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We examine unsupervised machine learning techniques to learn features that best describe configurations of the
two-dimensional Ising model and the three-dimensional XY model. The methods range from principal component
analysis over manifold and clustering methods to artificial neural-network-based variational autoencoders. They
are applied to Monte Carlo–sampled configurations and have, a priori, no knowledge about the Hamiltonian
or the order parameter. We find that the most promising algorithms are principal component analysis and
variational autoencoders. Their predicted latent parameters correspond to the known order parameters. The latent
representations of the models in question are clustered, which makes it possible to identify phases without prior
knowledge of their existence. Furthermore, we find that the reconstruction loss function can be used as a universal
identifier for phase transitions.
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I. INTRODUCTION

Inferring macroscopic properties of physical systems from
their microscopic description is an ongoing work in many
disciplines of physics such as condensed matter, ultracold
atoms, or quantum chromodynamics. The most drastic changes
in the macroscopic properties of a physical system occur at
phase transitions, which often involve a symmetry-breaking
process. The theory of such phase transitions was formulated
by Landau as a phenomenological model [1] and later devised
from microscopic principles using the renormalization group
[2,3]. Different phases can be identified by an order parameter
that is zero in the disordered phase and nonzero in the ordered
phase. Whereas in many known models the order parameter
can be determined by symmetry considerations of the under-
lying Hamiltonian, there are states of matter where such a
parameter can only be defined in a complicated nonlocal way
[4]. These systems include topological insulators, quantum
spin Hall states [5], or quantum spin liquids [6]. Therefore, it
is important to develop new methods to identify parameters
capable of describing phase transitions in these systems.

Such methods might be borrowed from machine learning.
With the development of more powerful computers and artifi-
cial neural networks, machine learning has become one of the
most influential disciplines of this century. It has been shown
that such neural networks can approximate any continuous
function under mild assumptions [7,8]. They quickly found
applications in image classification [9], speech recognition
[10], and natural language understanding [11].

In recent years physicists have started to employ machine
learning techniques. Most of the tasks were tackled by super-
vised learning algorithms or with the help of reinforcement
learning [12–24]. In supervised learning the algorithm is
trained on labeled data to assign labels to data points. After
successful training it can predict the labels of previously
unseen data with high accuracy.

In addition to supervised learning, there exist unsupervised
learning algorithms that can find structure in unlabeled data. It
is already possible to employ unsupervised learning techniques
to reproduce Monte Carlo–sampled states of the Ising model
[25]. Phase transitions were found in an unsupervised manner

using principal component analysis [26,27]. In this article we
examine several other unsupervised learning algorithms such
as manifold methods, clustering, and autoencoders. As a result
of this examination we conclude that principal component
analysis and variational autoencoders are the most promising
among them to reveal phase transitions. This motivates us to
transition to the employment of variational autoencoders and
test how the latter handles different physical models. This
algorithm finds a low-dimensional latent representation of the
physical system that coincides with the correct order param-
eter. Furthermore, we find that autoencoders can reconstruct
samples more accurately in the ordered phase, which suggests
the use of the reconstruction error as a universal identifier for
phase transitions.

Whereas for physicists this work is a promising way to find
order parameters of systems where they are hard to identify,
computer scientists and machine learning researchers might
find an interpretation of the latent parameters.

II. MODELS

A. Ising model in two dimensions

The Ising model is one of the most studied and well
understood models in physics. Whereas the one-dimensional
classical Ising model does not possess a phase transition, the
two-dimensional model does. The Hamiltonian of the Ising
model on the square lattice with vanishing external magnetic
h field reads

H (S) = −J
∑

〈i,j〉NN

sisj , (1)

with uniform interaction strength J and spins si ∈ {+1 =
↑,−1 = ↓} on each site i = 1, . . . ,N . The notation 〈i,j 〉NN

indicates a summation over nearest neighbors. A spin configu-
ration S = (s1, . . . ,sN ) is a fixed assignment of a spin to each
lattice site and � denotes the set of all possible configurations
S. We set the Boltzmann constant kB = 1 and the interaction
strength J = 1 for the ferromagnetic case and J = −1 for
the antiferromagnetic case. A spin configuration S can be
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expressed in matrix form as

S =̂

⎛
⎜⎜⎝

↑ ↓ ↑ · · · ↑
↓ ↑ ↑ · · · ↑
...

