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Critical and Griffiths-McCoy singularities in quantum Ising spin glasses on d-dimensional
hypercubic lattices: A series expansion study
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We study the ±J transverse-field Ising spin-glass model at zero temperature on d-dimensional hypercubic
lattices and in the Sherrington-Kirkpatrick (SK) model, by series expansions around the strong-field limit. In the
SK model and in high dimensions our calculated critical properties are in excellent agreement with the exact
mean-field results, surprisingly even down to dimension d = 6, which is below the upper critical dimension of
d = 8. In contrast, at lower dimensions we find a rich singular behavior consisting of critical and Griffiths-McCoy
singularities. The divergence of the equal-time structure factor allows us to locate the critical coupling where the
correlation length diverges, implying the onset of a thermodynamic phase transition. We find that the spin-glass
susceptibility as well as various power moments of the local susceptibility become singular in the paramagnetic
phase before the critical point. Griffiths-McCoy singularities are very strong in two dimensions but decrease
rapidly as the dimension increases. We present evidence that high enough powers of the local susceptibility may
become singular at the pure-system critical point.
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The combination of quantum mechanics and disorder
leads to rich behavior at and near zero-temperature quantum
critical points (QCPs). For example, the one-dimensional
random transverse-field Ising model has a QCP in which the
average and typical correlation functions have different critical
exponents [1,2] and the time dependence is described by
activated dynamical scaling, in which the log of the relaxation
time is proportional to a power of the correlation length
ξ , rather than conventional dynamical scaling, in which the
relaxation time itself is proportional to ξz, where z is the
dynamical exponent. Distributions of several quantities are
very broad at the QCP so QCPs with these features are said to
be of the “infinite-randomness” type. It has been proposed [3]
that infinite-randomness QCPs can occur at dimensions higher
than 1. It is also proposed [3] that the infinite-randomness QCP
can occur in spin glasses, on the grounds that frustration is
irrelevant since the distribution of renormalized interactions
(as one performs renormalization-group transformations) is so
broad that only the largest one matters.

In addition, singularities can occur in the paramagnetic
phase in the region where the corresponding nonrandom
system would be ordered. This was first pointed out for
classical systems by Griffiths [4], though the singularities
turn out to be unobservably weak in that case [5]. However,
these singularities are much stronger in the quantum case,
as first shown by McCoy [6,7], and can lead to power-law
singularities in local quantities in part of the paramagnetic
phase. For quantum problems we refer to these effects as
Griffiths-McCoy (GM) singularities. For a review see Ref. [8],
and for recent experimental observations of GM singularities
see Ref. [9]. In the quantum paramagnetic phase in the limit as
T → 0 GM singularities are characterized by a dynamical
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exponent z′ which varies as the QCP is approached. For
infinite-randomness QCPs, z′ → ∞ as the QCP is approached
[3,8].

In this paper we study the QCP and GM singularities
in quantum spin glasses. The infinite-range version, the
Sherrington-Kirkpatrick (SK) model [10] in a transverse field,
has been studied in detail [11–13], and the mean-field behavior
determined. There have also been quantum Monte Carlo
(QMC) studies in dimension d = 2 [14] and d = 3 [15].
In this paper we study quantum spin glasses using series
expansions at T = 0, in which we expand away from the
high transverse-field limit. We feel that the series expansion
method is complementary to QMC simulations and has certain
advantages: (i) we study the whole range of dimensions from
d = 2 to the SK model (which is effectively infinite d), (ii) we
work at strictly zero temperature, whereas in the QMC one has
to extrapolate to T = 0 using a rather complicated anisotropic
finite-size scaling procedure [14,15], and (iii) averaging over
bond disorder is done exactly. As in the QMC we can see
GM singularities (we think our work is the first time these
singularities have been seen using series methods) and, also,
go beyond simple averages of local quantities, in our case by
computing moments up to high order.

Our main conclusions are as follows. We show systemati-
cally how the strength of GM singularities diminishes rapidly
as the dimension increases above 2, vanishing, as expected,
for the SK model. In two dimensions, where GM singularities
are strongest, our results make plausible the expectation that
GM singularities persist in the paramagnetic phase all the
way to the critical point of the pure system. We find that
critical behavior close to that of mean-field theory persists
below the upper critical dimension, du = 8 [13], down to
d = 6, which is surprising since the renormalization group
finds no perturbative fixed point below d = 8 [13]. Our results
in two and three dimensions agree very well with earlier
work [14,15].
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We consider the Hamiltonian

