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Nonequilibrium interactions between ideal polymers and a repulsive surface
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We use Newtonian and overdamped Langevin dynamics to study long flexible polymers dragged by an external
force at a constant velocity v. The work W performed by that force depends on the initial state of the polymer
and the details of the process. The Jarzynski equality can be used to relate the nonequilibrium work distribution
P (W ) obtained from repeated experiments to the equilibrium free energy difference �F between the initial and
final states. We use the power law dependence of the geometrical and dynamical characteristics of the polymer
on the number of monomers N to suggest the existence of a critical velocity vc(N ), such that for v < vc the
reconstruction of �F is an easy task, while for v significantly exceeding vc it becomes practically impossible.
We demonstrate the existence of such vc analytically for an ideal polymer in free space and numerically for
a polymer which is being dragged away from a repulsive wall. Our results suggest that the distribution of the
dissipated work Wd = W − �F in properly scaled variables approaches a limiting shape for large N .
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I. INTRODUCTION

Equilibrium interactions between a single polymer and a
repulsive surface have been a subject of intensive study for
several decades [1–3] and benefited from the relation between
the statistical mechanics of polymers and the general theory of
phase transitions [4–7]. Current experimental methods allow
a detailed study of biological macromolecules [8,9]. In par-
ticular, atomic force microscopy [10–12] is an important tool
in measuring force-displacement curves of biomolecules, and
reconstruction of their free energy and spatial structure [13].

A long polymer held by its end at a distance h from
a repulsive flat surface (wall) experiences an equilibrium
repulsive force feq(h), i.e., to keep the polymer in place an
external force f = −feq towards the wall must be applied
at the end of the polymer. If h is significantly larger than
the microscopic length scale a, such as monomer size or
persistence length, but is much smaller than the root-mean-
square (rms) end-to-end distance R of the polymer, then the
expression for the force, at temperature T , has a particularly
simple form,

feq(h) = AkBT

h
, (1)

where the dimensionless prefactor A can be related to the
critical exponents of the polymer [14,15]. (For nonflat scale-
free repulsive surfaces, such as cones, the prefactor A depends
on the surface geometry [14–17]). In many cases the polymer
size R is related to the number of monomers N by R ≈ aNν .
In particular, for an ideal polymer, in which the interactions
between nonadjacent monomers are neglected, ν = 1

2 , while
for polymers in good solvents ν ≈ 0.59 [2]. Thus, the work
W performed by an external agent while moving a polymer
slowly away from a surface at fixed T , as well as the free energy
difference �F = Ff − Fi, between the final free energy of the
polymer in free space Ff and the initial free energy when the
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polymer is attached to the surface Fi, is

W = �F =
∫ ∞

0
f (h)dh ≈ −

∫ R

a

feq(h)dh

= −AνkBT ln N. (2)

For an ideal polymer near a flat surface Aν = 1
2 [14,15]. The

negative sign reflects the need to push the polymer towards the
wall as we slowly move it away.

Equation (1) for the force and the resulting Eq. (2)
correspond to quasistatic motions. However, if the change is
performed at a finite rate, then the work W of the external
agent will depend on the details of the experimental protocol,
as well as on the microscopic initial state of the system and
the specific realization of thermal noise, if such is present.
Consider a situation where the initial state, such as a polymer
attached to the wall, corresponds to an equilibrium situation
at temperature T , i.e., is selected from a canonical ensemble.
When an external agent follows an experimental protocol and
performs work W , the system reaches a new nonequilibrium
state, such as having a polymer far away from a wall. If we
proceed to equilibrate the system at temperature T , it settles
into a state characterized by the free energy Ff . Repeated
nonequilibrium experiments result in the work distribution
P (W ). A remarkable relation derived by Jarzynski [18,19]
relates the exact distribution P (W ) to the change of the free
energy �F between the final equilibrated state and the initial
equilibrium state by

〈e−βW 〉 =
∫ ∞

−∞
e−βWP (W )dW = e−β�F , (3)

where β = 1/kBT and 〈·〉 denotes averaging over the initial
states and over realizations of thermal noise, if such is present.

