampling efficiency Rn may be seen as the number of
disorder realizations which can be sampled by the noise
ensemble in a single-disorder realization. For q < 2 spatial
dimension Rn ∼ 1, which implies that all particles in a
single-disorder realization see in average the same disorder.
There is no diversification and disorder sampling is minimum.
Differences between disorder realizations decrease as the
ensemble of particles in single realizations experiences a
disorder spectrum that is representative for the ensemble of
media. For q = 2 we find that Rn ∼ ln(n). This means that
the number of disorder configuration that may be sampled
within a single realization increases logarithmically with the
number of steps; there is a weak sampling. For q > 2, we
find that Rn ∼ nq/2−1. As expected, the efficiency of disorder
sampling increases with the dimensionality of space. These
behaviors have an impact on the self-averaging properties of
the mean-square displacement as discussed below.
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C. Disorder average

The average diffusion behavior can be described by the
disorder average over the particle distribution in Eq. (22),

p(x,t) =
∞∑

n=0

〈δ(x − xn)〉 1

Rn

Rn∑
i=1

I
(
t

(i)
n � t < t

(i)
n+1

)
. (24)

Here and in the following the overbar indicates the average over
the ensemble of disorder realizations. The disorder ensemble
average removes here the dependence of the t (i)

n on the single-
disorder realizations, such that we can write

p(x,t) =
∞∑

n=0

〈δ(x − xn)〉pn(t), (25)

where pn(t) is the distribution of numbers of steps needed to
reach time t ,

pn(t) = I(tn � t < tn+1). (26)

The particle time tn after n steps is given by Eq. (16).
In q > 2 spatial dimensions the number Sn of distinct sites

visited increases linearly with step number, Sn = bn, where
b depends on the type of lattice on which the medium is
discretized, and thus on the geometry of the medium. Here,
we consider a simple cubic lattice, for which b ≈ 0.66 [48].
Accordingly, for q > 2, the renormalized particle trajectory
Eq. (16) can be written as

xN =
N∑

i=1

�√
b
ηi , tN =

N∑
i=1

τi

b
, (27)

see Appendix A. This implies that the average particle motion
describes a CTRW [1]. For q � 2 it is not possible to formulate
the renormalized space-time particle motion Eq. (16) in the
form of a CTRW because of the step number dependence of
the ratio Sn/n, which is Sn/n ∝ nq/2−1 in q < 2 and Sn/n =
1/ ln(n) in q = 1 spatial dimension.

III. DIFFUSION BEHAVIOR

In this section we investigate the diffusion behavior in
q = 1, 2, and 3 spatial dimensions both numerically and
analytically. We study the disorder ensemble average diffusion
behavior as well as diffusion in single-disorder realizations.
The media are characterized by a spatially random distribution
of retardation coefficients θ (x) and organized in equisized
hypercubes of length � as illustrated in Fig. 1. The retardation
coefficients θ (x) are assigned to the hypercubes randomly. This
type of medium has a linear tent-shaped correlation function.
As discussed in Sec. II A, such media can be considered
caricatures of more general random media characterized by
a constant correlation distance �. The spatial random fields
θ (x) generated in this way are stationary and isotropic. The
distribution of point values of θ (x) is denoted by pθ (θ ). We
consider in the following disorder scenarios characterized by

pθ (θ ) ∝ θ−1−β, (28)

FIG. 1. Realization of a quenched random medium organized in
equally sized pixels. The retardation coefficient θ (x) is distributed
according to a heavy-tailed PDF for β = 1/4. Different colors denote
different values of θ (x) on a logarithmic scale.

with β > 0 and θ � 1. According to Eq. (12), this implies a
transition time PDF that behaves as

ψ(t) ∝
(

t

τκ

)−1−β

. (29)

Moments of order higher than β� are not defined, where
·� denotes the floor function. The setup of the numerical
random walk simulations and the specific choice for pθ (θ ) are
described in Appendix F. In the following, we first discuss the
disorder average behavior, which we then contrast with the
diffusion behavior in single-medium realizations.

We study the diffusion behavior in terms of the particle
distributions and mean-square displacements. For illustration,
we consider the integrated particle distributions p(x1,t) =
〈δ[x1 − x1(t)]〉 for q = 2 and 3. As initial condition we
consider an instantaneous particle injection at x = 0. We first
consider the disorder average diffusion behavior and briefly
summarize the well known long time scaling of the disorder
average mean-square displacement m(t). We then study the
diffusion behavior in single realizations and the sample to
sample fluctuations as a function of the spatial dimensions and
the disorder distribution.

A. Disorder average behavior

The disorder average mean-square displacement m(t) =
〈x(t)2〉 is obtained by averaging Eq. (20) as

m(t) = �2nt , (30)

where the overbar indicates the average over the ensemble of
realizations. During the first step, nt can be approximated by
a Poisson variable whose mean is given by nt = t/τκθ (0)−1.
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FIG. 2. (a) Concentration profile at t = 20τκ and (b) disorder average mean-square displacement for a pulse injection into q = 3-dimensional
random media for β = 1/4 and κ = 1. The full symbols represent the disorder ensemble average, lines the behaviors in single realizations.
(Right) Open symbols denote the behavior of the corresponding annealed disorder model, stars the behavior of the equivalent CTRW discussed
in Sec. II C. The solid black line denotes the early-time behavior, Eq. (31); the dashed line denotes the late-time behavior, Eq. (33).

Thus, the early-time behavior of m(t) is

m(t) = 2qκ

θH

t, (31)

where θH = 1/θ−1 is the harmonic average of θ . This behavior
is valid for times shorter than the characteristic diffusion time
τc across the injection region of size �,

τc = θH τκ . (32)

In the following, we briefly discuss the diffusion behavior for
disorder scenarios characterized by infinite and finite mean
transition times.

1. Infinite mean transition time (0 < β < 1)

For infinite mean transition time the disorder average
long time diffusion behavior is sub-diffusive. The scalings
of the mean-squared displacements for diffusion in quenched
disorder depend on the dimensionality of space and are
reported in Ref. [1] and derived in the current framework in
Appendix D 1.

As discussed in Sec. II C, for q > 2 dimensions, the disorder
average diffusion behavior describes a CTRW and m(t) scales
as

m(t) ∝ tβ . (33)

Figure 2(a) shows the areally integrated profile, which
behaves as the stretched exponential [39],

p(x1,t) ∼ exp[−a|x1/m(t)|2/(2−β)], (34)

with a a positive constant and m(t) given by Eq. (33).
Figure 2(b) shows the numerically obtained m(t), the exact
early-time behavior, Eq. (31), and the long time scaling,
Eq. (33). The behavior of the equivalent renormalized CTRW
discussed in Sec. II C and the diffusion behavior in an annealed
disorder scenario characterized by ψ(t) are also displayed in
Fig. 2(b). Note that the annealed scenario does not account for
the renormalization of the space and time increments.