H = −hT

N∑
i=1

σx
i −

∑
〈i,j〉

Jijσ
z
i σ z

j , (1)

where the σα
i are Pauli spin operators and hT is the transverse

field. The interactions Jij are quenched random variables with
a bimodal distribution. The N spins either lie on a hypercubic
lattice, in which case the interactions are between nearest
neighbors and take values ±J with equal probability, or
correspond to the SK [10] model, in which case there is no
lattice structure, every spin interacts with every other spin, and
Jij = ±J/

√
N . We choose a bimodal distribution because the

series can be worked out much more efficiently for this case
than for a general distribution [16]. We also add longitudinal
fields hi , as well as coupling to σ z

i to define the spin-glass
susceptibility, and set them to 0 afterwards [see Eqs. (3) and
(4) below].

The zero-temperature quantities we calculate are as fol-
lows.

(a) The zero-wave-vector, equal-time structure factor de-
fined as

S(0) = 1

N

∑
i,j

[〈0|σ z
i σ z

j |0〉2
]

av, (2)

where state |0〉 is the ground state of the system, and the
average [·]av refers to the disorder average over the quenched
random bonds.

(b) The spin-glass susceptibility, defined as

χSG = 1

N

∑
i,j

[
χ2

ij

]
av, (3)

where the ground-state energy E({hi}) in the presence of
infinitesimal longitudinal fields hi defines the local suscep-
tibilities χij by the relation

E({hi}) = E0 − 1

2

∑
i,j

χij hihj . (4)

(c) The moments of the local susceptibility, defined as

χm = 1

N

∑
i

[
χm

ii

]
av. (5)

We use the linked cluster method to generate the series [19]
and discuss the details of the computational method elsewhere
[16]. We expand away from the trivial paramagnetic state with
J = 0, so the expansion parameter is

x = (J/hT )2. (6)

The series are obtained to order 14 for the SK model and for
d = 2 and 3 and to order 10 in higher dimensions. The series
coefficients can be found in the Supplemental Material [20].
Throughout this paper we generically refer to the coefficients
of the series expansions as an, meaning that the series is of the
form

Q =
∑

n

anx
n. (7)

We find that, in contrast to classical spin glasses [21,22], the
series for the quantum systems are surprisingly well behaved.

Most of our analysis is based on the simple ratio method,
although we have checked that d-log Pade analysis gives
answers consistent with them. If the series has a simple
power-law variation, Q ∝ (x − xc)−λ, then the ratios satisfy

rn ≡ an

an−1
= 1

xc

(
1 + λ − 1

n

)
. (8)

Hence, in a plot of the ratio rn versus 1/n, the intercept gives
1/xc and the slope for 1/n → 0 gives (λ − 1)/xc. We do linear
and quadratic fits to our data to extract xc and the exponent.

Griffiths-McCoy singularities occur in a quantum disor-
dered system at low T in the region between the critical
point of the system and the critical point of the corresponding
pure system. In this range, there are regions of the sample
which are nondisordered and so are “locally in the ordered,
symmetry-broken state.” The very slow tunneling between
the symmetry-broken states leads to power-law singularities
[8,23–25] in the paramagnetic phase, coming from purely local
physics, namely, a distribution of local relaxation times which
extends up to very high values.

TABLE I. Estimates of points of singularity and exponents in
various dimensions and the SK model. Note that 1/xc ≡ (hT

c /J )2.
We anticipate that the singularity found for the equal time structure
factor S(0) is the critical singularity and so has exponent γ − 2zν. If
the QCP is of the infinite-randomness type, then z and γ are infinite
but the combination γ − 2zν is presumably finite. For χSG the critical
exponent is γ , but for low dimensions the susceptibility singularity is
clearly at a larger value of 1/xc than the critical singularity determined
from S(0), i.e., it is in the paramagnetic phase. Consequently, the
series is finding a GM singularity for χSG rather than the critical
singularity, so we denote the exponent by λ rather than γ . For the SK
model GM singularities do not occur, so λ = γ and the exact values
are γ = 1/2, γ − 2zν = −1/2 [11–13], with logarithmic corrections
for χSG as discussed in the text. The value of (hT

c /J )2 is estimated to
be 2.268 in Ref. [17] and 2.28 ± 0.03 in Ref. [18]. In d = 6 and 8,
GM singularities are very weak, and since the two values of xc are
almost the same, we expect that the series for χSG gives the critical
singularity in these cases too. For the SK model, and for d = 6 and
8, we show results for χSG both with and without the mean-field log
correction. No log correction is applied to S(0) so the results for this
quantity are the same in both rows. It is curious that the difference
between the exponents for χSG and S(0) is close to 1 for all models
studied.