At first sight, the Jarzynski equality (JE) provides a tool
for easy calculation of free energies from nonequilibrium
measurements, and it has been used to reconstruct free energies
in certain situations [20–23]. However, it has been observed
that for a system significantly out of equilibrium, the successful
use of Eq. (3) requires an accurate knowledge of the probabil-
ities of nontypical (rare) events [24]. (This can be explicitly
observed in the rare cases of exactly solvable systems, such as a
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FIG. 1. Illustration of the distribution of work P (W ) (solid line)
and the shifted function G = e−βW P (W ) (dashed line). P is measured
by repeating the experiment, and G needs to be reconstructed from
the approximate knowledge of P .

one-dimensional Jepsen gas [25,26].) From the mathematical
point of view, this happens when the integrand of Eq. (3)
G(W ) ≡ e−βWP (W ) has a peak centered well below the
position of the peak of P (W ), i.e., the distance between the
peaks exceeds the width of P (W ), as illustrated in Fig. 1. In
the latter situation, the function G(W ) is reconstructed from
the tail of P (W ), which cannot be accurately estimated with
a moderate number of repeated experiments. The separation
of G and P increases with departure from equilibrium in the
experiment. A convenient measure of this departure is the mean
of the dissipated work Wd ≡ W − �F . This 〈Wd〉 vanishes in
quasistatic isothermal processes and increases with increasing
rate of the processes, and when it exceeds several kBT the free
energy reconstruction becomes unreliable. (It has been shown
that the number of repeated experiments required for a reliable
reconstruction of �F increases exponentially with 〈Wd〉 of
a reverse process [27].) Thus, the borderline between easy
measurements and practically impossible ones is rather abrupt.

In this paper we consider the problem of a polymer, which
is initially in equilibrium near a flat repulsive wall, and is
being dragged away with a constant velocity v. The final
state is when the polymer is in equilibrium far away from
the wall, such that we can treat it as being in free space. The
dynamics of the system will be either overdamped Langevin
dynamics, in which the inertia term is neglected, or Newtonian
dynamics in which friction and thermal noise are absent. We
argue that there is a critical pulling velocity vc, such that for
v < vc reconstruction of �F is possible by using JE, while
for v > vc such reconstruction is practically impossible. In
our discussion we will focus only on these two extreme cases,
and we will not consider the range of velocities around vc

for which the ability of reconstruction strongly depends on
the number of experiments. In Sec. II we present a heuristic
argument for calculating vc in rather general circumstances.
In the remainder of the paper, we provide supporting evidence
for the analytically solvable case of ideal polymers in free
space (Sec. III) and for the numerically solved case of an
ideal polymer near a flat repulsive surface (Sec. IV). In

Sec. V we summarize our results, and discuss their possible
generalizations. Since our work relies on the known results of
a dragged harmonic oscillator, we provide a short summary of
these properties in Appendix.

II. CRITICAL DRAGGING VELOCITY: A HEURISTIC
ARGUMENT

Consider a situation in which a large polymer is being
dragged away from a repulsive wall by moving its end
monomer at a constant velocity v. In the initial (equilibrium)
state the end monomer is attached to the wall, and in the final
state the end monomer is at a distance significantly exceeding
the polymer size R, so that interactions with the wall can be
ignored.

Many equilibrium properties of polymers have a simple
power-law dependence on the number of monomers N . In
many cases dynamic features also have that property [4,6,7].
We would like to take advantage of these scaling properties of
polymers to estimate the critical velocity vc, which defines the
borderline between “fast” and “slow” dragging.

Let us first consider the simple case of a polymer prepared in
thermal equilibrium, and subsequently disconnected from the
thermal bath, i.e., its subsequent motion will be determined by
Newtonian dynamics (ND). For a polymer at equilibrium, the
velocity of its center of mass is vcm = 1

N

∑N
i=1 vi , where vi is

the velocity of the ith monomer. For a polymer at equilibrium
the average 〈vcm〉 = 0. However, the typical or the rms
velocity is

vcm =
√√√√ 1

N2

N∑
i,j=1

〈vi · vj 〉 = vth√
N

, (4)

where vth = √
d/βm is the rms thermal velocity of a single

monomer, while m is the mass of the monomer, and d is the
spatial dimension. [In further (approximate) calculations we
will omit d.] The time t it would take the polymer to move a
distance equal to its own size R = aNν would be

t = R/vcm ≈ a
√

βmNν+1/2. (5)

We expect that this will also be the time scale of the slowest
internal motion of the polymer. It is natural to define a “slow
motion” velocity v, such that during the time t the polymer
is not dragged more than R, i.e., we must require v < vcm.
In other words, for the ND the borderline critical velocity
vc coincides with the typical velocity of the center of mass
vcm, or

vc ≈ 1√
βm

N−1/2. (6)

The ND approach neglects the interactions of a polymer with
the surrounding fluid and therefore its practical usefulness is
limited. However, it presents a theoretically important case that
formed an essential part of the original proof of JE [18,19],
and provides important insights into the relations between the
“regular” mechanics and the thermal physics. It also can be
viewed as a limiting case of a general Langevin equation.

