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Quantum thermodynamic cycle with quantum phase transition

Yu-Han Ma,1,2 Shan-He Su,1 and Chang-Pu Sun1,2,*

1Beijing Computational Science Research Center, Beijing 100193, China
2Graduate School of Chinese Academy of Engineering Physics, Beijing 100084, China

(Received 26 May 2017; published 21 August 2017)

With the Lipkin-Meshkov-Glick (LMG) model as an illustration, we construct a thermodynamic cycle
composed of two isothermal processes and two isomagnetic field processes, and we study the thermodynamic
performance of this cycle accompanied by the quantum phase transition (QPT). We find that for a finite particle
system working below the critical temperature, the efficiency of the cycle is capable of approaching the Carnot
limit when the external magnetic field λ1 corresponding to one of the isomagnetic processes reaches the cross
point of the ground states’ energy level, which can become the critical point of the QPT in the large-N limit.
Our analysis proves that the system’s energy level crossings at low-temperature limits can lead to a significant
improvement in the efficiency of the quantum heat engine. In the case of the thermodynamics limit (N→∞),
the analytical partition function is obtained to study the efficiency of the cycle at high- and low-temperature
limits. At low temperatures, when the magnetic fields of the isothermal processes are located on both sides of
the critical point of the QPT, the cycle reaches maximum efficiency, and the Carnot efficiency can be achieved.
This observation demonstrates that the QPT of the LMG model below critical temperature is beneficial to the
thermodynamic cycle’s operation.
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I. INTRODUCTION

A heat engine is a machine that allows the working sub-
stance to draw heat from a heat bath through a thermodynamic
cycle and to use part of the extracted energy to do work.
Carnot’s theorem states that a reversible heat engine operating
between two heat baths has a maximum efficiency, which is
known as the Carnot efficiency, and it serves as an upper
bound on the efficiency of any irreversible heat engines running
between the same heat baths. In recent years, focus has been
given to circumstances in which working substances exhibit
quantum behaviors. Heat engines that adopt the quantum
system as the working substance are called quantum heat
engines [1–5]. When examining these engines, a connection
can be made between the definitions of heat and work and
the microscopic states of the working substances [6–8]. As
a result, we can calculate the efficiency of a thermodynamic
cycle from a more fundamental perspective. Different working
substances, such as harmonic oscillators [9–11], spin systems
[12,13], and multilevel atoms [7,14,15], have been studied
to construct quantum heat engines. The basic motivation
for designing quantum heat engines is to use the quantum
properties of working substances or heat baths to improve the
engines’ efficiencies [16,17].

If the working substances consist of quantum particles
with interaction, the quantum phase transition (QPT) may
occur below the critical temperature due to the continuous
tuning of a specific external parameter. The ground state of
the system will vary enormously due to the QPT [18,19].
An interesting question that arises here is whether the QPT
of the working substance can improve the efficiency of the
quantum heat engine. This question inspired us to construct a
quantum heat engine by taking advantage of the QPT effect in
the Lipkin-Meshkov-Glick (LMG) model [20–23]. The LMG
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model has been studied in different experimental systems, such
as platforms with Bose-Einstein condensates [24–27] and with
trapped ions [28,29]. We will prove that when the QPT of the
LMG model takes place below the critical temperature, the
efficiency of the quantum heat engine is improved and will
achieve the Carnot efficiency.

This paper is organized as follows: In Sec. II, we diagonalize
the Hamiltonian of the LMG model and analyze its energy
spectra with level crossing. In Sec. III, the entropy of the
LMG model in the thermal equilibrium state is calculated.
The thermodynamic cycle constructed by the LMG model and
the efficiency expression of this cycle are given in Sec. IV. In
Sec. V, we carefully analyze the efficiency of the heat engine
with a finite number of particles, and we give the efficiency of
the heat engine at the cross points of the ground states’ energy
level. In Sec. VI, we calculate the analytical expression of
the efficiency of the cycle in different cases when the particle
number is taking the thermodynamic limit. Conclusions are
given in Sec. VII

II. LIPKIN-MESHKOV-GLICK MODEL

A. Diagonalization of the Hamiltonian

We suppose that the working substance of the quantum
heat engine is a spin system with interaction, which can
be described by the Lipkin-Meshkov-Glick (LMG) model
[20–22]. Let Jα = 1

