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We investigate the dynamics of a one-dimensional p-wave superconductor with next-nearest-neighbor hopping
and superconducting interaction derived from a three-spin interacting Ising model in transverse field by mapping
to Majorana fermions. The next-nearest-neighbor hopping term leads to a new topological phase containing
two zero-energy Majorana modes at each end of an open chain, compared to a nearest-neighbor p-wave
superconducting chain. We study the Majorana survival probability (MSP) of a particular Majorana edge state
when the initial Hamiltonian (Hi) is changed to the quantum critical as well as off-critical final Hamiltonian (Hf ),
which additionally contains an impurity term (Himp) that breaks the time-reversal invariance. For the off-critical
quenching inside the new topological phase with Hf = Hi + Himp, and small impurity strength (λd ), we observe
a perfect oscillation of the MSP as a function of time with a single frequency (determined by the impurity
strength λd ) that can be analyzed from an equivalent two-level problem. On the other hand, the MSP shows a
beating like structure with time for quenching to the phase boundary separating the topological phase (with two
edge Majoranas at each edge) and the nontopological phase where the additional frequency is given by inverse
of the system size. We attribute this behavior of the MSP to the modification of the energy levels of the final
Hamiltonian due to the application of the impurity term.
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I. INTRODUCTION

In the rapidly growing field of research in topological
quantum computation, quantum information processing, and
decoherence, Majorana fermions, introduced [1] in the context
of the existence of a real solution of the Dirac equation, play
a key role [2–5]. The theoretical prediction of the existence of
zero-energy Majorana edge modes in an open chain has paved
the way for understanding of various topological characters
for a system such as a one-dimensional spinless p-wave
superconductor [6–14]. An interesting proposal has been made
for achieving the Majorana states by the proximity effect
between the surface state of a strong topological insulator
and an s-wave superconductor [15]. A topological phase is
characterized by a topological invariant number, for example,
the number of zero-energy Majorana edge modes in the case
of a p-wave superconducting chain. This number does not
change unless the system goes from one topological phase
to the other separated by a quantum critical line, as also
happens in topological insulators [16,17]. The zero-energy
Majorana modes have recently been found experimentally in
nanowires coupled to superconductors [18–22]; although there
exists some theoretical contradictions with the experimental
observation [23]. An experimental realization of the hybridiza-
tion of Majorana fermions has also been observed through the
zero-bias anomalies in the differential conductance of an InAs
nanowire coupled to a superconductor [24].

On the other hand, given the recent interest in the nonequi-
librium quenching dynamics of quantum many-body systems
across quantum critical points (QCPs), the investigations
of different topological systems in out-of-equilibrium have
become a prime research field [25–37]. In this connection, the
dynamics of an edge state has been extensively investigated

in one- [38] and two-dimensional [39] topological systems.
Recently, the dynamics of the Majorana edge state also
has been studied following a sequence of quenches in a
one-dimensional system [40]. It is noteworthy to mention that
the dynamical generation [12], formation, and manipulation
[41] of Majorana edge states for a driven system have
also been studied extensively. Additionally, the theoretical
prediction of an adiabatic transport of an edge Majorana
through an extended gapless region has been made in a p-wave
superconducting chain with complex hopping term [42].

We consider here a generalized one-dimensional Ising
model in a transverse field with a three-spin interaction term
[43], which can be written in term of fermionic operators
using the Jordan-Wigner transformation. This longer-range
interacting model has a richer phase diagram containing
an extra topological phase with two zero-energy Majorana
edge modes [44] as compared to the one-dimensional p-
wave superconductor, which is a fermionized version of the
transverse field XY model [12]. If we break the time-reversal
symmetry of the above Hamiltonian by adding an impurity
term, the Majorana modes at one end of the chain vanish in
the topological phase with two Majorana modes depending
on the nature of the impurity term [44]. Our main aim here
is to investigate the fate of a Majorana edge state under time
evolution governed by the Hamiltonian with an impurity that
destroys the edge state in equilibrium.

In particular, we investigate the Majorana survival prob-
ability (MSP) as a function of time following both critical
and off-critical quenches in the presence of an impurity
term in the final Hamiltonian. We show that this impurity
term modifies the energy levels of the final Hamiltonian and
consequently an extra time scale appears in the system, which
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is reflected in the behavior of the MSP. Most interestingly,
for weak impurity strength, we find that the MSP exhibits
perfect temporal oscillation with a single frequency following
an off-critical quench inside the topological phase carrying
two edge Majoranas; the oscillation frequency is determined
by the inverse of impurity strength. In this connection, we note
that recently the single frequency oscillation in entanglement
spectrum also has been found for a two-impurity Kondo model
by suddenly changing the RKKY interaction strength [45]. On
the other hand, MSP shows a beating like structure when the
system is quenched up to a QCP (i.e., the phase boundary);
the other energy scale at the QCP is the inverse of the system
size. Our work suggests that there could be a nearly perfect
oscillation in the MSP even for the off-critical quenching. The
above-mentioned behaviors of the MSP are destroyed when
impurity strength is appreciably large.

This paper is organized as follows. In Sec. II we introduce
the three-spin interacting transverse field Ising model and
discuss its phase diagram. We also mention the effect of an
impurity term on the different phases of the model. In Sec. III,
we define the quantity MSP, which has been calculated for
different sudden quenches. In the subsequent sections, we
illustrate our results of the MSP under an application of the
impurity term for critical as well as off-critical quenches.
Finally, we provide our concluding remarks in Sec. IV.