Alternatively, we can consider motion of the polymer in
a very viscous fluid, where the inertia can be neglected on
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sufficiently long time scales. In this example we neglect hy-
drodynamic interactions, i.e., we consider the “free-draining”
[28] regime. Such motion can be described by the overdamped
Langevin dynamics (OLD). In the overdamped regime, the
center of mass of an N -monomer polymer in free space
performs diffusion characterized by a diffusion constant D,
which is N times smaller than the diffusion constant D0 of a
single monomer. Therefore, the time t it takes it to diffuse a
distance R = aNν is

t ≈ R2

D
= a2N2ν

D0/N
= a2

D0
N2ν+1. (7)

This is also the slowest relaxation time of an internal mode of
the polymer [4,28].

If the polymer is being dragged with a velocity v, we would
consider such motion “slow” if during the same time t , the
distance vt that the polymer is dragged does not exceed R.
This means that we need to have v < D0

a
N−1−ν , or

vc ≈ D0

a
N−1−ν . (8)

When hydrodynamic interactions are important (the Zimm
regime [4,29]), a long polymer is not “transparent” to the
surrounding liquid, and can be treated as a sphere of radius R

diffusing in a liquid of viscosity η [4] with a diffusion constant
D ≈ 1/βηR, where we omitted a dimensionless prefactor. The
time it takes for such a polymer to diffuse a distance R is
t ≈ R2/D ≈ βηR3, which leads to

vc ≈ kBT

ηR2
≈ kBT

ηa2
N−2ν . (9)

The arguments presented in this section are equally valid
for a polymer in free space or near a repulsive wall, because
in both cases the polymer will have similar relaxation times.

III. GAUSSIAN POLYMER IN FREE SPACE

The arguments presented in the previous section were
valid for a broad class of polymer types and interactions
between monomers. In this section we consider a simple model
of an ideal polymer, in which we neglect the interactions
between nonadjacent monomers of the chain, that are usually
important in good solvents. The model only retains the linear
connectivity of the monomers and is analytically solvable.
Ideal polymers rarely represent experimental systems, but the
scaling properties of their static and dynamic characteristics
provide guidance to the treatment of more realistic and
complicated models [4].

Consider a linear chain of N identical monomers of mass
m connected by springs with constants k, such that the
potential energy is given by 1

2k
∑N

i=1 (xi − xi−1)2, where xi

(i = 1, . . . ,N ) are the positions of the monomers, while x0 is
the position of the end point to which the first monomer is
connected, as depicted in Fig. 2. Such an energy describes the
Gaussian model of an ideal polymer, which in the polymer
literature is well known as Rouse model [28], although the
latter term is also used to describe the type of dynamics, rather
than the polymer structure. (The term “Gaussian” refers to the
functional shape of the Boltzmann weight of this energy.) The
microscopic length a is given by the rms separation between

FIG. 2. A beads-and-springs model of a Gaussian (Rouse) chain
is being dragged in free space by pulling its end point x0 with a
constant velocity v, such that x0 = vt . Note, that we consider only
a one-dimensional dynamical problem, and the second dimension in
this figure is for illustration purpose only.

two consecutive monomers, i.e., a2 ≡ 〈(xi − xi−1)2〉 = 1/βk.
We can consider motion in three-dimensional space, with
monomers positioned at ri . However, the particular form of
the potential 1

2k(ri − ri−1)2 splits into three independent parts
and the motions in different space directions are independent.
Thus, the only nontrivial part of the problem is in the direction
parallel to the velocity with which the point at r0 is being
dragged. This reduces the problem to a single space dimension.

The problem of stretching a Gaussian chain, when �F

increases as a result of the external work, has already been
solved for OLD, and the distribution of work has been
calculated analytically [30,31]. We apply the same technique to
a problem with slightly different boundary conditions, for both
ND and OLD cases, and have a different goal: We consider the
particular case of dragging the polymer in free space, where
the free energy difference �F between the equilibrated final
and initial states vanishes. In this section we find analytical
expressions for P (W ), as well as vc. The ND and OLD
cases can be viewed as two extremes of the general Langevin
equation for the system.

A. Analytical calculation of P(W )

In the absence of friction and thermal noise, the equation
of motion of the nth monomer (1 � n � N − 1) is governed
by the ND equations

ẍn = −ω2(2xn − xn+1 − xn−1), (10)

and for n = N

ẍN = −ω2(xN − xN−1), (11)
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where ω ≡ √
k/m. It is more convenient to work in a reference

frame which moves with x0, i.e., with a constant velocity v

such that the position of the nth monomer (in the moving
system) is x̃n = xn − vt . In this reference frame the equations
of motion can be separated into N independent (Rouse [28])
eigenmodes by decomposing the position of the nth monomer
into its discrete Fourier components,

x̃n = A

N∑
q=1

x̃q sin(αqn), (12)

where x̃q is the amplitude of the qth mode, and A =
√

2
N+ 1

2
,

while αq = π(q− 1
2 )