...
...

...
↓ ↓ ↑ · · · ↓

⎞
⎟⎟⎠

L×L

. (2)

Onsager solved the two-dimensional Ising model [28] and
thereby calculated the critical temperature Tc = 2/ ln(1 +√

2) = 2.269.
For the purpose of this work, we assume a square lattice

with length L = 28 such that L × L = N = 784 and periodic
boundary conditions. We sample the Ising model using a
Monte Carlo algorithm [29] at temperatures T ∈ [0,5] to
generate 50 000 samples in the ferromagnetic case and 10 000
samples in the antiferromagnetic case. The Ising model obeys
a discrete Z2 symmetry, which is spontaneously broken below
Tc. The magnetization of a spin sample is defined as

M(S) = 1

N

∑
i

si . (3)

The partition function

Z =
∑
S∈�

exp [−H (S)/T ] (4)

allows us to define the corresponding order parameter. It is the
expectation value of the absolute value of the magnetization at
fixed temperature

〈‖M(T )‖〉 = 1

Z

∑
S∈�

‖M(S)‖ exp[−H (S)/T ]. (5)

Similarly, with the help of the matrix Aij = (−1)i+j , we define
the order parameter of the antiferromagnetic Ising model, the
expectation value of the staggered magnetization. The latter is
calculated from an elementwise product with a matrix form of
the spin configurations

Mst = M(S 	 A). (6)

B. The XY model in three dimensions

The Mermin-Wagner-Hohenberg theorem [30,31] prohibits
continuous phase transitions in d � 2 dimensions at finite
temperature when all interactions are sufficiently short ranged.
Hence, we choose the XY model in three dimensions as a
model to probe the ability of a variational autoencoder to
classify phases of models with continuous symmetries. The
Hamiltonian of the XY model reads

H (S) = −J
∑

〈i,j〉NN

si · sj , (7)

with spins on the one-sphere si ∈ R2, ‖si‖ = 1. Employing
J = 1, the transition temperature of this model is Tc = 2.2017
[32]. Using a cubic lattice with L = 14 such that N = L3 =
2744, we perform Monte Carlo simulations to create 10 000
independent sample spin configurations in the temperature
range of T ∈ [0,5]. The order parameter is defined analogously
to the Ising model magnetization (5), but with the L2 norm of
a magnetization consisting of two components.

III. METHODS

Principal component analysis [33] is an orthogonal linear
transformation of the data to an ordered set of variables,
sorted by their variance. The first variable, which has the
largest variance, is called the first principal component, the
variable with the second largest variance is the second principal
component, and so on. The linear function 〈·,w〉, which maps
a collection of spin samples (S(1), . . . ,S(n)) to its first principal
component, is defined as

arg max
‖w‖=1

⎡
⎣∑

j

[(S(j ) − μ) · w]2

⎤
⎦, (8)

where μ is the vector of mean values of each spin averaged over
the whole data set. Further principal components are obtained
by subtracting the already calculated principal components
and repeating Eq. (8) on the remaining subspace.

Kernel principal component analysis [34] projects the data
into a kernel space in which the principal component analysis
is then performed. In this work the nonlinearity is induced by
a radial basis functions kernel.

Traditional neural-network-based autoencoders [35,36]
consist of two artificial neural networks stacked on top of
each other. They are created from an encoding artificial neural
network, which outputs a latent representation of the input
data, and a decoding neural network that tries to accurately
reconstruct the input data from its latent representation (see
Fig. 1). Very shallow versions of autoencoders can repro-
duce the results of principal component analysis [37]. The
parameters of this algorithm are trained by performing gradient
descent updates in order to minimize the reconstruction loss
(reconstruction error) between input data and output data.