The mean-square displacement in the annealed scenario is
equal to the quenched case at short times. It underestimates
m(t) at times t > τc because it does not account for the
renormalized time and space increments. Conversely, the

equivalent CTRW coincides with the quenched behavior for
t � τc. The disorder average behavior behaves as in an
equivalent annealed disorder. The quenched nature of the
spatial disorder is only revealed in the sample to sample
fluctuations as discussed in the next section.

In q = 2 and q < 2 dimensions, m(t) behaves as

m(t) ∝ tβ ln(t)1−β, m(t) ∝ t
2β

2β−qβ+q , (35)

respectively. The mean-square behavior is subdiffusive, but
increases faster than in q > 2. In the following, we focus on
q = 1 and q = 2 as well as q > 2 spatial dimensions.

Figures 3(a) and 3(c) show the disorder average particle
distributions in q = 2 and q = 1 dimensions and illustrate that
m(t) increases faster as dimension decreases. The profile for
q = 2 dimensions adjusts to the same stretched exponential
Eq. (34) as in q = 3 with m(t) given by Eq. (35). For q = 1
the profile is well described by the stretched exponential [42]

p(x1,t) ∼ exp(−b|x/m(t)|1+β), (36)

with b a positive constant and m(t) the disorder average mean-
square displacement Eq. (35) for q = 1.

Figures 3(b) and 3(d) display the disorder average mean-
square displacement for q = 2 and q = 1 dimensions. For
comparison, we plot the diffusion behavior for an annealed
disorder scenario characterized by the same ψ(t). The short-
time behavior is given exactly by Eq. (31); the long-time
behavior for t � τc is given by Eq. (35). At short times t < τc,
the annealed and quenched scenarios behave in the same way
because the behavior is given by the harmonic average of the
residence times in the injection region. At longer times, when
particles start sampling the disorder, the space dependency
of transition times implies correlation of successive time
increments. Thus, in quenched disorder particles visit in
average a lower number of different sites than in annealed
disorder. Consequently particles encounter a lower number of
high retardation sites that determines long-time behavior. As
a consequence, mean-square displacement increases slower in
annealed than in quenched disorder.
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FIG. 3. (a, c) Concentration profiles at t = 20τκ for a pulse injection into (a) q = 2- and (c) q = 1-dimensional random media for β = 1/4
and κ = 1. The full symbols represent the disorder ensemble average, lines the behaviors in single realizations. (b, d) Disorder average
mean-square displacement for a pulse injection into (b) q = 2- and (d) q = 1-dimensional random media for β = 1/4 and κ = 1. The full
symbols represent the disorder average, lines the behaviors in single realizations. Open symbols denote the behavior of the corresponding
annealed disorder model. The solid black line denotes the early-time behavior, Eq. (31); the dashed lines denotes the late-time behaviors,
Eq. (35).

2. Finite mean transition time (β > 1)

Here, we consider media characterized by a power law dis-
tribution of retardation coefficients with β > 1. In this case, the
mean transition time τ exists. The long-time diffusion behavior
is normal. The disorder average mean-square displacement
behaves in leading order as (see Appendix D 2)

m(t) = 2qκ

θA

t, (37)

where θA = θ (x) is the arithmetic average of θ (x). This
behavior holds in any dimension. The quenched nature of
the disorder manifests in the self-averaging behavior of the
mean-square displacement as discussed below.

Figure 4(a) illustrates the particle distribution for q = 1
and β = 3/2. It is well described by a Gaussian distribution.
Figure 4(b) shows the disorder average mean-square displace-
ment obtained for q = 1,2 and 3 dimensions with β = 3/2. We
observe that m(t) scales linearly with time for any dimension.
For t < τc it behaves as predicted by Eq. (31) and for t > τc

as Eq. (37).

B. Single-medium realizations

In this section we study diffusion in single-disorder re-
alizations. We discuss the sample to sample fluctuations of
the mean-square displacement and the particle distribution be-
tween realizations. The early time mean-square displacement

in a single realization is given by

m(t) = 2qκ

θ (0)
t. (38)

This behavior persists as long as the particle displacement
is smaller than the characteristic length scale �, this means
for times t < θ (0)τκ . This time scale is determined by the
disorder at the injection point, which varies from realization
to realization.

1. Infinite mean transition time (0 < β < 1)

Figure 3(c) compares the particle distributions at t = 20τκ

after a pulse injection in a single q = 1-dimensional disorder
realizations with the disorder ensemble average. The spatial
particle distribution is characterized by multiple peaks which
are due to the retention of particles in regions of high θ .
Figure 3(d) shows the mean-square displacement for different
q = 1-dimensional disorder realizations. As predicted, at
short times the mean-square displacement increases in each
realization linearly in time until θ (0)τκ with θ (0) the retention
of the first pixel. At times longer than θ (0)τκ , the injected
particles start sampling the medium heterogeneity of high and
low θ values. Thus, diffusion at long times is slowed down due
to particle retention in regions of high θ and the mean-square
displacement fluctuates around the ensemble mean behavior
given by Eq. (35).
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FIG. 4. (a) Concentration profile at t = 20τc for a pulse injection into a q = 1-dimensional random media for β = 3/2 and κ = 1. The full
symbols represent the disorder average, the line the behavior in a single-medium realization. (b) Disorder average mean-square displacement
for a point injection into (triangles) q = 3-, (squares) q = 2-, and (circles) q = 1-dimensional random media. The full symbols represent the
ensemble average, the lines the behavior in single q = 1-dimensional medium realizations. The solid black line denotes the early-time behavior,
Eq. (31); the dashed line denotes the late-time behavior, Eq. (37).

Figure 5 shows the particle distribution in a single real-
ization of a q = 2-dimensional random medium. We observe
similar localization features as in q = 1. The corresponding
integrated particle distributions are compared in Fig. 3(a) to
the average distribution. The integrated profiles are naturally
much smoother than for q = 1. The mean-square displacement
displayed in Fig. 3(b) shows the exact behavior given by
Eq. (38) for t < θ (0)τκ . As in q = 1,m(t) slows down and
fluctuates around the ensemble mean given by (35). The
fluctuations are smaller than in q = 1 due to the more efficient
disorder sampling. This feature is even more pronounced in
q = 3.

FIG. 5. Particle distribution for a pulse injection into a q = 2-
dimensional heterogeneous medium for β = 1/4 and κ = 1. Differ-
ent colors denote different values of concentration with a logarithmic
color scheme.

Figure 6 shows the particle distribution in a section of a
q = 3-dimensional medium. Again, we observe certain local-
ization features, but the particle distribution is smoother than
in q = 2 due to more efficient disorder sampling. The more
efficient disorder sampling is also manifest in the behavior of
the mean-square displacement shown in Fig. 2(b). While the
short-time behavior depends strongly on the single-medium
properties, the long-time behavior fluctuates much less about
the mean behavior given by (33) than in q < 3.

In summary, fluctuations of the particle distribution and
the mean square displacement are decreasing with increasing
spatial dimension. This is due to the increase in the sampling
efficiency with q. As discussed in Sec. II B, the number Rn of

FIG. 6. Particle distribution across a section for a pulse injection
into a q = 3-dimensional heterogeneous medium for β = 1/4 and
κ = 1. Different colors denote different values of concentration with
a logarithmic color scheme.
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possible sites that may be explored evolves with step number as
Rn ∝ nq/2−1 and the ability Sn of sampling new sites increases
as a function of q.