N+ 1
2

was chosen to satisfy the boundary con-

ditions, where one end of the polymer is fixed (x̃0 = 0) and
the other end (x̃N ) is free. The equations of motion remain the
same in the moving system, with x replaced by x̃. Substituting
Eq. (12) into Eq. (10) produces the equation of motion for the
qth eigenmode in the moving reference frame,

¨̃xq = −4ω2 sin2(αq/2)x̃q , (13)

which is a simple harmonic oscillator with frequency ωq

defined by

ω2
q ≡ 4ω2 sin2(αq/2). (14)

The constant pulling velocity can be represented (for any
n = 1, . . . ,N ) as

v = A

N∑
q=1

vq sin(αqn). (15)

In this particular case of constant pulling velocity, vq can
be simply expressed via the inverse transform as vq =
A

∑N
n=1 v sin (αqn) = 1

2Av cot(αq/2) and used to transform
the solution back to the laboratory frame,

xn = x̃n + vt (16)

= A

N∑
q=1

x̃q sin(αqn) + A

N∑
q=1

vq sin(αqn)t (17)

= A

N∑
q=1

(x̃q + vqt)︸ ︷︷ ︸
xq

sin(αqn). (18)

Here, we defined xq = x̃q + vqt , and the equation for the qth
eigenmode in the laboratory frame is given by

ẍq = −ω2
q(xq − vqt). (19)

This can be viewed as N independent simple harmonic
oscillators with frequencies ωq , being pulled by effective
velocities vq . Note that, for large N , the frequency of the
lowest mode ωq=1 ∼ ωN−1 corresponds to the time it would
take the polymer to move a distance R, as in Eq. (5) with
ν = 1/2.

We now examine the other extreme of this problem, in
which the polymer is moving in a very viscous fluid, so that
the inertia term can be neglected, and its motion is described
by OLD. The equation of motion of the nth monomer, for

1 � n � N − 1, is given by

γ ẋn = −k(2xn − xn+1 − xn−1) + ηn(t), (20)

and for n = N

γ ẋN = −k(xN − xN−1) + ηN (t), (21)

where γ is the friction coefficient and ηn(t) is the thermal noise
associated with the nth monomer. The thermal noise is chosen
to be white Gaussian noise which satisfies 〈ηn(t)〉 = 0 and
〈ηn(t)ηn′(t ′)〉 = 2γ kBT δ(t − t ′)δnn′ . The same decomposition
that was applied to the position xn and the pulling velocity
v in the ND case, can be applied in this case too, while the
decomposition of the noise is

ηn(t) = A

N∑
q=1

ηq(t) sin(αqn), (22)

where ηq(t) is the effective thermal noise acting on the qth
eigenmode, which satisfies 〈ηq(t)〉 = 0 and 〈ηq(t)ηq ′(t ′)〉 =
2γ kBT δ(t − t ′)δqq ′ .

Similarly to the ND case, the system is decomposed into N

independent (Rouse) eigenmodes, where each one represents
an independent overdamped harmonic oscillator that is being
dragged with an effective velocity vq . Each eigenmode satisfies

ẋq = − 1

τq

(xq − vqt) + 1

γ
ηq, (23)

where

τq ≡ τ

4 sin2 αq/2
(24)

is the relaxation time of the qth eigenmode, and τ ≡ γ /k. As
we can see, the largest relaxation time τq=1 ∼ τN2 (for large
N ) coincides with the time it takes the center of mass of the
polymer to diffuse a distance R [Eq. (7)]. During the time τ a
monomer moves an approximate distance a ≈ √

D0τ , where
D0 = kBT/γ .

Both in the ND and OLD cases we can treat the system as N

independent harmonic oscillators, and write the total work W

done on the system (by an external agent) during the pulling,
as a sum of works Wq done on each single effective oscillator,
i.e.,

W =
N∑

q=1

Wq. (25)

Each Wq has a Gaussian distribution with mean μq and
variance σ 2

q , such that μq = β

2 σ 2
q = 2mv2

q sin2 (ωqt/2) for the

ND case, and μq = β

2 σ 2
q = γ τqv

2
q(e−t/τq + t/τq − 1) for the

OLD case (as shown in the Appendix). Therefore, W also has
a Gaussian distribution characterized by mean μ = ∑N

q=1 μq

and variance σ 2 = ∑N
q=1 σ 2

q .
In the ND case the mean work is

μND(t) = β

2
σ 2

ND(t) =
N∑

q=1

2mv2
q sin2

(
ωqt

2

)
. (26)

For small q the frequencies ωq have almost integer ratios
with ωq=1 and, not surprisingly, μND(t) is “almost” a periodic
function. For N 
 1, it looks as a triangular wave depicted
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FIG. 3. Normalized mean work μND for N = 100 as a function of
time t (see text). For large N, μND resembles a triangular wave with a
period T = 4N/ω. (For large t the apparent periodicity disappears.)

in Fig. 3 of amplitude 2Nmv2 with period T = 2π/ωq=1 ≈
4N/ω. However, higher frequencies have more complicated
dependence on q [see Eq. (14)], and after many oscillations
the appearance of the periodicity vanishes.