Variational autoencoders [38] are a modern version of
autoencoders that impose additional constraints on the en-
coded representations, i.e., the latent variables in Fig. 1. These
constraints transform the autoencoder to an algorithm that
learns a latent variable model for its input data. Whereas the
neural networks of traditional autoencoders learn an arbitrary
function to encode and decode the input data, variational
autoencoders learn the parameters of a probability distribution
modeling the data. After learning the probability distribution,
one can sample parameters from it and then let the encoder
network generate samples closely resembling the training
data. To achieve this, variational autoencoders employ the
assumption that one can sample the input data from a unit
Gaussian distribution of latent parameters. The weights of
the model are trained by simultaneously optimizing two loss
functions, a reconstruction loss and the Kullback-Leibler

Input Encoder Latent
Variables Decoder Output

FIG. 1. Autoencoder neural network architecture. The encoder
network translates the input to its latent representation, from which
the decoder reconstructs an approximation of the input as output.
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FIG. 2. Ferromagnetic Ising model showing the principal components and latent representations versus magnetization for different
algorithms: (a) principal component analysis, (b) kernel principal component analysis, (c) autoencoder, and (d) variational autoencoder.
Red points correspond to configurations of the unordered phase, while yellow points belong to the ordered phase.

divergence between the learned latent distribution and a prior
unit Gaussian.

In this work we use autoencoders and variational autoen-
coders with one fully connected hidden layer in the encoder as
well as one fully connected hidden layer in the decoder, each
consisting of 256 neurons. The number of latent variables is
chosen to match the model from which we sample the input
data. The activation functions of the intermediate layers are
rectified linear units. The activation function of the final layer
is a sigmoid in order to predict probabilities of spin ↑ or ↓ in
the Ising model or tanh for predicting continuous values of spin
components in the XY model. We do not employ any L1, L2, or
dropout regularization. However, we tune the relative weight
of the two loss functions of the variational autoencoder to fit
the problem at hand. The Kullback-Leibler divergence of the
variational autoencoder can be regarded as regularization of the
traditional autoencoder. In our autoencoder the reconstruction
loss is the cross-entropy loss between the input and output
probability of discrete spins, as in the Ising model. The recon-
struction loss is the mean-square error between the input and
the output data of continuous spin variables in the XY model.

To understand why a variational autoencoder can be a
suitable choice for the task of classifying phases, we recall

what happens during training. The weights of the autoencoder
learn two things. On the one hand, they learn to encode the sim-
ilarities of all samples to allow for an efficient reconstruction.
On the other hand, they learn a latent distribution of the param-
eters that encode the most information possible to distinguish
between different input samples. Let us translate these consid-
erations to the physics of phase transitions. If all the training
samples are in the unordered phase, the autoencoder learns
the common structure of all samples. The autoencoder fails to
learn any random entropy fluctuations, which are averaged out
over all data points. However, in the ordered phase there exists
a common order in samples belonging to the same phase. This
common order translates to a nonzero latent parameter, which
encodes correlations on each input sample. It turns out that in
our cases this parameter is the order parameter corresponding
to the broken symmetry. It is not necessary to find a perfect
linear transformation between the order parameter and the
latent parameter as is the case in Fig. 2. A one-to-one corre-
spondence is sufficient, such that one is able to define a function
that maps these parameters onto each other and captures all
discontinuities of the derivatives of the order parameter.

Principal component analysis and autoencoders seem
very different, but they share common characteristics.
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FIG. 3. Ferromagnetic Ising model showing a comparison of manifold and clustering methods: (a) PCA, (b) DBSCAN, (c) one-component
TSNE, (d) one-component MDS, (e) two-component TSNE, and (f) two-component MDS.
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Reconstructing the input data from its principal components
minimizes the mean-square reconstruction error. Hence,
a single-layer autoencoder with linear activation functions
closely resembles principal component analysis [37]. Principal
component analysis is much easier to apply and in general
is characterized by fewer parameters than autoencoders.
Autoencoders based on convolutional layers can have a
reduced number of parameters. In extreme cases this number
can be even less than the parameters of principal component
analysis. Furthermore, such autoencoders can promote
locality of features in the data.

We further examine manifold methods, where high-
dimensional data are embedded in a low-dimensional manifold
in which similar data points are represented close to each other.
For this purpose we employ t-distributed stochastic neighbor
embedding (TSNE) [39], a technique that is particularly
sensitive to local structure. We also consider multidimen-
sional scaling (MDS) [40], which seeks a low-dimensional
representation of the data in which the distances respect
the distances in the original high-dimensional space. In the
following sections we embed the spin configurations into a
one- (one-component TSNE or MDS ) or two-dimensional
manifold (two-component TSNE or MDS).