2

∑N
i=1 σ i

α be the total spin of the system,
where σα

i (α ∈ {x,y,z}) are the Pauli operators of the ith spin.
The Hamiltonian of the LMG model reads

H = εJz + V
(
J 2

x − J 2
y

) + W
(
J 2 − J 2

z

)
, (1)

where J 2 = ∑
α=x,y,z J 2

α , V and W are the parameters
describing the interaction strengths between spins, and ε

is the intensity of the external magnetic field. Now, by
defining λ = −ε/2, λ0/N = −(W + V )/2, and setting γ =
(W − V )/(W + V ) = 1 [22,23,30], we can simplify the
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Hamiltonian as

H = −2λ0

N

(
J 2 − J 2

z

) − 2λJz. (2)

The ground state of H lies in the subspace spanned by
{|N/2,M〉,M ∈ [−N/2,N/2]}. M is restricted to an integer
for even N . For odd N , M is a half-integer between −N/2 and
N/2. The state |N/2,M〉 satisfies

Jz

∣∣∣∣N2 ,M

〉
= M

∣∣∣∣N2 ,M

〉
(3)

and

J 2

∣∣∣∣N2 ,M

〉
= N

2

(
N

2
+ 1

)∣∣∣∣N2 ,M

〉
. (4)

By taking λ0 = 1, the eigenenergy corresponding to |N/2,M〉
is explicitly obtained as

E(M) = 2

N

(
M − Nλ

2

)2

− N

2
(1 + λ2) − 1. (5)

Obviously, the minimum value of E(M) is at M = Nλ/2, so
that the ground state of the LMG model is λ-dependent, i.e.,

|G〉 =
{∣∣N

2 ,N
2

〉
(λ > 1),∣∣N

2 ,I (λ)
〉

(0 < λ < 1).
(6)

I (λ) is the integer or half-integer nearest to Nλ/2. Equation
(6) indicates that the quantum phase transition (QPT) arises at
the critical point λc = 1 [23].

B. Energy level crossing of the ground states

It follows from Eq. (6) that the ground state of the LMG
model is |N/2,I (λ)〉 for 0 < λ < 1 if Nλ/2 = k + 1

2 is a
half-integer for k = 0,1,2, . . . . Equation (5) indicates that
the states |N/2,M = k〉 and |N/2,M = k + 1〉 have the same
eigenenergy, and both of them are ground states. Therefore,
when λ(k) = (2k + 1)/N , the ground state is degenerate.
Because the energy level crossing of the ground states only
appears when λ < 1, the integer k � (N − 2)/2. For even N ,
the number of cross points equals N/2. The last cross point
of the ground state is at λ(k = N/2 − 1) = 1 − 1/N . In the
thermodynamic limit (N → ∞),

lim
N→∞

λ(k = N/2 − 1) = 1 = λc, (7)

which means that the last cross point of the energy levels of
the ground states is exactly the critical point for the QPT.

III. ENTROPY OF THE WORKING SUBSTANCE

To calculate the heat exchange in the isothermal processes
of a thermodynamic cycle, we need to discuss the entropy of
the working substance. Considering the LMG model in thermal
contact with a heat bath with temperature T0, the density matrix
operator in the canonical ensemble can be written as

ρ = 1

Z

N/2∑
M=−N/2

e−β0E(M)

∣∣∣∣N2 ,M

〉〈
N

2
,M

∣∣∣∣. (8)

FIG. 1. Entropy-magnetic diagram (S − λ) of the thermodynamic
cycle based on the LMG model. Here, λ1 and λ2 are the magnetic
fields in the two isomagnetic field processes from B to C and from
D to A. TH and TC are the temperatures of the two heat baths.

Here, Z = ∑
M exp [−β0E(M)] is the partition function and

β0 = 1/T0 is the inverse temperature, as we take the Boltz-
mann constant kB = 1. By using Eq. (8), the entropy of the
working substance is obtained as

S = −Tr(ρ ln ρ) = −
N/2∑

M=−N/2

e−β0E(M)

Z
ln

e−β0E(M)

Z
. (9)

According to Eq. (5), when λ(k) = (2k + 1)/N , the states
|N/2,M = k〉 and |N/2,M = k + 1〉 have the same energy
and are degenerate. This implies that the entropy of the
system at T = 0 has a sudden abrupt rise at the energy level
crossing.

