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Fine separation of particles via the entropic splitter
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We investigate the fine separation of particles with different sizes in an asymmetric confined channel by
directing them moving to the opposite directions. Besides redesigning the geometry of the channel, we add a
general rectangular wave oscillating force to enlarge the velocity differences between particles with different
radii, which is important to increase the separation speed and sort particles of similar radii. The separation process
is guaranteed by choosing a small period of the oscillating force and a proper partition strategy of the device
length sifting particles to the left and right. The optimal set of parameters for a fixed amplitude of the oscillating
force is found by the above regime. We show that by this regime the separation efficiency is significantly improved
compared to the classic square wave force.
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Matter consisting of masses of various small parts is widely
seen in natural systems and industrial productions, e.g., mixed
bacteria [1], designed nanoparticles within certain range [2],
various DNA fragments [3,4], different kinds of cells [5,6],
or more generally, mixtures of size-dispersed substances in
liquids on a range from macroscale to nanoscale [7–9], to
name but a few. To separate the wanted pure substances or
distributed components from the mixtures is highly impor-
tant in laboratory research and industrial manufacture. The
particle separation techniques use arrays of obstacles [10,11],
centrifuge machine [12,13], sieve or membrane [14–16], or
external fields [17,18] to achieve the wanted separation by
utilizing different responses of particles to the external device,
which are based on properties such as the density, mass, size,
surface charge, or magnetization.

Among these separation methods, the sorting of size-
dependent particles is a challenge in chemistry, biology,
nanotechnology, and industry. It is especially crucial for fine
separation, which demands the capability of filtering particles
with similar sizes, e.g., separating certain nanoparticles from
nanosize mixture [19], or separating erythrocyte from blood
[20]. A purely size-dependent fine separation traditionally uses
a sieve or porous media, which require multilevel facilities
to realize the crude sorting. To further separate the wanted
from the similar size unwanted mixtures needs, however, more
rigorous devices. This makes it difficult and costly to achieve
fine separation. Thus the fine separation is strongly limited to
the device. A low hardware-dependent mechanism or device
is very necessary and constructively useful.

Recently, a low hardware-dependent separation mechanism
was presented, i.e., the entropic splitter [21–23], which
contains an asymmetric channel to induce the entropic rectifi-
cation, an unbiased oscillating force to enlarge the rectified
differences for particles, and a static force to control the
moving direction. The particles of different radii are separated
depending on differences of mean velocities induced by the
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interplay of the confinement and periodic force. However,
the efficiency of the entropic splitter favors separating small
particles from large particle mixtures, while it is tough to
handle mixtures consisting of large particles of similar radii.
The velocities of large particles stay so close that the velocity
differences are not distinct enough to separate them fast. For
example, it will take more than 10 times longer to separate
particles of r = 0.05 from r = 0.07 than r = 0.01 when the
amplitude of the oscillating force is 50 [21].

In this paper, we overcome this restriction by redesigning
the geometry and changing the form of the external oscillating
force to maximize the rectified differences for particles of
various radii. This leads to large disparities of the velocity,
which determine the separation speed and purity. Note that
although for large amplitudes of the oscillating force the
transport velocities are large, it does not say anything on
the separation, whereas what counts here is the differences
between the velocities of these particles to be separated.

We start by considering the imposed two-dimensional (2D)
periodic channel, confining spherical Brownian particles of
radius r suspended in a solvent of dynamic viscosity ν.
This generates rich dynamical phenomena and has various
potential applications in ion channel, microfluidic systems
and nanoporous materials [24–27]. The confined periodic
walls are mirror symmetric along the x direction given by
y = ω̃u(x) = −ω̃l(x) [Fig. 1(a)]. The geometry is defined by
the upper boundary ω̃u(x)