2. Finite mean transition time (β > 1)

Here we consider media characterized by the disorder dis-
tribution given by Eq. (28) with β > 1, which implies that the
ensemble mean transition time τ is finite. Figure 4(b) illustrates
the mean-square displacements in single q = 1-dimensional
disorder realizations with β = 3/2. For compactness, we
omit the behaviors for q = 2 and q = 3. At short times, for
t < θ (0)τκ,m(t) increases linearly with time as in Eq. (38).
At long times, the behaviors are approximately linear in all
realizations and fluctuate around the disorder average given
by (37). For q = 2 and q = 3, the behaviors are similar,
but the fluctuations around the mean behavior decrease with
increasing spatial dimension (not shown).

IV. SELF-AVERAGING

The differences in the diffusion behaviors between disorder
realizations depend on the efficiency by which the diffusing
particles sample the heterogeneity in single disorder realiza-
tions. This efficiency is expressed by Sn, the average number
of distinct sites visited after n random walk steps, and by
the number of different disorder configurations particles are
able to see in a single realization, which is measured by
Rn defined by Eq. (23). As discussed in Sec. II B, in q = 1
dimension the number of different disorder configurations
accessible to the diffusing particles within a single realization
is of the order of 1. Thus, we expect that sample to sample
fluctuations persist, while in q � 2, Rn increases with step
number. In the following, we discuss how these attributes
impact on the sample to sample fluctuations of the mean-
square displacement for anomalous as well as normal average
transport.

The fluctuations of the mean-square displacement m(t) are
quantified by its disorder variance,

σ 2
m(t) = m(t)2 − m(t)2, (39)

where m(t) for a single realization is given by Eq. (20). Again,
we obtain an exact result for early times t < τκ/θH . Using
Eq. (38) for m(t) and Eq. (31) for its disorder average in
Eq. (39), we obtain

σ 2
m(t) = 4qκ2t2(θ−1 − θ−1

H

)2
. (40)

For times t � τc, we derive in Appendix B the following
compact expression:

σ 2
m(t) = �4nt (nt − nt )/Rnt

. (41)

The mean-square displacement is quantified in terms of the
disorder averages of the renewal process nt = max(n|tn � t),
which describes the number of steps needed to reach time t in
the process tn defined in Eq. (16). The self-averaging property
is quantified by the relative variance [1,49,50],

�(t) = σ 2
m(t)

m(t)2
. (42)

If limt→∞ �(t) = 0, diffusion is referred to as self-averaging,
if limt→∞ �(t) > 0 as non-self-averaging. Note that the fact
that �(t) goes to 0 with increasing time does not imply that
the variance disappears. It may, in fact, be large. However, the
ratio of fluctuation to mean value goes to 0, which means that
the relative error of the disorder ensemble averaged quantity
disappears in the limit of infinite times. This property is defined
here as self-averaging in agreement with Aslangul et al. [49]
and Bouchaud and Georges [1], who consider the evolution
of the relative variance over time, and Wiseman and Domani
[50], who consider the evolution of the relative variance as a
function of the spatial size of a disorder sample.

In the following, we discuss the variance of the mean square
displacement m(t) and its self-averaging behavior for disorder
scenarios that are characterized by infinite and finite mean
transition times. The detailed calculations leading to the results
discussed in the following can be found in Appendix E and,
for the case of infinite mean transition time in Ref. [41], which
we summarize here for completeness.

A. Infinite mean transition time (0 < β < 1)

The disorder average mean-square displacement for 0 <

β < 1 is subdiffusive in any spatial dimension. The variance
of m(t) in q = 1 spatial dimensions behaves for t � τc as

σ 2
m(t) ∝ t

4β

2β−qβ+q . (43)

Thus, using Eqs. (43) and (35) for the relative variance we have
�(t) ∼ 1. This implies that the mean-square displacement is
not self-averaging for q = 1 as expected from the constant
number of possible realities (Rn ∼ 1) that may be sampled in
a single realization. Nevertheless, Eq. (43) implies that m(t) ∝
m(t) ∝ t

2β

2β−qβ+q , as discussed in the previous section.
For q = 2, one finds the following long-time scaling:

σ 2
m(t) ∝ t2β ln(t)1−2β. (44)

Here the relative variance �(t) ∝ 1/ ln(t); see Eq. (35). The
process is self-averaging, but the relative variance decays very
slowly. This behavior is in line with the slow increase of Sn ∼
ln(n) of new sites that may be sampled.

For q > 2, the disorder variance of m(t) scales as

σ 2
m(t) ∝ tβ(3−q/2). (45)

This implies, together with Eq. (33), that the relative variance
scales as �(t) ∝ tβ(1−q/2). The diffusion behavior is self-
averaging and the decay of the relative variance decreases with
the spatial dimension. Again, this behavior is reflected by the
increasing sampling efficiency expressed both by the ability
of sampling new sites, which scales as Sn ∼ n and the number
of different realities that may be sampled by the random walk,
which scales as Rn ∼ nq/2−1.

Figure 7(a) shows the temporal evolution of σ 2
m(t) sampled

from numerical Monte Carlo simulations using 104 realiza-
tions of the random medium for β = 1/4 and q = 1, 2, and
3. The analytical results in Eq. (40) for early times and the
late time scalings given in (43) and (44) are consistent with
the numerical simulation data. At short times t � τc there is a
quadratic increase with time of uncertainty of the mean-square
displacement, which is due to the poor disorder sampling;
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FIG. 7. Evolution of the variance σ 2
m(t) for a pulse injection of 105

particles into 103 realizations of (triangles) q = 3, (squares) q = 2,
and (circles) q = 1-dimensional random media with κ = 1 and (a)
β = 1/4, (b) β = 3/2, and (c) β = 5/2. The solid black line shows
the analytical early-time behavior Eq. (40), the dashed black lines the
late-time behaviors (top) Eqs. (43)–(45), (middle) Eqs. (46) and (47),
and (bottom) Eq. (49).

particles have not yet diffused over lengths larger than the
characteristics disorder scale �. For times t > τc, particles start
seeing the disorder and the variance increase slows down.

B. Finite mean transition time (β > 1)

For finite mean transition time, the disorder average mean-
square displacement evolves linearly with time. This means
that average particle motion is diffusive, i.e., m(t) ∝ t for any
dimension q. The behavior of the variance of m(t), however,
depends on the spatial dimension and on the value of β. We
distinguish the cases 1 < β < 2 for which the mean transition
time is finite while τ 2 is infinite, and the case β > 2 for

which both the mean and the mean-square transition time are
finite. The results presented in the following are derived in
Appendix E.