IV. QUANTUM HEAT ENGINE BASED
ON THE LMG MODEL

In this section, we build a quantum heat engine with a
spin system, which is modeled as the LMG model. In the
thermodynamic cycle (Fig. 1), the processes from A to B and
from C to D are quantum isothermal processes, while the
processes from B to C and from D to A are isomagnetic field
processes.

During the isothermal process from A to B (C to D), the
system is kept in contact with a heat bath at temperature
TH (TC). The external magnetic field, which is regarded as
the generalized coordinate in this thermodynamic cycle, is
slowly reduced (increased) from λ2 (λ1) to λ1 (λ2). 	QAB

and 	QCD represent the amounts of heat exchange between
the system and the heat baths during the two isothermal
processes, respectively. The working substance is always kept
in thermal equilibrium with the heat bath by assuming that the
energy levels of the system change much more slowly than the
relaxation rates.

At the beginning of the isomagnetic field process from B to
C (D to A), the system is rapidly brought into thermal contact
with the heat bath at low temperature TC (high temperature
TH ). No work has been done during this process, because the
external magnetic field is fixed at λ1 (λ2) and the eigenenergies
of the working substance remain unchanged [3]. The amount
of heat exchange between the system and the heat baths 	QBC

(	QDA) is equal to the change in the internal energy of the
system.
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FIG. 2. Diagrams of the efficiency η as a function of λ1 for the
system with N = 20 in (a) and N = 2 in (b). The blue solid line and
the black dotted line correspond to the high-temperature heat bath
at TH = 0.8 and 80, respectively. Here we guarantee that the Carnot
efficiency of each curve equals 0.5, as indicated by the red solid
line.

Based on the definition of the entropy and the first law
of thermodynamics, we can calculate the amount of heat
exchange in each thermodynamic process as

	QAB = TH (SB − SA), (10a)

	QBC = UC − UB, (10b)

	QCD = TC(SD − SC), (10c)

	QDA = UA − UD. (10d)

Here, Sα is the entropy of the system in A, B, C, and
D points in the cycle. The system’s internal energy Uα =∑

i pi(λα,Tα)Ei(λα) [7]. As a result, the efficiency of the
thermodynamic cycle is

η = W

QH

= 	QAB + 	QBC + 	QCD + 	QDA

	QAB + 	QDA

, (11)

where the work output per cycle is W = 	QAB + 	QBC +
	QCD + 	QDA. From Eq. (11) and Fig. 1, one can find that
the net amount of heat input QH into the thermodynamic cycle
is determined by the heat transfer 	QAB between the system
and the heat bath at temperature TH during the isothermal
process from A to B and that of the heat transfer 	QDA

in the isomagnetic field process from D to A. For N = 2
(or 20), TH = 0.8 (or 80), and ηC = (TH − TC)/TH = 0.5,
we can numerically calculate the efficiency of this heat engine
from Eqs. (5), (9), and (11) with λ2 = 4 and λ1 ∈ [0,4]. The
results are shown in Figs. 2(a) and 2(b). It is found in Fig. 2(a)
that if TH and TC are both very low, the efficiency of the
cycle is capable of approaching the Carnot efficiency when
λ1 is below the QPT point of the LMG model. In Fig. 2(b),
we notice that when N = 2, there is a maximum value of
efficiency at λ1 ≈ 0.5. According to Sec. II B, the cross
point of the ground states’ energy levels is just located at
λ1 = 1/2. In the next section, we will prove theoretically and
numerically that the position of the maximum efficiency of the
quantum heat engine is always close to the energy level cross
points.

V. MAXIMUM EFFICIENCY OF THE HEAT ENGINE
FOR A SYSTEM WITH FINITE N

A. System with N = 2

The eigenenergies for the LMG model with two interacting
spins are E−1 = 2λ − 1, E0 = −2, and E1 = −2λ − 1. The
cross point of the ground state’s energy levels is at λ1 = 1/2.
When β � 1 and λ2 � 1, the population of the system in the
ground state is

p(λ2,β) = e2βλ2

e2βλ2 + e−2βλ2 + eβ
≈ 1,

which means that the system is mostly in its ground
state. As a result, SA = S(λ2,βH ) ≈ 0 and SD = S(λ2,βC) ≈
0(βC > βH � 1). Therefore, the heat transfer 	QDA in the
isomagnetic process from D to A is written as

	QDA = UA − UD = E
λ2
G − E

λ2
G = 0. (12)