χSG S(0)

Model 1/xc λ 1/xc γ − 2zν

SK 2.267 0.578 2.265 −0.509
SK (log) 2.268 0.486 2.265 −0.509
SK [11–13,17] 2.268 1/2 2.268 −1/2
SK [18] 2.28(3) 2.28(3)
8d (log) 32.92 0.475 32.77 −0.515
8d 32.83 0.606 32.77 −0.515
6d (log) 23.75 0.489 23.60 −0.513
6d 23.68 0.628 23.60 −0.513
4d 14.46 0.697 14.23 −0.441
3d 9.791 0.796 9.411 −0.300
2d 5.045 1.281 4.521 0.284
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FIG. 1. Ratio plots for (a) the SK model, (b) d = 8, and (c) d = 6. In all cases the differences in the intercept, i.e., the values of 1/xc,
between results for S(0) and results for χSG , is very small or 0, indicating that GM singularities are very small or nonexistent. Thus it is plausible
that the singularity exponent for χSG is the critical exponent γ for these figures. The fits are quadratic except for χSG for the SK model, where we
used a linear fit. The parameters of the fits are listed in Table I. In (a)–(c), the series for χSG had the mean-field log factor [11–13] incorporated.
Insets: Ratios for χSG series without the log factor. The greater curvature is apparent.

Since χSG is the divergent response function for this
problem, its critical exponent is defined to be [13] γ , i.e.,

χSG ∝ (xc − x)−γ . (9)

However, it is important to stress that, because of GM
singularities, the exponent determined in the series is usually
different from γ , and we generally call it λ (see Table I). The
equal-time structure factor S(0) does not have the two time
integrals present in χSG . Since the dynamic exponent is z and
the correlation exponent is ν, the critical behavior of S(0) is

S(0) ∝ (xc − x)−(γ−2zν). (10)

Because there are no time integrals in S(0) we expect that
GM singularities will not occur for this quantity, and any
classical-like Griffiths [4] singularities will be unobservably
weak [5]. If the QCP is of the infinite-randomness type, then
γ and z will be infinite, though presumably the combination
γ − 2zν will be finite since it describes the critical behavior
of the equal-time quantity S(0).

We now discuss our results. Figures 1 and 2 show the ratios
rn for each model. The reader should also refer to Table I for
values of the points of singularity and exponents.

We begin with the results for the SK model shown in
Fig. 1(a). The critical point obtained, 1/xc = 2.268, is in
excellent agreement with other studies [17,18]. The analytic
prediction [11–13] is γ = 1/2 with a log correction. To

account for the log, we divide the series by [−(1/t) log(1 −
t)]1/2, where t = x/xc. Ratios of the resulting series give
γ = 0.49, in excellent agreement with the exact result. Without
taking logarithms into account, the exponent γ is estimated
too high, at 0.58. Other predictions are [13] z = 2, ν = 1/4,
so γ − 2zν = −1/2 [the exponent for S(0)]. Our result for this
is −0.51, again in good agreement. The critical points for χSG

and S(0) agree with each other to a high precision, indicating
that there are no GM singularities in the SK mode, as expected.

Results of the ratio analysis of the series in d = 8 and d = 6
are shown in Figs. 1(b) and 1(c). Curiously the results for χSG

work better, in the sense that the ratio plot is closer to a straight
line, if one includes the same mean-field log correction as for
the SK model. Of course, even if there are log corrections there
is no a priori reason to assume that they have the same form as
in mean-field theory. Including this correction the exponent for
χSG is very close to the mean-field value of 1/2. The exponent
for S(0) (for which no log correction is performed) is also
close to the mean-field prediction of −1/2. There is very little
difference in the critical points for χSG and S(0), indicating that
GM singularities, if present, are very weak. It is surprising that
the same near-mean-field-like behavior is found in d = 6 as
well as d = 8 since d = 8 is the upper critical dimension for
this problem and no perturbative fixed point is found [13]
below d = 8. One might therefore expect a dramatic change
in critical behavior upon going below d = 8, but this is not
what we find.
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FIG. 2. Ratio plots for (a) d = 4, (b) d = 3, and (c) d = 2. In all cases there is a difference in the intercept, i.e., the value of 1/xc, between
results for S(0) and results for χSG , indicating that χSG diverges in the paramagnetic phase before the QCP is reached, i.e., the singularity in
χSG corresponds to GM singularities, not critical singularities. Note that the difference in xc values is very large in two dimensions but rapidly
decreases with increasing dimension. The fits are linear for d = 2 and quadratic for d = 3 and 4. Parameters of the fits are listed in Table I.
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FIG. 3. Location of the singularity for the mth moment of the
local susceptibility in d = 2, 3, and 4, plotted as a function of 1/m.
Here xp is the critical point of the pure system, and xSG is the
spin-glass critical point as determined from the equal-time structure
factor, so the y axis is scaled such that the pure-system critical
point corresponds to y = 0 and the spin-glass critical point to y = 1.
The spin-glass phase corresponds to y > 1, and the region of GM
singularities to 0 < y < 1.