1. Self-averaging property for 1 < β < 2

For 1 < β < 2 the variance of the transition time is infinite.
The scaling of σ 2

m(t) for q = 1 is

σ 2
m(t) ∝ (t/τ )

4−q(β−1)
2 . (46)

This indicates that the variance increases with time faster
than in the case 0 < β < 1. The relative variance, however,
decays algebraically with time as �(t) ∝ (t/τ )−

q(β−1)
2 . The

mean-square displacement is self-averaging despite the poor
disorder sampling in q = 1 for which the number of possible
disorder realizations that may be sampled is Rn ∼ 1. Disorder
sampling is still poor as expressed by the slow decay of the
relative variance. For q = 2, we find

σ 2
m(t) ∝ (t/τ )3−β ln(t/τ )β−2. (47)

The relative variance here decreases as �(t) ∝
(t/τ )1−β ln(t/τ )β−2.

For q > 2, we obtain for σ 2(t) the long-time behavior,

σ 2
m(t) ∝ (t/τ )4−β−q/2. (48)

Similar to the case q � 2 dimensions, the disorder variance
increases faster than in the case of an infinite mean transi-
tion time. The relative variance, however, scales as �(t) ∝
(t/τ )2−β−q/2, which indicates that diffusion is self-averaging.
These behaviors are illustrated in Fig. 7(b) for β = 3/2 for
q = 1, 2, and 3. At early times, we observe the characteristic
quadratic increase, which slows down when the particles start
experiencing the disorder.

2. Self averaging property for β > 2

For β > 2, both the mean and mean-squared transition
times are finite. In this case, one obtains for the disorder
variance σ 2

m(t),

σ 2
m(t) ∝ (t/τ )2−q/2. (49)

This implies that the relative variance behaves as �(t) ∝
(t/τ )−q/2. As expected the behavior is always self-averaging,
but the relative variance decreases slower with decreasing
spatial dimension. Figure 7(c) illustrates the behavior of σ 2

m(t)
for β = 5/2 and q = 1, 2, and 3 spatial dimensions.

V. ERGODICITY

In this section, we study the issue of ergodicity. While
self-averaging refers to the sample to sample fluctuations of
the mean-square displacement m(t) with respect to its disorder
average m(t), the ergodicity property considers the fluctuations
of the time-averaged mean-square displacement with respect
to its noise average. In other words, self-averaging refers to
the variability of noise averages between disorder realizations,
while ergodicity refers to variability of time averages between
noise realizations (particles) in single-disorder realizations.

The mean-square displacement of x(s) in Eq. (8) is ergodic
in operational time s because it describes an ordinary random
walk characterized by a stationary increment. This is different
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for the process x(t) ≡ x[s(t)] that in clock time samples the
heterogeneity slower. Ergodicity is related to the ability of a
single particle to sample the available fluctuation spectrum in
a finite time. The time process here is directly related to the
disorder process as given in Eq. (8). Thus, disorder sampling
in time is limited by the disorder itself. To probe the ergodicity
of the random walk, we consider the time-averaged particle
increments [35],

m	(t) = 1

t − 	

∫ t−	

0
dt ′[x(t ′ + 	) − x(t ′)]2. (50)

It is interesting to note that this quantity is related to the
empirical variogram [51], which is used in geostatistics to
characterize the variability of a spatial random field. Equa-
tion (50) is typically referred to as time-averaged mean-square
displacement in the literature. Here, we refer to it as the time
average of the increment process x	(t) ≡ x(t + 	) − x(t).
Using Eq. (8), we can write

x	(t) =
√

2κw	(t), w	(t) =
∫ s(t+	)

s(t)
ds ′η(s ′), (51)

with 〈w	(t)〉 = 0 and 〈w	(t)2〉 = q[s(t + 	) − s(t)]. Thus,
we may write Eq. (50) in a weak sense as

m	(t) = 2qκ

t − 	

∫ t−	

0
dt ′[s(t ′ + 	) − s(t ′)]. (52)

We furthermore expand this expression for t � 	 to obtain

m	(t) = 2q	κ

t
s(t) + · · · , (53)

where the dots denote contributions of order 	2. We define
now the quantity

ma(t) ≡ m	(t)

	
t = 2qκs(t), (54)

which can be seen as the time-averaged mean-square dis-
placement while m	(t)/2	 denotes an apparent diffusion
coefficient. Note that Lubelski et al. [36] suggest to consider
m	(t)/2t as an effective diffusion coefficient. These authors
focus on the displacement increment as a function of the time
increment 	, while here, we study the long-time behavior of
the time-averaged mean-square displacement. According to
Eq. (5), the noise mean of ma(t) is equal to the mean-square
displacement 〈ma(t)〉 = m(t). The process s(t) is identified in
the coarse grained random walk Eq. (9) by s(t) ≡ τκnt , such
that

ma(t) = �2nt . (55)

The disorder average of ma(t) is equal to m(t). Note that
Miyaguchi and Akimoto [38] defined a diffusion coefficient
as Dt = nt/t , which is related to ma(t) as Dt = ma(t)/�2t .
These authors study the full distribution of Dt over the disorder
ensemble as well as its disorder mean and variance. The
disorder mean of Dt is related to the disorder mean-square
displacement m(t) as Dt = m(t)/�2t .

Ergodicity of the mean-square displacement is measured in
terms of the variance of ma(t) with respect to its noise average
m(t),

σ 2
a (t) = 〈[ma(t) − m(t)〉]2〉 = �4

(〈
n2

t

〉 − 〈nt 〉2
)
. (56)

Let us first consider the short-time behavior of σ 2
a (t). The

variance of ma(t) in a single realization is given by

σ 2
a (t) = �4t

τκθ (0)
= �2m(t), (57)

because at the first step in a single-medium realization, the
transition time is exponentially distributed with mean θ (0)τκ .
This renders nt approximately a Poisson variable as long
as 〈nt 〉 � 1. Thus, in the diffusive short-time regime, σ 2

a (t)
behaves as the mean-square displacement, see Eq. (38). Its
disorder average is given at short times t < τκ by

σ 2
a(t) = �2 2qκt

θH

. (58)

To quantify this variance in a systematic way at long times
t � τc, we consider the disorder average of Eq. (56), which
can be tautologically rewritten as

σ 2
a(t) = �4

(〈
n2

t

〉 − 〈nt 〉2) − �4(〈nt 〉2 − 〈nt 〉2
). (59)

The second term on the right is identified with the variance
σ 2

m(t) defined by Eq. (39). The first term on the right is the
disorder variance of the step number process nt , which is
independent of the noise in a single-disorder realization,

σ 2
n (t) = n2

t − nt
2. (60)

Thus, σ 2
a(t) is given by

σ 2
a(t) = �4σ 2

n (t) − σ 2
m(t). (61)

This implies that σ 2
n (t) � σ 2

m(t)/�4 due to the positiveness
of the variance. Thus, the long-time behavior of σ 2

a(t) is
dominated by σ 2

n (t). The ratio of σ 2
n (t) and n2

t has been termed
ergodicity-breaking parameter EB in the literature [52],

EB = σ 2
n (t)

n2
t

. (62)

If the value of EB is nonzero in the limit of infinite
times, one speaks of weak ergodicity breaking. Note that
σ 2

n (t) = [ma(t)2 − m(t)2]/�4, this means, it is proportional
to the disorder variance of the time-averaged mean-square
displacement. Note also that EB is equal to the relative disorder
variance of the diffusion coefficient Dt studied by Miyaguchi
and Akimoto [38]. Specifically, the variance σ 2

n (t) is related to

the disorder variance of Dt as σ 2
n (t) = (D2

t − D
2
t )t2.