In this case, the efficiency of the thermodynamic cycle is

η = THSB + UC − UB − TCSC

THSB

. (13)

Notice that S(λα,βα) = Uα/Tα + ln Zα . The expression of the
work can be simplified as W = TH ln ZB − TC ln ZC , where
the partition function is

Z(λ,β) = eβ[e−2βλ + e2βλ + eβ]. (14)

When βC > βH � 1 and e−2βλ1 � 1(λ1 	= 0), the partition
functions at points B and C of the thermodynamic cycle are

ZB ≈ e2βH (2λ1+1)[1 + eβH (1−2λ1)] (15)

and

ZC ≈ e2βC (2λ1+1)[1 + eβC (1−2λ1)], (16)

respectively. Combining Eqs. (15) and (16), we see that

W = ln[1 + eβH (1−2λ1)]

βH

− ln[1 + eβC (1−2λ1)]

βC

.

Differentiating W with respect to λ1, one can write

∂W

∂λ1
= 2

eβC (1−2λ1) − eβH (1−2λ1)

[1 + eβH (1−2λ1)][1 + eβC (1−2λ1)]
. (17)

As βC > βH , it is found that

∂W

∂λ1
> 0

(
λ1 <

1

2

)
,

∂W

∂λ1
= 0

(
λ1 = 1

2

)
,

∂W

∂λ1
< 0

(
λ1 >

1

2

)
.

This means that the work W of this cycle has a maximum value
at λ1 = 1/2, which is exactly the cross point of the energy level
of the ground states. Now we differentiate QH with respect to
λ1,

∂QH

∂λ1
= TH

∂SB

∂λ1
= ∂UB

∂λ1
+ TH

∂(ln ZB)

∂λ1
. (18)
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FIG. 3. (a) Diagram of the efficiency η as a function of λ1 for
the system with N = 2. TH = 0.6 is the temperature of the hot heat
bath and TC = 0.3 is the temperature of the cold heat bath. The
black solid line represents the efficiency of the heat engine, while
the red solid line represents the corresponding Carnot efficiency.
(b) Diagram of the entropy S as a function of λ1, where the red solid
line, the blue solid line, and the black circle line represent the change
in the entropy when the temperatures (T ) of the system are at 0.6,
0.3, and 0, respectively.

It follows from Eq. (15) that

UB = −∂(ln ZB)

∂βH

= −2λ1e
2βH λ1 − eβH

e2βH λ1 [1 + eβH (1−2λ1)]
− 1 (19)

and

∂ZB

∂λ1
= 2βH eβH (2λ1+1). (20)

Equation (18) can now be further simplified as

∂QH

∂λ1
= 2βH e2βH λ1

Z2
B

eβH (1 − 2λ1). (21)

With the help of Eq. (11), one can differentiate η with respect
to λ1 as

∂η

∂λ1
= 1

Q2
H

(
∂W

∂λ1
QH − ∂QH

∂λ1
W

)
. (22)

Combining Eqs. (17), (21), (22), and taking λ1 = 1/2 + δ

(δ � 1), we find that[
∂η

∂λ1

]
λ1= 1

2 +δ

= β2
H

ln 2

(
2 − TH

TC

− TC

TH

)
δ.

Finally, we can conclude that

sgn

{[
∂η

∂λ1

]
λ1= 1

2 +δ

}
= −sgn(δ), (23)

where sgn(x) ≡ x/|x| is the sign function. Equation (23)
shows that the efficiency of such a thermodynamic cycle has a
maximum value at λ1 = 1/2 and η(λ1 = 1/2) = ηCarnot. This
result can be checked by the numerical calculation directly,
where we take N = 2, TH = 0.6, TC = 0.3, λ1 ∈ [0,4], and
λ2 = 4. The diagram of η as a function of λ1 is plotted in
Fig. 3(a), and the entropy of the system at the given temperature
as a function of λ1 is shown in Fig. 3(b). It can be found
in Fig. 3(a) that the efficiency takes the maximum value at
λ1 = 0.5 and is equal to the Carnot efficiency. In Fig. 3(b),
one can see that when λ1 = 0.5, the blue line is tangent to

the red line, and the corresponding entropy value is the same
as the entropy of the system at zero temperature represented
by the black circle. When λ1 = 1/2, the ground states are
crossing with UB ≈ UC = −1, and SB ≈ SC ≈ ln 2. As a
result,