It is interesting to note that in terms of dimensionless
variable y ≡ βW , the probability distribution of the work W

has a very simple form,

P̃ (y) = 1√
4πμ̃

exp

[
− (y − μ̃)2

4μ̃

]
, (27)

where we used the relation (26) between the mean and the
variance and the reduced mean μ̃ ≡ βμND. For large N and
moderate times it is convenient to express μ̃ via triangular wave
function S (as in Fig. 3) of unit amplitude and period leading
to μ̃ = 2βNmv2S(t/T ). If we measure the pulling velocity in
units of vc [as defined in Eq. (6)], i.e., u ≡ v/vc, and the total
pulling length L in units of polymer size R, 
 ≡ L/R, then the
expression for the reduced mean further simplifies to

μ̃ = 2u2S(
/4u), (28)

where we used the fact that R = aN1/2 and the mean
separation between the monomers is a = 1/ω

√
βm.

In the OLD case the mean work is

μOLD(t) = β

2
σ 2

OLD(t) =
N∑

q=1

γ τqv
2
q

(
e−t/τq + t

τq

− 1

)
,

(29)

which is depicted in Fig. 4. For short times (t � τq=N ≈ τ ),
it increases parabolically with time: μOLD(t) ≈ 1

2
γ

τ
v2t2 =

1
2k(vt)2. This corresponds to an external force stretching a
single spring of the first monomer connected to x0, since
during time t < τ only x0 moves, and the rest of the system
“does not know” yet that it is being pulled. In the long time
regime (t 
 τq=1 ≈ τN2) the mean work grows linearly with
time as μOLD(t) ≈ γNv2t . This represents the work against
friction performed by dragging N monomers together. (Other
eigenmodes are already relaxed in the system.)

0 100 200 300 400 500

t/τ
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μ
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D
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γ
N

v
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t

FIG. 4. Normalized mean work μOLD as function of time t for
N = 100 (see text). At short times, μOLD is parabolic, and for large
times it grows linearly with t .

B. Analysis of the results

The JE in Eq. (3) can be cast in the form of a cumulant
expansion [18,32]:

�F = − 1

β
ln〈e−βW 〉 = μ − β

2
σ 2 + · · · . (30)

If P (W ) is a Gaussian, as in the case of our model in free space,
this expansion terminates at the second term. In addition, in
free space displacement of the polymer does not modify its free
energy, i.e., �F = 0. From Eq. (30) we conclude that in free
space μ = β

2 σ 2, which coincides with the analytical results
obtained by a direct calculation in the previous subsection. In
the particular case of Gaussian P (W ),G(W ) ≡ e−βWP (W ) is
another Gaussian shifted by 2μ towards lower values of W .
For slow motion we must have μ < σ , i.e., the mean work (and
the shift between P and G) does not exceed the width of the
distribution. At the critical velocity this relation becomes an
equality. Due to the relation between μ and σ , this condition
becomes

μ ≈ 2kBT . (31)

In the case of ND, the mean value of work is bounded
by 2Nmv2, and therefore, from Eq. (31) we find that vc ≈
N−1/2/

√
βm, which is exactly vc that we found in Eq. (6).

In the OLD case, μOLD increases monotonically with time,
making the free energy reconstruction more difficult as t

grows. We would like to drag the polymer a distance at least
equal to its size, i.e., L = vt ∼ a

√
N . (In free space it is a

somewhat arbitrary choice, but in the next section we will
consider a polymer being dragged away from a wall, and then
such a choice of distance becomes crucial.) For such L the
condition in Eq. (31) translates into aγN3/2vc ≈ kBT , which
defines the critical velocity,

vc ≈ 1

aγβ
N−3/2. (32)

Substituting a ≈ √
D0τ brings us back to the same critical

velocity that was found in Eq. (8), with ν = 1/2. In terms of
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dimensionless variable y = βW the probability distribution
of work is given by Eq. (27), with reduced mean μ̃ ≡ βμOLD.
For times larger than the relaxation time of the polymer and
for N 
 1, we get μ̃ = βγNv2t , which can be conveniently
expressed via relative distance 
 = L/R and relative velocity
u = v/vc, where vc was derived in Eq. (32), leading to

μ̃ = u
. (33)

We note that both in ND and OLD cases for large N the work
distribution is described by Eqs. (27), (28), and (33), which
for fixed dimensionless u and 
 are independent of N . This is
a direct consequence of the scaling of internal relaxation times
and internal length scales related to scale-invariant internal
structures of the polymer [4], when only the polymer size R

and the largest relaxation time determine the time and length
scales of the internal modes.