Appendix C derives the asymptotic long-time behaviors for
the moments and the PDF of nt with respect to the disorder
average for q dimensions and for disorder scenarios that are
characterized by infinite and finite mean transition times. In
the following, we discuss ma(t) and its disorder variance in
terms of σ 2

n (t) for different values of q and β.

A. Infinite mean transition time (0 < β < 1)

As outlined above, for infinite mean transition time, m(t)
evolves subdiffusively with time in any spatial dimension.
The time-averaged mean-square displacement ma(t) shows
subdiffusive scaling as illustrated in Fig. 8 with significant
fluctuations around the noise mean m(t). As outlined above,
these fluctuations can be quantified in terms of the disorder
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FIG. 8. Evolution of the time-averaged mean-square displace-
ment ma(t) defined by Eq. (55) (dashed) for four particle trajectories,
and the noise average m(t) for (solid) 105 particles injected at the
origin of a q = 3 heterogeneous medium for β = 1/4. The solid
black line shows the analytical early-time behavior, Eq. (38); the
dashed black lines the late-time behavior, Eq. (33).

variance σ 2
n (t). Miyaguchi and Akimoto [38] report results for

the variance of Dt , which is equivalent to σ 2
n (t). Also, these

authors report explicit expressions for EB. In the following, we
summarize these results for completeness before we discuss
the behavior of σ 2

n (t) and thus σ 2
a(t) for disorder distributions

characterized by finite mean transition times.
For q = 1, the scaling of the disorder variance σ 2

n (t) is given
by

σ 2
n (t) ∝ t

4β

2β−qβ+q , (63)

see also Eq. (D6). It scales in the same way as the disorder

variance of m(t) given in Eq. (43). As nt ∝ t
2β

2β−qβ+q , the
ergodicity breaking parameter is EB ∼ 1. This means that
diffusion is here weakly ergodicity breaking.

For q = 2 dimensions, σ 2
n (t) behaves as

σ 2
n (t) ∝ t2β ln(t)2−2β, (64)

see also Eq. (D9). This implies that the disorder variance of
σ 2

a(t) increases faster than σ 2
m(t) given by Eq. (44). In fact,

σ 2
n (t) scales as n2

t . Thus, the ergodicity breaking parameter
EB ∼ 1 and again, diffusion is weakly ergodicity breaking.

For q > 2, the scaling for the disorder variance of nt is

σ 2
n (t) ∝ t2β, (65)

see also Eq. (D11). The variance σ 2
n (t) scales in the same

way as n2
t and thus, again EB ∼ 1. Also in q = 3, diffusion is

weakly ergodicity breaking. These behaviors are illustrated in
Fig. 9 and compared with data from numerical random particle
tracking simulations. Explicit expressions for EB can be found
in Miyaguchi and Akimoto [38].

B. Finite mean transition time (β > 1)

For disorder scenarios that are characterized by finite mean
transition times τ < ∞, the average diffusion behavior is
normal and the diffusion is asymptotically self-averaging.
The time-averaged mean-square displacement ma(t) evolves

10-2

100
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104
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108

10-2 100 102 104 106 108 1010

σ2 n
(t)

t/τc

FIG. 9. Evolution of the variance σ 2
n (t) for a pulse injection into

103 realizations of a (circles) q = 1, (squares) q = 2, and (triangles)
q = 3 random medium for β = 1/4. The solid black line shows the
analytical early-time behavior, Eq. (58); the dashed black lines the
late-time behaviors, Eqs. (63)–(65).

approximately linear but fluctuates about the noise mean m(t)
as illustrated in Fig. 10.

For q = 1, we obtain from Eq. (D14) for σ 2
n (t) the following

scaling behavior:

σ 2
n (t) ∝ (t/〈τ 〉)2+ q(1−β)

2 . (66)

The behavior for β > 2 is obtained by setting β = 2. Since
the disorder mean nt scales as t , the ergodicity breaking pa-
rameter behaves as EB ∝ (t/〈τ 〉) q(1−β)

2 . This means it decreases
relatively slowly with time as t−γ , where 0 < γ � q/2.

For q = 2, Eq. (D17) gives

σ 2
n (t) ∝ (t/τ )3−β ln(t/τ )β−1. (67)

Again, the behavior for β > 2 is obtained by setting β =
2. The ergodicity breaking parameter here scales as EB ∝
[(t/τ )/ ln(t/τ )]1−β . Thus, it decays as [t/ ln(t)]−γ with 0 <

γ � 1.

10-1
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101

102

103

104

10-1 100 101 102 103 104

n t

t/τc

FIG. 10. Evolution of the time-averaged mean-square displace-
ment ma(t) defined by Eq. (55) (dashed) for four particle trajectories,
and the noise average m(t) for (solid) 105 particles injected at the
origin of a q = 3 heterogeneous medium for β = 3/2. The solid
black line shows the analytical early-time behavior, Eq. (38); the
dashed black lines the late-time behavior, Eq. (37).
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FIG. 11. Evolution of the variance σ 2
n (t) for a pulse injection into

103 realizations of a (circles) q = 1, (squares) q = 2, and (triangles)
q = 3 random medium for β = 3/2. The solid black line shows the
analytical early-time behavior, Eq. (58); the dashed black lines the
late-time behaviors, Eqs. (66)–(68).

For q > 2, we obtain from Eq. (D20),

σ 2
n (t) ∝ (t/〈τ 〉)3−β. (68)

The ergodicity breaking parameter scales as EB ∝ (t/τ )1−β .
It decays as t−γ with 0 < γ � 1. Thus, while the time-
averaged mean-square displacement is asymptotically ergodic,
its variance decays algebraically with time. Figure 11 shows
the evolution of the disorder variance of nt in q = 1, 2, and 3
dimensions from numerical random walk simulations.

For disorder scenarios characterized by a finite mean
transition time, diffusion is asymptotically ergodic and self-
averaging, as discussed in Sec. IV. Thus, the ensemble of
particles is representative of individual particle trajectories
(ergodicity), and the disorder ensemble is representative of the
diffusion behavior in single realization (self-averaging).

VI. SUMMARY AND CONCLUSIONS

We study self-averaging and ergodicity of diffusion in het-
erogeneous media. Ergodicity refers to the question whether
the particle ensemble statistics in a single realization are
representative of the temporal statistics sampled along a
single-particle trajectory. It is a fundamental property for
the inference of stochastic particle rules from single-particle
tracking observations. The notion of ergodicity is different
from the the notion of self-averaging. The latter refers to the
representation of the particle statistics in a single-medium
realization through the disorder ensemble statistics. It is a
fundamental condition for the use of stochastic modeling for
the prediction of diffusion behavior in heterogeneous media.
If these properties apply, they are approached asymptotically.