η = THSB − TCSC

THSB

≈ ηC, (24)

which is also observed in Fig. 3(b). From another point of
view, when λ1 is at the cross point of the ground states’ energy
levels, the internal energy of point B is equal to that of point C.
This implies that there is no heat exchange between the system
and the bath in the process from B to C. On the other hand,
Eq. (12) indicates that the heat transfer in the process from D

to A does not exist (λ2 � 1). There is no heat transfer in the
two isomagnetic processes of the thermodynamic cycle. Thus,
from the entropy diagram, the thermodynamic cycle that we
construct is similar to the Carnot cycle. This is the fundamental
reason why the efficiency of the quantum heat engine we
proposed can achieve Carnot efficiency in this particular
case.

B. System with N > 2

For N > 2, the cross points are located at λ1(k) = (2k +
1)/N (k = 0,1, . . . ,N/2 − 1). Considering Eq. (5), we have

E(M = k) = E(M = k + 1) < E(M 	= k,k + 1) < 0.

When β � 1,

e−βE(M=k) = e−βE(M=k+1) � e−βE(M 	=k,k+1),

the partition function

Z =
∑
M

e−βE(M) ≈ 2e−βE(k).

The entropy

S = βU (λ1(k),β � 1) + ln Z(λ1(k),β � 1)

≈ βE(k) + ln[2e−βE(k)] = ln 2,

which is independent of the temperature. As a result,

η = THS(λ1,TH ) − TCS(λ1,TC)

THS(λ1,TH )
≈ ηC. (25)

This implies that when the temperatures of the two heat baths
are very low and λ1 takes the values for reaching the cross
point of the ground states’ energy levels, the efficiency of
the heat engine approaches Carnot efficiency. The numerical
results of the efficiency of the thermodynamic cycle with
N = 4, 6, 8, and 10 are given in Fig. 4. One can easily check
that under different conditions, there are N/2 peaks in the
diagram of η varying λ1, which is exactly the same as the
number of cross points of the ground states’ energy level.
The efficiency values corresponding to these peaks are also
consistent with the prediction in Eq. (25), which is close to
the Carnot efficiency ηC . These figures validate our heretical
analysis that the maximum value of the cycle’s efficiency is
always obtained when λ1 is at the cross points of energy levels.
It is clear in these figures that there are N/2 peaks in the
curve of efficiency for the N -spin system. As N increases,
the peaks gradually become flat and approach the red straight
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FIG. 4. Diagrams of the efficiency η as a function of λ1, where the
black solid lines represent the efficiency of the heat engine while the
red solid lines represent the corresponding Carnot efficiency. (a) For
the system with N = 4, the parameters TH = 0.3, TC = 0.15, λ1 ∈
[0,4], and λ2 = 4. (b) For the system with N = 6, the parameters
TH = 0.2, TC = 0.1, λ1 ∈ [0,4], and λ2 = 4. (c) For the system with
N = 8, the parameters TH = 0.1, TC = 0.06, λ1 ∈ [0,2], and λ2 = 2.
(d) For the system with N = 10, the parameters TH = 0.1, TC =
0.06, λ1 ∈ [0,2], and λ2 = 2.

line marked by the Carnot efficiency. As shown in Sec. II B,
the number of cross points of the ground states increases
as N increases. Thus, we can reasonably speculate that the
efficiency of the thermodynamic cycle at the low-temperature
limit will always approach the Carnot efficiency when λ1 < λc,
and N is taken to be the thermodynamic limit (N → ∞).
This will be proven analytically in the next section. To further
demonstrate the relationship between the cycle’s efficiency and
the cross points of the energy levels, the plot of η′ = ∂η/∂λ1

as a function of λ1 under different situations is calculated and
illuminated in Fig. 5. The diagrams show that there is a valley
around λc = 1. When N is small, there are some fluctuations
in the curves, which correspond exactly to the cross points of
the ground states’ energy levels. With the increase of N , the
cross points of the ground states’ energy level of the system
become more dense, and the fluctuations diminish until they
disappear.