Hydrodynamic interactions cannot be accurately treated
even for ideal polymers, since the equations of motion do
not split into a set of independent equations for each q mode,
as in Eq. (23). However, it has been shown [29] that close
to equilibrium such interactions can be mimicked by replacing
fixed γ by a power law of q in the Fourier space, i.e., modifying
τq in Eq. (24) by an extra power of q. [This change also
requires a proper change in the noise correlation 〈ηq (t)ηq ′(t ′)〉.]
While we expect these changes to correctly reproduce the
near-equilibrium behavior of the system, as well as the value
of vc in Eq. (9), we do not expect them to produce a good
approximation for P (W ) for v 
 vc.

IV. POLYMER NEAR A WALL

In this section we consider the Gaussian (Rouse) chain
dragged away from a repulsive wall. At time t = 0 the polymer
is in equilibrium near the wall at x0 = 0, and is being dragged
away from the wall at a constant velocity v, i.e., x0 = vt , as
illustrated in Fig. 5. If the final distance L of the polymer
from the wall is significantly larger than R, then in the final
equilibrated state the free energy will be equal to its value in
free space, and in accordance with Eq. (2) �F = − 1

2kBT ln N .
Unlike the simple case considered in the previous section, we
can no longer expect a simple relation between μ and σ , and
P (W ) will not have a Gaussian form.

FIG. 5. At t = 0 a polymer is at equilibrium with one of its ends
attached to the wall. At t > 0 it is dragged away from the wall with
a constant velocity v until it reaches a distance L = 5R, where it
is equilibrated. We consider a one-dimensional problem, and the
transverse dimension is only for illustration purposes.

Our results rely on a numerical solution of Newton’s
equations in the ND case, and on a solution of an overdamped
Langevin equation in the OLD case [33,34]. In both cases
the calculation begins by choosing a properly weighted
initial configuration. The coordinates of the monomers are
then advanced in time until x0 reaches the value L = 5R.
Integration of the external force that needs to be applied
to x0 to keep it moving at a constant velocity v produces
the work W of the external agent. Each calculation was
repeated N = 103 times. Every time a new initial equilibrium
state was selected, and, in the OLD case a new thermal
noise function was generated. Such calculations produce a
numerical estimate of P (W ) and can be used to produce a
numerical estimate of �F . We repeated the calculations for
chain sizes N ranging from 10 to 100, and for each chain size
repeated the calculation for dragging velocities ranging from
0.1vc to 5vc. In this section we present a partial set of our
results.

Since the exactly known �F is proportional to − ln N ,
the graphs of P (W ) shift towards more negative values of W

with increasing N . For an easy comparison of the results with
different chain sizes, it is convenient to present all the functions
in terms of the dissipated work Wd = W − �F , rather than the
entire work W . Furthermore, we will use the dimensionless
variable y ≡ βWd . The probability density P̃ (y) is simply
related to P (W ) by P̃ (y) = P (Wd + �F )/β. Similarly, a new
shifted function G̃(y) ≡ e−yP̃ (y) can be used. In this notation
the probability density is normalized, i.e.,

∫ ∞
−∞ P̃ (y)dy = 1

and the relation (3) has the simple form
∫ ∞
−∞ G̃(y)dy = 1.

While these two integrals impose some restrictions on the
shape of P̃ , there is still plenty of room for dependence of this
function on N or v and on the type of dynamics (ND or OLD).
Normally the term “dissipation” implies positive Wd or y > 0.
In macroscopic systems for the average Wd this is referred to
as the Clausius inequality. However, a particular experiment
may violate this inequality [24]. This is very unlikely, and it
can be shown that the probability of y < −ζ (for ζ > 0) is
bounded by e−ζ [24]. This means that Wd can be only a few
times −kBT , independently of the system size. This inequality
further restricts the possible shapes of P̃ .

The solid lines in Figs. 6 and 7 depict the the probability dis-
tributions of the dissipated work Wd for short polymers (N =
10), for the ND and OLD cases, respectively. These histograms
are results of N = 103 repeated numerical experiments. The
size of the bin was selected for convenient presentation of
the results. (Calculation of �F from the data is performed
directly from the set of measured Wds rather than from these
histograms.) All distributions have a tail in the negative y

region but most of such “Clausius-inequality-violating” events
are within one unit away from 0. For small velocities v = 0.1vc