As an example of clustering methods we try to employ
density-based spatial clustering of applications with noise
(DBSCAN) [41]. It associates clusters with areas of high
density separated by areas of low density. The DBSCAN can
also find convex-shaped clusters.

For this work we employed the PYTHON libraries sklearn
[42] and keras [43]. A detailed introduction to autoencoders
can be found in [44].

IV. RESULTS

A. Ferromagnetic Ising model

First we compare the four most successful algorithms ap-
plied to the Ising model: principal component analysis (PCA),
kernel principal component analysis, autoencoders, and

variational autoencoders. They all share the characteristic that
the first principal components or the latent parameters (Fig. 2)
show a clear correlation to the magnetization. However, the
traditional autoencoder fails to capture this correlation in the
vicinity of magnetization M(S) = 0; this fact lets us favor
variational autoencoders over traditional autoencoders. The
principal component methods show the most accurate results,
slightly better than the variational autoencoder. This is to be
expected, since the former are modeled by fewer parameters.

In Fig. 3 we compare manifold and clustering methods to
principal component analysis. All algorithms are employed
on raw data in the temperature range T ∈ [0,5]. The PCA is
the only method that successfully manages to approximate
the magnetization. The DBSCAN completely fails to find
clusters on raw data. Moreover, the one-component TSNE can
separate clusters of positive and negative magnetization. One-
component MDS finds a structure that separates the ordered
phase (yellow) from the unordered phase (red). However,
this structure cannot be interpreted in a physical sense. Two-
component TSNE and two-component MDS both successfully
place samples belonging to the same phases close to each other.
They also distinguish between two sorts of magnetization. We
expect that in the case of supervised learning, where one can
cluster the training data, one would obtain much clearer results.

In the following results we concentrate on the variational
autoencoder as the most promising and powerful algorithm for
unsupervised learning.

As a starting point, we choose the number of latent
parameters in the variational autoencoder to be one. After
training the network for 50 epochs and observing a saturation
of the training loss, we visualize the results in Fig. 4. In
Fig. 4(a) we see a close linear correlation between the latent
parameter and the magnetization. In Fig. 4(b) there is a
histogram of spin configurations encoded into their latent
parameter. The model learned to classify the configurations
into three clusters. The identification of the latent parameter
as a close approximation of the magnetization M(S) allows

FIG. 4. Ferromagnetic Ising model. (a) The correlation between the latent parameter and magnetization is shown for each spin sample. Red
dots indicate points in the unordered phase, while yellow dots correspond to the ordered phase. (b) The histogram counts occurrences of latent
parameters. (c) One can see the average values at fixed temperature of the absolute value of magnetization, the absolute value of the latent
parameter, and the cross-entropy reconstruction loss. The reconstruction loss is mapped on the T = 0 and 5 values of the magnetization and
the latent parameter is rescaled to the magnetization at T = 0.
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FIG. 5. Ferromagnetic Ising model with visualization of data
in a two-dimensional latent space. Red dots indicate points in the
unordered phase, while yellow dots correspond to the ordered phase.
The axis for parameter 1 has a smaller range than the axis for
parameter 2.

us to interpret the properties of the clusters. The right and left
clusters in Fig. 4(b) correspond to an average magnetization
of M(S) ≈ ±1, while the middle cluster corresponds to the
magnetization M(S) ≈ 0. Employing a different viewpoint,
from Fig. 4 we conclude that the parameter that holds the most
information on how to distinguish Ising spin samples is the
order parameter. In Fig. 4(c) the average of the magnetization,
the latent parameter, and the reconstruction loss are shown
as a function of the temperature. A sudden change in the
magnetization at Tc ≈ 2.269 defines the phase transition
between paramagnetism and ferromagnetism. Even without
previous knowledge of this order parameter, we can use the
results of the autoencoder to infer the position of the phase
transition. As an approximate order parameter, the average

absolute value of latent parameter also shows a steep change
at Tc. The averaged reconstruction loss also changes drastically
at Tc. While the latent parameter is different for each physical
model, the reconstruction loss can be used as a universal
parameter to identify phase transitions. In conclusion, without
any knowledge of the Ising model and its order parameter but
sample configurations, we can find a good estimation for its
order parameter and the occurrence of a phase transition.