VI. EFFICIENCY OF THE HEAT ENGINE UNDER THE
THERMODYNAMIC LIMIT N → ∞

When N is taken to be the thermodynamic limit (N → ∞),
the partition function can be approximated as (for details, see
the Appendix)

Z = eβN(1+λ2)/2

√
2Nβ

[
erf

(
a + 1

K

)
+ erf

(−a

K

)]
, (26)

where erf(x) = √
4/π

∫ x

0 exp (−η2)dη is the Gauss error
function, a = −(1 + λ)/2, and K = 1/

√
2Nβ. With the help

FIG. 5. Diagrams of η′ = ∂η/(∂λ1) as a function of λ1, where
λ1 ∈ [0,2] and λ2 = 2. (a) For the system with N = 6, the parameters
TH = 0.3 and TC = 0.2. (b) For the system with N = 10, the
parameters TH = 0.2 and TC = 0.1. (c) For the system with N = 20,
the parameters TH = 0.12 and TC = 0.06. (d) For the system with
N = 30, the parameters TH = 0.2 and TC = 0.1.

of Eq. (26), we can discuss the efficiency of the heat engine
under different circumstances.

A. Efficiency at the high-temperature limit

For T � 1, (a + 1)/K,−a/K � 1,

erf

(
a + 1

K

)
≈ −

√
2Nβ

π
(1 − λ)

and

erf

(−a

K

)
≈

√
2Nβ

π
(1 + λ).

We have

Z ≈ 1√
π

exp

[
Nβ

2
(1 + βλ2)

]
, (27)

where the relation erf(
√

2N/2) ≈ erf(∞) = 1 has been used.
Taking the logarithm of both sides of Eq. (27), we have

ln Z ≈ 1

2
ln π + Nβ

2
(1 + βλ2). (28)

As a result, the internal energy

U = −∂(ln Z)

∂β
= −

(
N

2
+ Nβλ2

)
. (29)

It follows from Eqs. (11), (28), and (29) that

η =
(
λ2

2 − λ2
1

)
(βC − βH )(

λ2
1 − λ2

2

)
βH + 2βCλ2

2 − 2βH λ2
1

.
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FIG. 6. Diagrams of η as a function of λ1. Here, the black circle
line denotes the numerical results, the blue solid line denotes the
analytical results of Eq. (30), and the red solid line denotes η0 =
ηC/(1 + ηC), where ηC is the corresponding Carnot efficiency. The
temperatures of the two heat baths are TH = 800 and TC = 500,
respectively.

By introducing κ ≡ λ1/λ2 ∈ [0,1], the efficiency can be
further simplified as

η = (1 − κ2)ηC

1 − κ2 + ηC(1 + κ2)
, (30)

which is independent of N . In particular, when κ � 1, η0 =
ηC/(1 + ηC). For purposes of verifying the above analysis,
we give the numerical result of the efficiency as a function
of λ1 with N = 100, λ1 ∈ [0,30], and λ2 = 30, as shown in
Fig. 6. It can be seen in Fig. 6 that Eq. (30) is consistent
with the numerical result, and when λ1 � λ2, the efficiency
approaches η0 = ηC/(1 + ηC).

B. Efficiency at the low-temperature limit

In this section, we consider the working substance coming
into contact with the baths having a temperature T � 1. In the
following, we will discuss the partition function in two cases
involving λ < 1 and λ > 1. If λ < 1,

erf

(
a + 1

K

)
+ erf

(−a

K

)
≈ 2erf

(√
2Nβ

2

)
= 2,

such that the partition function is approximated as

Z = 2√
2Nβ

exp

[
βN

2

(
1 + λ2

)]
. (31)

The logarithm of Eq. (31) can be written as

ln Z = ln 2 − 1

2
ln(2Nβ) + Nβ

2
(1 + λ2) ≈ Nβ

2
(1 + λ2).

(32)

As a result,

U = −∂(ln Z)

∂β
= −N

2
(1 + λ2). (33)

For λ1 < λ2 < 1, it follows from Eqs. (11), (32), and (33)
that η ≈ 0. This is checked by numerical calculation, and the
results are illustrated in Figs. 7(a) and 7(b). On the other hand,

FIG. 7. Diagrams of the efficiency η as a function of λ1, where
the black crosses are the numerical results and the red solid lines
represent the corresponding Carnot efficiency. (a) For the system
with N = 30, the parameters TH = 0.5, TC = 0.3, λ1 ∈ [0,0.8], and
λ2 = 0.8. (b) For the system with N = 50, the parameters TH =
0.2, TC = 0.1, λ1 ∈ [0,0.2], and λ2 = 0.2.