[graphs (a)] the distributions represent a process that is rather
close to quasistatic, i.e., they are narrow and close to 0, and
the mean dissipation satisfies 〈y〉 = β〈Wd〉 � 1. When the
polymer is dragged away at a large velocity v = 2vc [graphs
(b)] the distributions are shifted towards larger y values,
corresponding to an external agent pulling the polymer away
from the wall, in contrast with the low-velocity case when
the force is mostly towards the wall to maintain a constant
velocity. The area under the solid lines in all the graphs is 1
due to normalization.
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FIG. 6. Results for the dissipated work distribution in the ND case
extracted from a sample of N = 103 repeated calculations for a short
polymer (N = 10) dragged away from a repulsive wall. The solid
line histograms depict the numerically calculated probability density
P̃ (y) measured as a function of y = βWd, where Wd is the dissipated
work. Dotted lines represent the shifted function G̃(y) = e−yP̃ (y).
The polymer was dragged at a constant velocity (a) v = 0.1vc and (b)
v = 2vc.

The dotted histograms in Figs. 6 and 7 represent the shifted
functions G̃, and they were constructed from the values of
the solid histograms by multiplying them by e−y . To correctly
reproduce the known value of �F , the area under G̃ must be
1. This indeed happens in the low-velocity graphs (a), where
the area does not deviate from 1 by more that 0.1 even for a
moderate numberN of experiments. At high velocities [graphs
(b)] the reconstructed G̃ is significantly shifted compared to
P̃ , and is reconstructed from the poor quality tail of P̃ . For
y < −1 most bins correspond either to 0 or to 1 event found in
that range, which explains the noisy behavior of G̃. The area
under the G̃ curve at high velocities significantly deviates from
1. This means that the reconstructed free energy difference
will have significant errors. We used our data sets to directly

-3 -2 -1 0 1 2 3

βWd

0

0.1

0.2

0.3

0.4

0.5

0.6

P̃
,
G̃

P̃

G̃

N = 10
v = 0.1vc

-5 0 5 10 15

βWd

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P̃
,
G̃

P̃

G̃
N = 10
v = 2vc

(a)

(b)

FIG. 7. Results for the dissipated work distribution in the OLD
case. All the notations are the same as in Fig. 6.

evaluate the free energy difference from the expression

�Fnum = − 1

β
ln

(
1

N

N∑
i=1

e−βWi

)
, (34)

where Wi is the work associated with the ith repetition of the
calculation. When these estimates of the free energy difference
were compared with the exactly known �F , we saw (for N

ranging from 10 to 100) a fast deterioration of accuracy when v

exceeded vc. This result confirms our expectation that vc serves
as a borderline velocity between “slow” and “fast” processes
for all values of N in the problem of a polymer near a wall.

In the previous section we found analytically that the work
distribution for a polymer of large N in free space is described
by Eqs. (27), (28), and (33), which for fixed dimensionless u

and 
 are independent of N . We argued that in free space this is
a direct consequence of the scaling of internal relaxation times
and internal length scales [4]. Such a lack of N dependence is
rather natural even in the presence of a wall, since the equations
of motion can be reformulated in properly scaled variables in
the N → ∞ limit, indicating the existence of such a limit. In
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FIG. 8. Results for the dissipated work distribution in the ND
case extracted from a sample of N = 103 repeated calculations for
polymers of three different Ns as indicated in the legend. Each
calculation was performed with the same relative velocity u = 1,
or v = vc.

free space, �F = 0, or Wd = W . In the presence of the wall,
a simple free space result is no longer possible, due to the
N dependence of �F . Nevertheless, by considering Wd we
eliminate the leading N dependence, and may hope to get an
N -independent limit. Figure 8 depicts P̃ (y) in the ND case
for several values of N , when each case has been calculated
with the same relative velocity u. Since vc decreases with
increasing N , the velocity v was also decreased. We note that
three different Ns produce rather similar graphs. A change of
u produces different graphs, but again, they seem to be almost
independent of N . In the third paragraph of this section we
mentioned that there were several constraints on the shape of
P̃ (y). Therefore, the similarity of the graphs is not surprising.
Nevertheless it is possible that in these scaled variables there
is an N → ∞ limit of this graph which our numerical graphs
are approaching. We could see this property explicitly in the
solution of a polymer in free space. Due to scaling of the
dynamical properties of a polymer, it is possible that similar
features exist in the more complicated case of a polymer near
a wall. Similar behavior is also observed in the OLD case,
although the graphs for the same u values differ slightly from
the ND shapes discussed above.