ω̃u(x) =
{
b + k1x, x < L2,

b + k2(L − x), else,
(1)

where x is the modulo function x = mod(x,L). k1 = h/L1,
and k2 = h/L2 are the slopes of the left and right walls,
respectively, (h + b) and b refer to half of the maximum and
minimum channel width respectively. To control the symmetry
of the channel along the y direction, an adjustable parameter
q is introduced satisfying L1 − L2 = qL and L1 + L2 = L.
When a hard-sphere particle of radius r transports in the
confinement, its center will be restricted to access to the
walls and channel angles, so the effective boundary is an
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FIG. 1. Schematic diagram of the channel and the influence
of the geometric parameter q. (a) The channel walls are defined
by Eq. (1). The imaginary lines illustrate the effective boundaries
confining the motion of sphere particles according to Eq. (2),
driven by a static force f and a rectangular wave force F (t). The
parameters are set q = 0.6, h = (0.1 + 1/3)L, b = 0.1L. (b) The
entropic potentials corresponding to the red and gray spheres in (a)
defined by −ln[2ω(x)]. (c), (d) The mean velocities for particles of
different radii with respect to q excited by a common square wave
force F (t) = F0sgn[sin(2πt/τp)] in the absence of a static force, for
F0 = 20.0 and F0 = 50.0, respectively, τp = 20.0. Symbol indicators
corresponding to particles of different radii in (c) hold the same
throughout the paper.

r-dependent reachable space inside the channel. The upper
effective boundary reads then

ωu(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b −
√

r2 − x2, 0 � x < pl,

b + k1x + r

√
1 + k2

1, pl � x < pb,

b + k2(L − x) − r

√
1 + k2

2, pb � x < pr,

b −
√

r2 − (L − x)2, pr � x < L,

(2)

where pl=rk1/
√

1+k2
1 , pr=L−rk2/

√
1+k2

2 , and pb = L1 +
r[
√

1+k2
1−

√
1+k2

2 ]/(k1+k2). The lower effective boundary is
given by ωl(x) = −ωu(x).

We consider a particle of radius r in the channel and
assume that (i) the particle suspension is dilute [26,28],
and (ii) the reflecting boundary condition is fulfilled at the
channel walls [29]. Under these assumptions effects caused
by particle-particle interactions and particle-wall interactions
can be safely neglected. The dynamic model exerted by
an static force f and an external oscillating force F (t)
along the x direction can be described by the Langevin

equation as

γr

d�r
dt

= −[f + F (t)]�ex +
√

γrκBT �ξ (t), (3)

where γr is the friction coefficient satisfying the Stokes’ law
γr = 6πνr , depending on the particle radius r and the viscosity
ν of the fluid. �r = (x,y) is the position vector of the particle
center, f is a static force, �ex is the unit vector along the x

direction, kB is the Boltzmann constant, and T denotes the
absolute temperature. �ξ (t) is a Gaussian white noise with zero
mean and unit variance 〈ξx(t)ξy(t ′)〉 = 2δx,y(t − t ′).

Instead of the commonly used square wave form, we apply
a general alterable rectangular wave force F (t)

F (t) =
{

F̃0, nτp � t < nτp + τc,

−cF̃0, nτp + τc � t < (n + 1)τp,
(4)

where τp and τc are designed to satisfy that the temporal
average of F (t) over a period τp is zero, which requires
the coefficient c to follow τc = cτp/(1 + c). By changing
c the rectangular wave is able to achieve various forms.
When c = 1, F (t) is similar to the classic square wave form
F (t) = F̃0sgn[sin(2πt/τp)].

For the sake of a dimensionless description, we rescale
the length variables by L and the time variables by τ =
6πνbL2/(kBT ) for the largest transportable particle of ra-
dius b. Then the Langevin equation is rewritten in a form
involving dimensionless variables t → t̂ τ, τp → τ̂pτ, ωu →
ω̂uL, ωl → ω̂lL, x → x̂L, y → ŷL, and b → b̂L. The scaled
forces are f → f̂ kBT /L and F (t) → F̂ (τ )kBT /L. We as-
sume that the external force is proportional to the radius r , i.e.,
f = f0r/b and F̃0 = F0r/b. After rescaling, Eq. (3) can be
rewritten in a dimensionless form, for which we shall omit the
hat symbols

d�r
dt

= −[f0 + F (t)]�ex +
√

b/r�ξ (t), (5)

where

F (t) =
{
F0, nτp � t < nτp + τc,

−cF0, nτp + τc � t < (n + 1)τp.