It is a priori not clear how to determine the number of latent
neurons in the creation of the neural network of the autoen-
coder. Due to the lack of theoretical groundwork, we find the
optimal number by experimentation. If we expand the number
of latent dimensions by one (see Fig. 5), the results of our anal-
ysis change only slightly. The second parameter contains much
less information compared to the first, since it stays very close
to zero. Hence, for the Ising model, one parameter is sufficient
to store most of the information of the latent representation.

B. Antiferromagnetic Ising model

After having identified variational autoencoders as the most
promising unsupervised learning algorithms to determined
phase transitions, we concentrate on this algorithm in the
following and present the results of the other algorithms in
the Appendix.

While the ferromagnetic Ising model serves as an ideal
starting ground, in the next step we are interested in models
where different sites in the samples contribute in a different
manner to the order parameter. We do this in order to show
that our model is even sensitive to structure on the smallest
scales. For the magnetization in the ferromagnetic Ising model,
all spins contribute with the same weight. In contrast, in the
antiferromagnetic Ising model, neighboring spins contribute
with opposite weight to the order parameter (6).

Again the variational autoencoder manages to capture the
traditional order parameter. The staggered magnetization is
strongly correlated with the latent parameter (see Fig. 6). The
three clusters in the latent representation make it possible to

FIG. 6. Antiferromagnetic Ising model. (a) Correlation between the latent parameter and staggered magnetization for each spin sample.
Red dots indicate points in the unordered phase, while yellow dots indicate points in the ordered phase. (b) The histogram counts occurrences of
latent parameters. (c) Average at fixed temperature of the absolute value of staggered magnetization, the absolute value of the latent parameter,
and the cross-entropy reconstruction loss. The reconstruction loss is mapped on the T = 0 and 5 values of the staggered magnetization and the
latent parameter is rescaled to the magnetization at T = 0.
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FIG. 7. Reconstruction of images, each consisting of 28 × 28 pixels, from the latent parameter. The brightness indicates the probability
of the spin to be up [white indicates p(↑) = 1 and black p(↓) = 1]. The first row is a reconstruction of sample configurations from the
ferromagnetic Ising model. The second row corresponds to the antiferromagnetic Ising model. The third row is the prediction from the AF
latent parameter, where each second spin is multiplied by −1, to show that the second row indeed predicts an antiferromagnetic state.

interpret different phases. Furthermore, we note that all three
averaged quantities, the magnetization, the latent parameter,
and the reconstruction loss, can serve as indicators of a phase
transition.

Figure 7 demonstrates the reconstruction from the latent
parameter. In the first row we see the reconstruction from
samples of the ferromagnetic Ising model; the latent parameter
encodes the whole spin order in the ordered phase. Recon-
structions from the antiferromagnetic Ising model are shown
in the second and third rows. Since the reconstructions clearly
show an antiferromagnetic phase, we infer that the autoencoder
encodes the spin samples even to the most microscopic level.

C. The XY model

In the XY model we examine the capabilities of a variational
autoencoder to encode models with continuous symmetries.

The application of other algorithms is compared in the
Appendix. In models like the Ising model, where discrete
symmetries are present, the autoencoder only needs to learn a
discrete set, which is often finite, of possible representations
of the symmetry-broken phase. If a continuous symmetry
is broken, there are infinitely many possibilities of how the
ordered phase can be realized. Hence, in this section we test
the ability of the autoencoder to embed all these different
realizations into latent variables.