We analyze these behaviors for diffusion in heterogeneous
media that are characterized by spatially variable retardation
coefficients, which quantifies particle retention due to physical
and chemical interactions with the host medium. The retarda-
tion coefficient is modeled as a stationary spatial random field.
The diffusion problem is coarse-grained on the characteristic
heterogeneity length scale and numerically implemented using
a TDRW. We derive an explicit expression for the noise average
in a single realization, which depends on the number Rn of
different disorder realizations that the noise ensemble may

sample after n diffusion steps in a single-disorder realization.
As is well known, for q > 2, the average particle motion in this
model describes a CTRW. We derive the renormalized space
and time increments to match the long time diffusion behavior
obtained from the TDRW simulations for q = 3.

We then focus on the mean-square particle displacement
and particle distributions averaged over the disorder ensemble
and in single-disorder realizations. We derive explicit
expressions for the early-time behavior of the mean-square
displacement and confirm through the numerical simulations
the known analytical results for the asymptotic scaling of
the mean-square displacement and disorder average particle
distribution for q � 1 spatial dimensions. The disorder
ensemble average behavior is contrasted to the evolution of
the mean-square displacement and particle distributions in
single realizations. We observe significant sample to sample
fluctuations and segregation of the particle distribution due
to localized strong retention, which are more significant
for decreasing spatial dimension. These observations are
discussed in the light of the sampling efficiency Rn, which
depends on the spatial dimension q; Rn increases faster with
n for increasing q. For q = 1, Rn ∼ 1, this means, particles
sample in average only one reality per realization. For q = 2,
Rn increase logarithmically with step number and in q = 3
as

√
n.

The sample to sample fluctuations are quantified in terms
of the disorder variance of the mean-square displacement
between disorder realizations. The self-averaging behavior is
probed by the relative variance �(t). If �(t) goes asymp-
totically to zero, m(t) is self-averaging. This does not mean,
however, that the fluctuations of m(t) are necessarily small at
finite times. We derive explicit expressions for the variance in
q dimensions at early and late times, which are compared
to TDRW simulations of the full heterogeneous diffusion
problem for subdiffusive and diffusive disorder configurations.
Under subdiffusive conditions, the mean-square displacement
is non self-averaging for q = 1 and self-averaging for q � 2.
Under diffusive conditions, i.e., when m(t) ∝ t , we distinguish
scenarios for which the variance of the transition time is infinite
and finite. Under both conditions, m(t) is self-averaging in q

dimension. The rate of convergence of �(t) depends on the
dimension of space and the heterogeneity distribution.

We study ergodicity in terms of the noise variance of
the time-averaged mean-square displacement ma(t), which is
based on the definition of the time-averaged particle displace-
ment during a time increment 	. In a single realization ma(t) ∝
nt , the number of steps a particle performs to reach time t . Due
to the sample to sample fluctuations of the diffusion behavior
between disorder realization, also the noise variance of ma(t)
is a fluctuating quantity. Thus, we probe the ergodicity of ma(t)
in terms of the disorder average of its variance, which is dom-
inated by the disorder variance of the step number nt . The er-
godicity breaking parameter EB is defined as the ratio between
the disorder variance of nt and n2

t consistent with the definition
by Bel and Barkai [35] in the framework of CTRW. Ergodicity
is studied both for diffusive and subdiffusive disorder con-
figurations. We derive explicit analytical expressions for EB.
Under subdiffusive conditions, the mean-square displacement
is weakly ergodicity breaking in all dimensions. Under diffu-
sive conditions, for which the mean transition time is finite,
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diffusion is ergodic. The convergence toward ergodicity
depends also here on the spatial dimension and disorder
distribution.

In conclusion, under diffusive conditions, this means when
the mean transition time is finite, the mean-square displace-
ment is both ergodic and self-averaging. Under subdiffusive
conditions, on the other hand, the mean-square displacement
is weakly ergodicity breaking in all dimensions, while at the
same time it is self-averaging for d > 2. This means, the
noise ensemble is not representative of the single-trajectory
time statistics, but the disorder ensemble is representative for
the noise ensemble in a single-disorder realization.
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APPENDIX A: EQUIVALENT CTRW FOR q > 2
SPATIAL DIMENSIONS

One difference between the TDRW and the CTRW arises
from the correlation of successive time increments. Here we
re-sample the trajectories in Eq. (13) such that the trajectories
are constituted by series of Sn independent rescaled space and
time increments as

xSn
=

Sn∑
i=1

�̂nηi , tSn
=

Sn∑
i=1

n

Sn

τi . (A1)

We require that the variance of xSn
be equal to the variance of

xn, which implies

�̂2
nSn ≡ �2. (A2)

Thus, we obtain directly �̂n = √
n/Sn�. This gives for Eq. (A1)

xSn
=

Sn∑
i=1

√
n

Sn

�ηi , tSn
=

Sn∑
i=1

n

Sn

τi . (A3)

To obtain Eq. (27) for q > 2, we substitute Sn = bn in Eq. (A3)
and set N = bn�, where ·� is the floor function.

APPENDIX B: DISORDER VARIANCE OF MEAN-SQUARE
DISPLACEMENT

The disorder variance of the mean-square displacement is
defined by Eq. (39). In the following, we derive expression
Eq. (41). To this end, we consider the second disorder moment
of m(t). We obtain by using Eq. (20),

m(t)2 =
∞∑

n,k=0

nk�4 1

Rn

1

Rk

×
Rn∑
i=1

Rk∑
j=1

I
[
t

(i)
n � t < t

(i)
n+1

]
I
[
t

(j )
k � t < t

(j )
k+1

]
.

(B1)

By definition, the t (i)
n and t

(j )
k are independent for i �= j . For

i = j we have by virtue of the impulse functions that n = k.

Thus, we can write m(t)2 as

m(t)2 = �4
∞∑

n=0

n2

Rn

pn(t) + �(t), (B2)

where we defined

�(t) =
∞∑

n,k=0

nk�4 1

Rn

1

Rk

Rn∑
i=1

Rk∑
j=1,j �=i

pn(t)pk(t). (B3)

We used here definition Eq. (26) of the number of steps needed
to arrive at time t . �(t) can be written as

�(t) =
∞∑

n�k

nk�4

(
1 − 1

Rn

)
pn(t)pk(t)

+
∞∑

n<k

nk�4

(
1 − 1

Rk

)
pn(t)pk(t), (B4)

and due to symmetry, we obtain more compactly

�(t) =
∞∑

n,k=1

nk�4

(
1 − 1

Rn

)
pn(t)pk(t). (B5)

By comparison with Eq. (30), we identify

�(t) = m(t)2 − m(t)�2
∞∑

n=1

n

Rn

pn(t)

≡ m(t)2 − m(t)�2nt/Rnt
. (B6)

Inserting the latter into Eq. (B2) gives

m(t)2 = m(t)
2 + �4

(
n2

t

/
Rnt

− ntnt/Rnt

)
, (B7)

where we note that

n2
t /Rnt

=
∞∑

n=0

n2

Rn

pn(t). (B8)

and that m(t) = �2nt ; see Eq. (30). Using Eq. (B7) in Eq. (39)
for the variance of the mean-square displacement gives
Eq. (41).