In d = 4 [see Fig. 2(a)] there are clear deviations from
mean-field exponents and a clear, though small, difference
between the critical points for χSG and S(0), indicating the
presence of rather weak GM singularities. Comparing the
results for d = 4 with those for d = 3 and 2 in Figs. 2(b)
and 2(c), we see that the strength of GM singularities increases
considerably with decreasing dimension. The same conclusion
follows from comparing QMC results in d = 3 [24] with
those in d = 2 [25]. For the critical singularity of S(0) in
d = 3 we find an exponent γ − 2zν = −0.30, which is in
excellent agreement with the QMC calculations in Ref. [15],
where −0.3 is obtained, which we deduce from their results
z 
 1.3, 1/ν 
 1.3, η + z 
 1.1 [26] and the scaling relation
γ /ν = 2 − η. There is also good agreement in d = 2 between
our value of 0.28 for the exponent for S(0) and the QMC
value [14] of 0.2 ± 0.1, which we deduce from their value of
(γ − 2zν)/ν = 0.2 ± 0.1 in their Fig. 4 and ν = 1.0 ± 0.1.

We now study the GM singularities in more detail, focusing
on the local susceptibility χii . According to the standard
picture [8,23–25], GM singularities occur because χii is a
random quantity, with a broad distribution extending out to
very large values. Although we cannot compute the distribution
of χii directly we can get information on it indirectly by
computing the series for moments of it, up to high order.
The results are summarized in Fig. 3. The y axis is defined
such that the critical value of x for the spin-glass problem is at
y = 1 and the critical value for the pure ferromagnet (i.e., all
interactions equal to J ) is at y = 0.

Consider first the results in d = 2 shown in Fig. 3. We see
that the higher moments have a singularity farther and farther
away from the spin-glass critical point (which corresponds
to y = 1). For large values of the order of the moment m, the
14th-order series lies below the 10th order series. It is therefore

plausible that, for an infinitely long series, the singularity
approaches the pure-system critical point (i.e., y = 0) for
m → ∞.

Also shown in Fig. 3, by circles, are the locations of the
divergence of the spin-glass susceptibility. This quantity has
two time integrals and so we put these points at m = 2. In d =
2 the χSG singularities agree very well with the singularities in
the local χ , confirming that the singularity found in χSG is a
(local) GM singularity, not the critical singularity.

In d = 3, there seems to be a difference in Fig. 3 between
the local χ and the χSG results, but note the opposite trends in
the data between the 14-term and the 10-term series, so it is
plausible that the two quantities would be singular at the same
point in an infinitely long series.

In d = 4, the GM singularities are sufficiently weak that
the local χ does not show a singularity at the QCP or in the
paramagnetic phase, at least with a 10-term series. We expect
that the singularity would be at the same location as that of
χSG (which is just in the paramagnetic phase) for an infinitely
long series.

To conclude, we have shown systematically how the
strength of GM singularities diminishes rapidly as the di-
mension increases above 2, vanishing, as expected, for the
SK model. In two dimensions, where GM singularities are
strongest, our results make plausible the expectation that GM
singularities persist in the paramagnetic phase all the way
to the critical point of the pure system. We find that critical
behavior close to that of mean-field theory persists below
the upper critical dimension, du = 8 [13], down to d = 6,
which is surprising since the renormalization group finds no
perturbative fixed point below d = 8 [13]. Our results in two
and three dimensions agree very well with earlier work [14,15].

Since the series for χSG sees GM singularities rather than
critical singularities we cannot determine whether or not the
QCP is of the infinite-randomness type (for which γ and
z are infinite, though γ − 2zν is finite). Recent numerical
simulations in two dimensions [27] are argued to support
the infinite-randomness scenario, though it seems to us that
conventional critical behavior fits the data about as well.
As the dimension increases, the effects of GM singularities
become much weaker than in d = 2, so we conclude that if
the infinite-randomness scenario occurs at all for d > 2, it
must manifest itself only over a very small region around the
quantum critical point.
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