V. DISCUSSION

We studied the problem of a flexible polymer being
dragged with a constant velocity both in free space and in
the vicinity of the wall, and argued that there exists a critical
N -dependent pulling velocity vc that separates the region
of “easy” reconstruction of �F by means of the Jarzynski
equality from the region of “impossible” reconstruction. The
existence of a maximal deviation from equilibrium for which
the reconstruction of �F is possible is well known from
previous studies [20–23]. In the context of unfolding of a
large molecule this was typically viewed as an event of a
“single particle” escaping from one well into another [35], or

a sequence of such events [13]. We attempted to integrate the
well-known static and dynamic scaling properties of polymers
into the description of their nonequilibrium motion. Our
heuristic argument in Sec. II produced in the ND case the result
vc ∼ N−1/2 which was independent of the polymer type, while
for OLD the result depended on the exponent ν. The numerical
support of our claim is limited to the two simple cases of free
space and repulsive wall for ideal polymers. We observed the
lack of N dependence of the dissipated work distribution, but
the range of Ns was rather limited, and much longer polymers
need to be studied.

While our calculations were limited to the ideal polymers,
some of the concepts can be generalized to more realistic
models, such as the polymers in good solvents, when the
interactions between nonadjacent monomers are important. In
the latter case, the Rouse modes, such as x̃q in Eq. (12), are no
longer the exact eigenmodes of the system. Nevertheless, the
properly modified concept of Rouse modes is used to describe
dynamics of the polymers [28]. We expect that this and other
generalized concepts can be used to produce results described
in Sec. II. Confirmation of this expectation will require detailed
numerical simulations.

While the “free draining” regime provides an adequate
description of the motion of polymers of moderate length,
in experiments with longer polymers the hydrodynamic in-
teractions play an important role. We briefly mentioned this
regime in Sec. II. In accordance with Eq. (9) the typical critical
velocity of a 1-μm size polymer will be slightly above 1 μm/s,
which is one order of magnitude larger than the typical speeds
in many experiments (see, e.g., [20]). The use of a constant
dragging velocity significantly simplified our derivations. By
contrast, in real experiments the force, rather than the speed,
is controlled. However, in homogeneous polymers these two
should exhibit a similar behavior.
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APPENDIX: DRAGGED HARMONIC OSCILLATOR

Our analytical treatment of the Gaussian polymer in free
space relies on a decomposition into Rouse modes that are
treated as simple dragged harmonic oscillators. The harmonic
oscillator (HO) was one of the first systems used to demonstrate
the workings of the JE [36]. The theoretical treatment of
a dragged HO [37] followed an experimental study of the
translation of a particle in a harmonic optical trap [38],
which was designed to test violations of the second law of
thermodynamics with findings consistent with a fluctuation
theorem of Evans et al. [39].

Consider the motion of a particle of mass m at position x

attached by a spring with force constant k to a point x0, which
moves with velocity v, i.e., at time t its position is x0 = vt . In
the ND case the equation of motion is

mẍ = −k(x − vt), (A1)
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and its solution is given by

x(t) = x0 cos(ωt) +
(

p0

mω
− v

ω

)
sin(ωt) + vt, (A2)

where ω = √
k/m, and x0, p0 are the initial position and

momentum of the particle, respectively, which are selected
from a Gaussian distribution corresponding to the temperature
of the system. For the OLD case the equation of motion is

γ ẋ = −k(x − vt) + η(t), (A3)

where γ is the friction constant and random function η(t)
represents white Gaussian noise which satisfies 〈η(t)〉 = 0 and
〈η(t)η(t ′)〉 = 2γ kBT δ(t − t ′). The solution for this equation is
given by

x(t) = x0e−t/τ + vt +
∫ t

0

(
1

γ
η(t ′) − v

)
e−(t−t ′)/τ dt ′, (A4)

where τ = γ /k is the relaxation time of the oscillator. Note
that both in ND and in OLD cases the position x(t) has
a Gaussian distribution since it is a linear combination of
Gaussian variables. The work done on the oscillator during
the dragging of x0 at a constant velocity v is

W = −v

∫ t

0
k[x(t ′) − vt ′]dt ′. (A5)

Since x(t) is known as function of the initial conditions and
the realization of noise η(t) (in the OLD case), the distribution
P (W ) can be easily determined. Since x(t) has a Gaussian
distribution, the distribution of work P (W ) is also a Gaussian
characterized by its mean μ = 〈W 〉 and variance σ 2 =
〈W 2〉 − 〈W 〉2.

Direct calculation of μ and σ , both in the ND and in the
OLD cases, finds that these quantities are simply related:
μ(t) = β

2 σ 2(t). [This can also be viewed as a consequence
of the JE for a Gaussian work distribution in a situation where
the equilibrium free energy of an oscillator is independent of
its position, as explained in the paragraph following Eq. (30).]
In the ND case

μ(t) = 2mv2 sin2

(
ωt

2

)
. (A6)

This μ(t) is periodic and vanishes after each complete period
of the oscillator. In the OLD case

μ(t) = γ τv2

(
e−t/τ + t

τ
− 1

)
. (A7)

This μ(t) increases monotonically with time. At large times
the mean work is linear in t representing the work against
friction.
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