APPENDIX C: DISTRIBUTION OF NUMBER nt

OF RANDOM WALK STEPS

To determine the long-time behaviors of the disorder aver-
age mean-square displacement, its variance and the variance
of the time-averaged mean-square displacement, we need to
determine averages of function of the number nt of random
walk steps. Its distribution is given by

pn(t) = δn,nt
= I(tn � t < tn+1). (C1)

Its Laplace transform is given by

p∗
n(λ) = λ−1[exp(−λtn) − exp(−λtn+1)], (C2)

where the times tn and tn+1 here are

tn =
Sn∑
i=1

γnτi, tn+1 =
Sn+1∑
i=1

γn+1τi . (C3)
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We defined for convenience γn ≡ n/Sn. Using these expres-
sions in Eq. (C2) and performing the disorder average, we
obtain

p∗
n(λ) = λ−1[f ∗

n (λ) − f ∗
n+1(λ)] ≈ −λ−1 d

dn
f ∗

n (λ), (C4)

where we defined

f ∗
n (λ) ≡ ψ(λγn)Sn . (C5)

We consider here transition time PDFs ψ(t) characterized by
the power-law behavior Eq. (29) as well as distributions for
which all moments exist. We distinguish the cases 0 < β < 1,

1 < β < 2 and β > 2 in Eq. (29). The latter covers the leading
behavior expected if all moments of τ exist.

1. Infinite mean transition time: 0 < β < 1

The Laplace transform of ψ(t) can be expanded for small
λ as

ψ∗(λ) = 1 − aβλβ + · · · ., (C6)

where aβ a constant that depends on the specific form of ψ(t).
Inserting Eqs. (C6) into (C4) gives for λτκ � 1,

f ∗
n (λ) ≈ exp(−aβαnλ

β), (C7)

where we defined for convenience αn = γ
β
n Sn.

2. Finite mean transition time: β > 1

For 1 < β < 2, this means, if the mean transition time is
finite 〈τ 〉 < ∞ and 〈τ 2〉 = ∞, the Laplace transform of ψ(t)
can be expanded as

ψ∗(λ) = 1 − 〈τ 〉λ + bβλβ + · · · ., (C8)

where bβ depends on the specific shape of ψ(t). Inserting
Eq. (C8) into Eq. (C4) gives

f ∗
n (λ) = ψ∗(λγn)Sn ≈ exp (−nλ〈τ 〉)(1 + bβαnλ

β + · · · ),
(C9)

where the dots denote sub-leading contributions.
For β > 2, this means, if both the mean and mean-squared

transition time are finite, the expansion of ψ∗(λ) is

ψ∗(λ) = 1 − 〈τ 〉λ + 〈τ 2〉
2

λ2 + · · · , (C10)

where the dots denote sub-leading contributions. Inserting
Eq. (C10) into Eq. (C4) gives

fn(λ) ≡ ψ(λγn)Sn ≈ exp (−nλ〈τ 〉)
(

1 + n2

Sn

〈τ 2〉λ2 + · · ·
)

,

(C11)

where the dots denote sub-leading contributions. This expan-
sion is valid for all transition time PDFs, for which the first
and second moments exist.

APPENDIX D: DISORDER MOMENTS OF NUMBER nt OF
RANDOM WALK STEPS

The kth disorder moment of the step number nt is defined
by

hk(t) =
∞∑

n=0

nkpn(t). (D1)

The Laplace transform of hk(t) can with the above definitions
be approximated as

h∗
k(λ) ≈ −λ−1

∫ ∞

0
dnnk d

dn
f ∗

n (λ). (D2)

Integration by parts gives

h∗
k(λ) ≈ kλ−1

∫ ∞

0
dnnk−1f ∗

n (λ). (D3)

1. Infinite mean transition time: 0 < β < 1

We write Eq. (D3) by using Eq. (C7) as

h∗
k(λ) ≈ kλ−1

∫ ∞

0
qnnk−1 exp(−aβαnλ

β). (D4)

a. Spatial dimension q = 1

In q = 1, Sn ∼ nq/2 and γn = n1−q/2, therefore, αn =
n

2β−dβ+d

2 . We obtain by rescaling n,

h∗
k(λ) ≈ λ

−1− 2kβ

2β−dβ+d k

∫ ∞

0
qnnk−1 exp

(−aβn
2β−dβ+d

2
)
. (D5)

Inverse Laplace transform gives

hk(t) ∝ t
2kβ

2β−dβ+d . (D6)

b. Spatial dimension q = 2

In q = 2, Sn ∼ n/ ln(n) and γn = ln(n), therefore, αn =
n ln(n)β−1, such that

h∗
k(λ) ≈ λ−1k

∫ ∞

0
qnnk−1 exp[−aβλβn ln(n)β−1]. (D7)

We rescale now n → nλβ ln(1/λ)β−1. Thus, we obtain in
leading order in the limit λ → 0,

h∗
k(λ) ≈ λ−1−kβ ln(1/λ)k−kβk

∫ ∞

0
qnnk−1 exp(−aβββn).

(D8)

Inverse Laplace transform gives

hk(t) ∝ t kβ ln(t)k−kβ . (D9)

c. Spatial dimension q > 2

In q > 2, Sn ∼ n and γn = 1, therefore, αn = n, such that

h∗
k(λ) ≈ λ−1−βk

∫ ∞

0
dnnk−1 exp(−aβn). (D10)

Inverse Laplace transform gives

hk(t) ∝ t kβ . (D11)
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2. Finite mean transition time β > 1

For 1 < β < 1, we use Eq. (C9) in Eq. (C4) in the Laplace
transform of Eq. (30) to obtain

h∗
k(λ) ≈ λ−1k

∫ ∞

0
dnnk−1 exp(−λnτ )

+ λ−1k

∫ ∞

0
dnnk−1 exp(−λnτ )bβαnλ

β + · · · .

(D12)

The case β > 2 is obtained according to Eq. (C11) by setting
β = 2 and bβ = b2 = 〈τ 2〉/2.

a. q = 1

Using αn = n
2β−dβ+d

2 and rescaling of n, we obtain

h∗
k(λ) ≈ λ−1−kk

∫ ∞

0
dnnk−1 exp(−nτ )

+ λ−1−k− d(1−β)
2 k

∫ ∞

0
dnnk−1+ 2β−dβ+d

2 exp(−nτ )bβ.

(D13)

Inverse Laplace transform gives

hk(t) = (t/τ )k + A1(t/〈τ 〉)k+ d(1−β)
2 , (D14)

where we defined

A1 = bβ

τβ

�
(
k + 2β−dβ+d

2

)
�

[
k + 1 + d(1−β)

2

] . (D15)

b. q = 2

Using αn = n ln(n)β−1 and rescaling of n, we obtain in
leading order

h∗
k(λ) ≈ λ−1−kk

∫ ∞

0
dnnk−1 exp(−nτ )

+ λ−2−k+β ln(1/λ)β−1k

∫ ∞

0
dnnk exp(−nτ )bβ.