Brownian particles in a 1D ratchet are able to exhibit a
directional motion rectified by the asymmetry of the potential
[9,30,31]. This phenomenon also happens in flashing, porous
materials and corrugated channels because of the resulting
asymmetric entropic potential like Fig. 1(b) due to the confine-
ment. To evaluate influences of the asymmetric geometry, we
fix the maximum and minimum width and vary q. The transport
quantity of mean velocity 〈v〉 = lim

t→∞ 〈x(t)〉/t is simulated by

averaging over an ensemble of 103 trajectories based on Eq. (5)
via the standard stochastic Euler algorithm. In Figs. 1(c), 1(d)
the mean velocities 〈v〉 increase for all particles with the
increase of q. For a small force F0 = 20.0, 〈v〉 of different
radii are dispersed, i.e., the velocity differences of particles
with adjacent radii are distinctive, which is a basic condition
to achieve separation. However, for a large force F0 = 50.0,
only the velocity of particle r = 0.1b is really distinctive. The
other 〈v〉 are intertwined, which makes it extremely slow and
difficult to separate large particles with similar radii. However,
it should be noticed that a larger q will induce relatively larger

022152-2



FINE SEPARATION OF PARTICLES VIA THE ENTROPIC . . . PHYSICAL REVIEW E 96, 022152 (2017)

velocity differences. Hence the velocity lines tend to disperse
with the increase of q. Thus a relative large q = 0.9 is chosen
in the rest of this paper.

However, only depending on the geometry of the channel
is not enough to sufficiently tap the potential of the entropic
splitter, so besides q, the form of F (t) should be considered
too. A theoretical description of the influence of F (t) can be
obtained from the Fick-Jacobs (FJ) equation [32–34],

∂P (x,t)

∂t
= ∂

∂x

{
D(x)

[
∂P (x,t)

∂x
+ V ′(x)P (x,t)

]}
, (6)

where V (x) = [f0 + F (t)]x − ln[2ω(x)]. In the adiabatic
limit, the mean velocity is given as

〈v〉 = c

1 + c
J (F0) + 1

1 + c
J (−cF0), (7)

where the current J is

J (F0) = 1 − e−(F0+f0)r/b∫ x0+1
x0

1
D(z)e

V (z) dz
∫ z

z−1 e−V (x) dx
,

while D(x) = b/{r[1 + ω(x)2]1/3} is the diffusion coefficient.
To separate particles, one key point is the velocity differ-

ence, i.e., �〈v〉 = |〈v〉r1
− 〈v〉r2

|, instead of the transport speed
〈v〉. The separated particles will go away from each other in
a total speed of �〈v〉, so the larger the �〈v〉 the faster the
separation. In Eq. (7), 〈v〉 is divided into two parts by the
parameter c, which influences not only the proportion but also
the value of the negative current J (−cF0). By tuning c the
negative current will counteract the positive flux, which will
evolve into diverse results rather than a single square wave
case 〈v〉 = 1/2[J (F0) + J (−F0)].

FIG. 2. Influences of c on the mean velocity 〈v〉 and the
corresponding differences for q = 0.9 and τp = 4.0. (a) 〈v〉 vs
c for F0 = 50.0 and f0 = −6.5. (b) The corresponding absolute
values of �〈v〉 between particles of similar radii in (a), i.e., �〈v〉
between r = 0.1b and r = 0.3b, r = 0.3b and r = 0.5b, r = 0.5b,
and r = 0.7b, r = 0.7b, and r = 0.9b. (c) 〈v〉 vs c for F0 = 100.0 and
f0 = −9.5. (d) The corresponding absolute values of �〈v〉 between
particles of similar radii in (c), the legend instructions is the same
as (b).

FIG. 3. Mean velocity with respect to the static force f0 and the
period τp for q = 0.9. (a) 〈v〉 vs f0 to control the moving directions
and tune the velocity allocation to two directions, F0 = 80.0. (b) 〈v〉 as
a function of the period τp for particles of diverse radii for q = 0.9 and
F0 = 80.0, inset: the absolute values of velocity difference between
particles of adjacent radii, blue star for r = 0.1b and r = 0.3b, purple
inverted triangle for r = 0.3b and r = 0.5b, red right-pointing triangle
for r = 0.5b and r = 0.7b, the black hexagram for r = 0.7b and
r = 0.9b. (c) The evolution of the probability density function (PDF)
in the first τp for F0 = 100.0 and f0 = −13.2.