when λ � 1, one can write the energy spacing of the LMG
model’s eigenenergies as

	E(M) =
(

4M

N
− 2λ

)
	M =

(
4M

N
− 2λ

)
,

which is approximately equal to 2λ. In this case, the system
would only stay in its ground state |N/2,N/2〉. The reason
is that the system cannot be excited by the thermal energy
for T � 1. The partition function is now given by Z =
exp [−βE(N/2)] = exp (βNλ). Taking the logarithm of both
sides, we have

ln Z = βNλ, (34)

and the internal energy of the system is

U = −∂(ln Z)

∂β
= −Nλ. (35)

Combining Eqs. (11), (32)–(35), and the condition λ1 <

1 � λ2, the efficiency of the thermodynamic cycle at the
low-temperature limit is obtained as η = ηC . This indicates
that the efficiency of the thermodynamic cycle is exactly the

FIG. 8. Diagram of η as a function of λ1 for the system with
N = 20, where λ1 ∈ [0,4] and λ2 = 4. TH = 0.3 is the temperature
of the hot heat bath. TC = 0.2 is the temperature of the cold heat
bath. Here, the blue square points are the numerical results and the
red solid line is the corresponding Carnot efficiency.
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Carnot efficiency for a system with N � 1. On the other hand,
for 1 � λ1 < λ2 and with the help of Eqs. (34) and (35),
one has ln ZB = NβH λ1, ln ZA = NβH λ2, ln ZD = NβCλ2,
and ln ZC = NβCλ1. The work and the efficiency are both
equal to zero. We illustrate the numerical result in Fig. 8 to
verify the above discussion, where the parameters we take are
N = 20, λ1 ∈ [0,4], and λ2 = 4. It can be found in Fig. 8
that the numerical results are consistent with the theoretical
analysis. When λ1 < 1, the efficiency of the heat engine is
close to Carnot efficiency. When λ1 > 1, the efficiency is
rapidly reduced to zero.

VII. CONCLUSION

In summary, we have studied quantum thermodynamic
cycles with a working substance modeled as the Lipkin-
Meshkov-Glick (LMG) model. It is found that, for a finite
system with a thermodynamic limit, the efficiency of the ther-
modynamic cycle can reach the Carnot limit at low temperature
when the external magnetic field λ1 corresponding to one
of the isomagnetic processes reaches the cross points of the
ground states’ energy level. In the case of the thermodynamic
limit (N → ∞), the analytical partition function of the LMG
model in the thermal equilibrium state is obtained and then
used to calculate the efficiencies of the heat engine at the high-
and low-temperature limits. We show that the quantum heat
engine will achieve Carnot efficiency at low temperature, when
the phases of the system in the two isomagnetic processes
are different. This observation implies that the quantum
phase transition (QPT) can improve the efficiency of the
thermodynamic cycle. In view of the fact that the LMG model
has been implemented on different experimental platforms,
we expect future quantum heat engines with the QPT to
have Carnot efficiency, thereby achieving the purpose of using
quantum techniques to enhance device efficiency.
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APPENDIX: PARTITION FUNCTION

The partition function is given by

Z =
N/2∑

M=−N/2

exp

[
−β

(
2M2

N
− 2λM − N

2
− 1

)]
. (A1)

For a system under a thermodynamic limit N → ∞, by
taking x ≡ M/N , the summation in Eq. (A1) is approxi-
mated as an integral

∑M=N/2
M=−N/2 = N

∫ 1/2
−1/2 dx. The partition

function can be rewritten as Z = exp (βN/2)
∫ 1/2
−1/2 exp[−2Nβ

(x2 − λx)]dx. After some algebraic manipulation, one has

Z ≈ exp

[
Nβ

2
(1 + λ2)

] ∫ 1/2

−1/2
e−2Nβ(x− λ

2 )2
dx (A2)

= exp

[
Nβ

2
(1 + λ2)

]
K

∫ (a+1)/K

a/K

e−y2
dy. (A3)

Here, a ≡ −(1 + λ)/2 and K ≡ 1/
√

2Nβ. Finally, with
the help of the Gauss error function erf(x) = √

4/π∫ x

0 exp (−η2)dη, the partition function is obtained as

Z = eβN(1+λ2)/2

√
2Nβ

[
erf

(
a + 1

K

)
+ erf

(−a

K

)]
. (A4)
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