(D16)

Inverse Laplace transform gives

hk(t) = (t/τ )k + A2(t/τ )1+k−β ln(t/τ )β−1, (D17)

where we defined

A2 = bβ

τβ

k�(k + 1)

�(k + 2 − β)
. (D18)

c. q > 2

Using αn = n and rescaling of n, we obtain

h∗
k(λ) ≈ λ−1−kk

∫ ∞

0
dnnk−1 exp(−nτ )

+ λ−2−k+βk

∫ ∞

0
dnnk exp(−nτ )bβ. (D19)

Inverse Laplace transform gives

hk(t) = (t/τ )k + A2(t/〈τ 〉)1+k−β. (D20)

APPENDIX E: VARIANCE OF THE MEAN-SQUARE
DISPLACEMENT

To determine the behavior of the variance σ 2
m(t) of the

mean-square displacement m(t), we need to evaluate Eq. (41),
which involves the disorder moments n2

t /Rnt
and nt/Rnt

of
the random step number nt .

1. Spatial dimension q = 1

For q = 1, Rn = 2q/2. Thus, we obtain for σ 2
m(t),

σ 2
m(t) = �4

2q/2

(
n2

t − nt
2) = �4

2q/2

[
h2(t) − h1(t)2

]
. (E1)

a. Mean transition time infinite: 0 < β < 1

We obtain from the previous section that

σ 2
m(t) ∝ t

4β

2β−dβ+d . (E2)

b. Mean transition time finite: β > 1

For 1 < β < 2, we obtain from the previous section

σ 2
m(t) ∝ (t/τ )2+ q(1−β)

2 . (E3)

This means, for β > 2, that

σ 2
m(t) ∝ (t/τ )2− q

2 . (E4)

2. Spatial dimension q = 2

For q = 2, Rn = 2 ln(n). Thus, we obtain for σ 2
m(t),

σ 2
m(t) = �4

[
n2

t / ln(nt ) − nt/ ln(nt )nt

]
. (E5)

This means we need to determine

Jk(t) =
∞∑

n=0

nk

ln(n)
pn(t) (E6)

for k = 1,2. We obtain from Eq. (C4) for its Laplace transform,

J ∗
k (λ) ≈ −λ−1

∫ ∞

0
dn

nk

ln(n)

d

dn
f ∗

n (λ). (E7)

Integration by parts gives

J ∗
k (λ) ≈ λ−1

∫ ∞

0
dnnk−1

[
k

ln(n)
− 1

ln(n)2

]
f ∗

n (λ). (E8)

a. Infinite mean transition time: 0 < β < 1

We obtain by using Eq. (C7) for αn = n ln(n)β−1,

J ∗
k (λ) ≈ λ−1

∫ ∞

0
dn

knk−1

ln(n)

[
1 − 1

k ln(n)

]

× exp[−aβλβn ln(n)β−1]. (E9)

Rescaling n → nλβ ln(1/λ)β−1, we obtain in leading order in
the limit λ → 0,

J ∗
k (λ) ≈ λ−1−kβ ln(1/λ)k−1−kβ

∫ ∞

0
dnknk−1 exp(−aβββn).

(E10)
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Inverse Laplace transform gives

Jk(t) ∝ t kβ ln(t)k−1−kβ . (E11)

Thus, we obtain for σ 2
m(t) the scaling

σ 2
m(t) ∝ t2β ln(t)1−2β. (E12)

b. Finite mean transition time: β > 1

We obtain by using Eq. (C9) for αn = n ln(n)β−1,

J ∗
k (λ) ≈ λ−1

∫ ∞

0
dn

knk−1

ln(n)

[
1 − 1

k ln(n)

]
exp(−nλτ )

+ λ−1+β

∫ ∞

0
dnknk ln(n)β−2

[
1 − 1

k ln(n)

]

× exp(−nλτ )bβ. (E13)

Rescaling of n → nλ gives in leading order

J ∗
k (λ) ≈ λ−1−k

ln(1/λ)

∫ ∞

0
dnknk−1 exp(−nτ )

+ λ−2−k+β ln(1/λ)β−2
∫ ∞

0
dnknk exp(−nτ )bβ.

(E14)

Inverse Laplace transform gives

Jk(t) ≈ (t/τ )k

ln(t/〈τ 〉) + A2(t/τ )1+k−β ln(t/τ )β−2. (E15)

Thus, we obtain for σ 2
m(t) the behavior

σ 2
m(t) ∝ (t/τ )3−β ln(t/τ )β−2. (E16)

For β > 2, we obtain

Jk(t) ≈ (t/τ )k

ln(t/〈τ 〉) + A2(t/τ )k−1 (E17)

and

σ 2
m(t) ∝ t/τ . (E18)

3. Spatial dimension q > 2

For q > 2, Rn ∼ 2q/2nq/2−1. Thus, we obtain for σ 2
m(t)

from Eq. (41)

σ 2
m(t) = �4

2q/2

(
n

3−q/2
t − n

2−q/2
t nt

)
= �4[h3−q/2(t) − h2−q/2(t)h1(t)]. (E19)

a. Infinite mean transition time: 0 < β < 1

Using the results for the hk(t) from the previous section,
we obtain

σ 2
m(t) ∝ tβ(3−q/2). (E20)

b. Finite mean transition time: β > 1

Along the same lines, we obtain for 1 < β < 2

σ 2
m(t) ∝ t4−β−q/2. (E21)

For β > 2, we obtain accordingly

σ 2
m(t) ∝ t2−q/2. (E22)

APPENDIX F: NUMERICAL SIMULATIONS

The numerical simulations use a TDRW algorithm [44]. The
TDRW approach is based on constant length displacement of
particles described by the recursive relations:

xi(n + 1) = xj (n) + ξ ij , t(n + 1) = t(n) + τj . (F1)

The transition probability wij to move from voxel j to voxel
i for a transition of length |ξ ij | is given by wij = 1/(2q) and
the transition time associated to voxel j is τj = θj �

2/(2qκ). In
the case of the annealed disorder model, the random variable
θj is not linked to the voxel j , but on the nth step, thus θj = θn

and consequently τj = τn.
For the numerical simulations, we consider the Pareto

distribution,

pθ (θ ) = βθ−1−βH (θ − 1), (F2)

with H (·) the Heaviside step function. We obtain according to
Eq. (12) the following distribution of transition times:

ψ(τ ) = β

τκ

(
τ

τκ

)−1−β

γ (1 + β,τ/τκ ), (F3)

where γ (a,z) is the lower incomplete Gamma function [53].
The numerical calculations of the disorder average particle
distribution use 103–104 particles in each of the 103–104 dis-
order realizations. The calculations of the particle distribution
in single realizations use 105–107 particles. The calculations
for average mean-square displacement use 103–104 particles
in each of the 104 disorder realizations. The calculations for
the disorder variance of the mean-square displacement use 105

particles in each of the 103 realizations. The calculations for
the variance of the time-averaged mean-square displacement
use 104 particles in each of the 103 disorder realizations.
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