Figure 2 shows 〈v〉 vs c for particles of different radii, and
the corresponding differences between particles of adjacent r

at the two external force levels. For both cases, except r =
0.1b, the critical velocity points from increasing to decreasing
tend to be smaller for larger particles, which induces a varying
�〈v〉 among different particles. In Fig. 2(a), 〈v〉 at c = 1 are
apparently staying close, that only r = 0.1b can be distinctly
separated from other particles, while it is tough for others.
With the increase of c, 〈v〉 become more dispersive, hence c

actually affects much in the separation. Figure 2(b) shows �〈v〉
between particles of adjacent radii. As shown on the limited x

axis, the difference between particles r = 0.1b and r = 0.3b

has a maximum at about c = 2.2, which is a better choice than
others. Similarly, within the panel c = 6.0 for r = 0.3b and
r = 0.5b, c = 4.0 for r = 0.7b and r = 0.9b. So with a fixed
F0, we can always find an optimal value c maximizing the
�〈v〉. For larger F0 = 100.0 in Figs. 2(c), 2(d) c = 1.0 is still
not the best choice for each case, while all the maxima of �〈v〉
increase, i.e., we can speed up the separation by increasing F0.
To illustrate how to separate particles, look at Fig. 2(c) for
example. If one wants to separate two similar particles such as
r = 0.3b and r = 0.5b, c can be chosen at 5.0. Then particles
of radius r = 0.3b move to the right with 〈v〉 = 2.54, whereas
particles of radius r = 0.5b go to the left with 〈v〉 = −1.7.

The best way to separate two kinds of particle is letting them
move to the opposite directions. To achieve this, a static force
f0 should be added to manipulate the transport. Figure 3(a)
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gives 〈v〉 vs the static force f0 for F0 = 80.0. Fortunately, the
velocities are almost parallel and depend linearly on f0. Hence
the change of f0 will lead to a vertical shift for all particles in
Figs. 2(a) and 2(c), f0 > 0 leading to shifting up and f0 < 0 to
shifting down. This provides an efficient control of separation
and guarantees that particles of different radii move in the
opposite directions with the same or similar speed.

Although F0 can speed up the separation process, it does
not mean that F0 can be infinitely large, especially for large
τp because at the beginning [Fig. 3(c)], positive current J (F0)
will strongly drive particles to the right in τc. If F0 and τc are
both too large, particles will probably flow out into the right
collector before the negative current J (−cF0) pushes them
back. To avoid such a faulty operation, either a small F0 or a
long separation device is an appropriate choice.

However, it is still the best to use a short device and a
large F0 to save the device cost and keep a high separation
speed. So we suggest lowering the period τp in order to reduce
the right progressing duration τc of F (t), which results into a
limited moving distance in each step and keeps away a wrong
exiting. Figure 3(b) shows 〈v〉 vs the oscillating period τp for
different particles. We are excited to see that starting from
τp = 1.0 with increasing of τp although 〈v〉 slowly increases
with fluctuations, the �〈v〉 between adjacent radii are almost
unchanged [see the inset in Fig. 3(b)]. Thus τp influences
slightly the separation speed for 1.0 � τp � 40.0, and we can
choose a relative small period, such as τp = 4.0, to avoid a
wrong flowing, while keep the separation speed.

For the device, a common practice is placing mixtures
in the middle of the device (Lr = Ll), and adjusting the
parameters to let 〈v〉r ≈ −〈v〉l for 〈v〉 to the right and left,
respectively. This operation is adopted in most related work.
As seen in Fig. 3(c) particles going to the right will first
proceed a long distance J (F0)τc and then go back with a
gap τp〈v〉. To reach the right collector, particles will have
to go through several forward and backward movements
until the rest distance is within the range |J (−cF0)|(τp −
τc) < Lx < J (F0)τc, as shown in the illustration Fig. 4. The
situation for particles going to the left is simpler. They
will move forward and backward until shifting to the left
collector. The arrival times are tr = Lx/J (F0) + (Lr − Lx)/
〈v〉r and tl ≈ Ll/|〈v〉l|. Because Lx is large, if Lr = Ll the
arrival times for two directions will vary strongly. The right
collector will be instilled first and then we have to wait a long
time for the arrival of the left-going particles. To get particles
in two collectors simultaneously, i.e., tr = tl , we have