The variational autoencoder handles this model equally
well as the Ising model. We find that two latent parameters
model the phase transition best. The latent representation in
Fig. 8(b) shows the distribution of various states around a
central cluster. The radial symmetry in this distribution leads to
the assumption that a sensible order parameter is constructed
from the L2 norm of the latent parameter vector. In Fig. 8
one sees the correlation between the magnetization and the

FIG. 8. The XY model. (a) Correlation between the L2 norm of the latent parameter vector and the L2 norm of the magnetization for each
spin sample. Red dots indicate points in the unordered phase, while yellow dots indicate points in the ordered phase. (b) Representation of
the spin configurations in two-dimensional latent space. (c) For each L2 norm of the magnetization, the L2 norm of latent parameter, and the
average of the square root of the mean-square error reconstruction loss, we plot the average at fixed temperature. The reconstruction loss is
mapped on the T = 0 and 5 values of the magnetization and the latent parameter is rescaled to the magnetization at T = 0.
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FIG. 9. Antiferromagnetic Ising model showing a comparison of the manifold and clustering methods: (a) PCA, (b) DBSCAN, (c)
one-component TSNE, (d) one-component MDS, (e) two-component TSNE, and (f) two-component MDS.
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FIG. 10. The XY model showing a comparison of the manifold and clustering methods: (a) PCA, (b) DBSCAN, (c) one-component TSNE,
(d) one-component MDS, (e) two-component TSNE, and (f) two-component MDS.

022140-9



SEBASTIAN J. WETZEL PHYSICAL REVIEW E 96, 022140 (2017)

absolute value of the latent parameter vector. Averaging the
samples for the same temperature hints at the fact that the
latent parameter and the reconstruction loss can serve as an
indicator for the phase transition.

V. CONCLUSION

We have shown that it is possible to observe phase tran-
sitions using unsupervised learning. We compared different
unsupervised learning algorithms and found that principal
component analysis and variational autoencoders are the best
algorithms for examining phase transitions. We were motivated
by the need for an upgrade of the traditional autoencoder to a
variational autoencoder. The weights and latent parameters of
the variational autoencoder are able to store information about
microscopic and macroscopic properties of the underlying
systems. The most distinguished latent parameters coincide
with the known order parameters. Furthermore, we have
established the reconstruction loss as a universal indicator for
phase transitions. We expanded the toolbox of unsupervised
learning algorithms in physics by powerful methods, most no-
tably the variational autoencoder, which can handle nonlinear
features in the data and scale very well to huge data sets.
In the future one may employ autoencoders to capture phase
transitions with nonlinear order parameters, which PCA cannot
reproduce. These theories include lattice gauge theories, where
the order parameters are defined by a loop along several
lattice sites. We expect the prediction of unseen phases or
exposure of unknown order parameters, e.g., in quantum
spin liquids. We look forward to the development of deep
convolutional autoencoders that have a reduced number of
parameters compared to fully connected autoencoders to probe
locality in feature selection. Furthermore, since there exists a
connection between deep neural networks and renormalization
group [45], it may be helpful to employ deep convolutional
autoencoders to further expose this connection.
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APPENDIX: PCA, MANIFOLD, AND
CLUSTERING RESULTS

1. Antiferromagnetic Ising model

In Fig. 9 we compare different unsupervised learning
algorithms applied to the antiferromagnetic Ising model.
Principal component analysis approximates the magnetization
by its first principal component equally well as variational
autoencoders (Fig. 6). The DBSCAN fails to find any mean-
ingful structure. One-component TSNE finds two clusters of
staggered magnetizations. One-component MDS is able to
discover structure in the data, however we cannot relate it
to any physical quantity. Two-component TSNE projects the
ordered phase (yellow) to the outside of the manifold, while
the unordered phase (red) is mapped to the inside. It also finds
substructure in the unordered phase. Two-component MDS is
able to separate points belonging to the unordered phase from
points belonging to the ordered phase.

2. The XY model

Figure 10 compares the results of different unsupervised
learning algorithms applied to raw Monte Carlo simulations
of the XY model. The Euclidean norm of the first two
principal components analysis is perfectly correlated with
the magnetization. Principal component analysis thus yields
similar results as variational autoencoders (Fig. 8). One-
component TSNE (one-component MDS) finds a structure
where two (three) points in the embedded manifold correspond
to a finite magnetization. The most promising result is achieved
by two-component TSNE: Spin configurations belonging
to the unordered phase are centered at the origin, while
configurations belonging to the ordered phase are mapped to
the exterior. This result is similar to the clustering from the
variational autoencoder (see Fig. 8). Two-component MDS
finds two clusters of a higher density of data points belonging
to the ordered phase; the result is less pronounced compared
to TSNE.
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