Ll = |〈v〉l|(NL − Lx) + 〈v〉r |〈v〉l|Lx/J (F0)

〈v〉r + |〈v〉l|
,

Lr = NL − Ll, (8)

in which we can approximate Lx ≈ J (F0)τc, and the induced
time error is within τc.

To examine the splitter, specific examples under various
combinations are tested. We set F (t) a small period τp = 4.0
to guarantee that the particles will not exit either side within
the first τc interval. This ensures that all particles experience
several periods before coming out. The channel is assumed
to have a total length of NL = 103L, and the partition for
the left and right is based on Eq. (8). We use 2×104 mixed

Length of the device: NL

n periodsLl

Particles to the left

Particles to the right

Lr

FIG. 4. Illustration of the transport for particles to the left and
right. The total length of the device is NL, the divided partition for
the left is Ll , and the right Lr includes two parts nτp〈v〉r and Lx .

particles of two different radii to evaluate the efficiency, and the
particles are initially uniformly distributed in the joint interval
at t = 0. The procedure is repeated 40 times to get a mean
separation time. As can be seen in Table I, with larger force F0

the separation speed is faster, as expected from the previous
discussions. The arrival time for different partitions is obvious
smaller than in the case Lr = Ll . More importantly, the two
kinds of particles always achieve a perfect purity 100%.

In summary, we have proposed a flexible and efficient
procedure, which is capable of optimizing the entropic splitter
and achieving fine separation of particles of rather similar
radii. We have found that with increasing the steepness of
the channel walls, the velocities of different particles tend
to disperse, which indicates that a large q is beneficial to
the separation process. Besides the geometrical properties, we
have demonstrated that the form of the oscillating driving force
does affect the separation deeply. This enables us to design an
optimal form of F (t) to achieve a fine separation fast and
purely. The particles can be controlled to move in the opposite
directions by tuning the static force. To avoid particles exiting

TABLE I. The mean separation time for the parameters q = 0.9
and τp = 4.0, that all experimental particles of r1 and r2 with the
same number 104, initially uniformly distributed in the joint interval,
reach the collectors, respectively. In the time row, M corresponds to
the arrival time when Lr = Ll , and P corresponds to the arrival time
based on Eq. (8). Lr is the length of the right separation part and
(103L − Lr ) is the left case which does not appear in the Table.

r1 r2 F0 f0 c Time (M/P ) Lr

0.1b 0.3b 100 −13.4 6.0 160.9 s/129.8 s 621L

0.3b 0.5b 100 −10.6 4.6 221.2 s/175.0 s 642L

0.5b 0.7b 100 −9.2 3.6 338.2 s/276.5 s 645L

0.7b 0.9b 100 −10.7 2.2 465.4 s/410.0 s 640L

0.1b 0.3b 150 −16.9 6.0 85.2 s/56.2 s 696L

0.3b 0.5b 150 −15.5 3.2 150.5 s/99.0 s 693L

0.5b 0.7b 150 −13.4 2.4 244.0 s/167.8 s 689L

0.7b 0.9b 150 −14.0 1.6 374.8 s/284.6 s 677L
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from the wrong direction, while keeping a high separation
speed and using a short length of the device, we suggest
reducing the period τp of F (t) to limit the moving distance
in the first τc. We have shown that for 1.0 � τp � 40.0 the
velocity differences of particles of adjacent radii almost keep
unchanged. Thus a small τp = 4.0 is used, which proves to be
effective. We have proposed a strategy that leads to a partition
of the length for the left and right device. This solves the
problem that we have to wait long for the left collector after
obtaining the right one. The fine separation efficiency can be

increased by using many channels in parallel. Nevertheless,
due to the ideal assumptions there are still open questions
about the efficiency and control before an implementation of
practical experiments.
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