II. MODEL

The Hamiltonian of a three-spin interacting transverse Ising
model with N spins is given by [43]

H = −
∑

n

(
hσ z

n + λ1σ
x
n σ x

n+1 + λ2σ
x
n−1σ

z
nσ x

n+1

)
, (1)

where h, λ1 and λ2 are transverse magnetic field, cooperative
interaction, and three-spin interaction, respectively. σα (α =
x,y,z) are the standard Pauli matrices. This model can be
exactly solved by Jordan-Wigner (JW) transformation [46]
by mapping the spins into the spinless fermions. The JW
transformation is defined as

σ−
n =

n−1∏
j=1

( − σ z
j

)
cn,

(2)
σ z

n = 2c†ncn − 1,

where σ±
n = (σx

n ± iσ
y
n )/2, and c

†
n, cn are the fermionic

creation and annihilation operators, respectively. In terms of
the JW fermions, the Hamiltonian in Eq. (1) is given by

H = −
N∑

n=1

[h(2c†ncn − 1) − λ1(c†ncn+1 + c†nc
†
n+1 + H.c.)

− λ2(c†n+1c
†
n−1 − c

†
n−1cn+1 + H.c.)]. (3)

The three-spin interacting term in the Hamiltonian (1) gives
rise to the next-nearest-neighbor hopping and superconducting
gap terms in addition to the nearest-neighbor hopping and
the superconducting gap terms. The Hamiltonian (3) reduces
to a direct sum of 2 × 2 decoupled Hamiltonian Hk in
momentum space under the periodic boundary condition. In
the momentum space representation the Hamiltonian (3) is
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FIG. 1. Phase diagram of the model with Hamiltonian in Eq. (1)
for h = 1. The phase boundary λ2 = 1 + λ1 separates upper topo-
logical phase (with two zero energy Majorana edge states at each
end) from one Majorana (n = 1) topological phase. The other two
phase boundaries are λ2 = 1 − λ1 (a-e-d line) and λ2 = −1 (b-d
line). The paramagnetic region corresponds to a nontopological phase
with n = 0 Majorana modes. Both the topological phases with n = 2
Majorana modes, i.e., lower and upper, are characterized by the
presence of a1 and a2 isolated modes at the left end and bN−1, bN at
the right end of the chain.

given by

H =
∑
k>0

(c†kc−k) Hk

(
ck

c
†
−k

)
, with

Hk = (h + λ1 cos k−λ2 cos 2k)σ z+(λ1 sin k−λ2 sin 2k)σx,

(4)

where ck = (1/
√

N )
∑

n e−ikncn. The Hamiltonian in Eq. (4)
is diagonalized by a Bogoliubov transformation to obtain the
energy spectrum of the system, given by

εk = ±2
√

h2 + λ2
1 + λ2

2 + 2λ1(h − λ2) cos k − 2hλ2 cos 2k.

(5)

The Hamiltonian in Eq. (1) reduces to the transverse Ising
model when λ2 = 0; this model has a quantum phase transition
at λ1 = h between a ferromagnetic and a paramagnetic phase
where the energy gap vanishes for the critical modes kc = π .
We set h = 1 throughout the paper. In order to investigate the
phase diagram, as shown in Fig. 1, of the Hamiltonian (1) one
has to analyze the energy spectrum in Eq. (5) as a function
of λ1 and λ2. It can be verified that the low-energy excitation
gap of the system vanishes on the quantum critical lines λ2 =
1 + λ1 and λ2 = 1 − λ1 for the critical modes k = 0 and π ,
respectively. There is an another critical line λ2 = −1, where
the energy gap vanishes for k = cos−1(−λ1/2) implying that
this transition can not occur for λ1 > 2. The critical line λ2 =
1 + λ1 corresponds to the phase boundary between the three-
spin-dominated and ferromagnetic phases. On the other hand,
the critical line λ2 = 1 − λ1 separates the ferromagnetically
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ordered phase from the paramagnetic phase when λ2 > −1
and three-spin-dominated phase for λ2 < −1.

In order to explore the topological properties of the model,
we represent a Jordan-Wigner fermion cn in terms of the two
Majorana fermions an and bn, where

an = c†n + cn,bn = −i(c†n − cn). (6)

These Majorana fermions are real and satisfy the following
relations {am,an} = {bm,bn} = 2δmn and {am,bn} = 0. Using
the Majorana operators, the Hamiltonian in Eq. (3) with open
boundary condition (OBC) can be rewritten as

H = −i

[
−h

N∑
n=1

bnan + λ1

N−1∑
n=1

bnan+1 + λ2

N−1∑
n=2

bn−1an+1

]
.

(7)

The three-spin interaction in Eq. (1) corresponds to a next-
nearest-neighbor coupling in Majorana fermion operators that
leads to an extra topological phase with two Majorana zero
modes at each end of an open chain (see Fig. 1). It can be easily
shown using a special condition h = λ1 = 0 in Hamiltonian (7)
that the upper and lower three-spin-dominated phases support
two zero-energy Majorana edge modes at each end of the
open chain: a1 and a2 exist at the left boundary, while, bN

and bN−1 are at the right boundary. On the other hand, in the
ferromagnetic region the open chain consists one Majorana
edge mode at each end, i.e., a1 at the left boundary and bN

at the right boundary. The paramagnetic region does not have
any topological property, hence no edge Majorana survives in
the open chain.

Let us now introduce some special terms in the Hamiltonian
given in Eq. (7) that break the time-reversal symmetry (TRS)
of the system. The total Hamiltonian containing such terms is
given by

HT = −i
∑
m

∑
j

[Kmajaj+m + Lmbjbj+m] + H, (8)

where Km and Lm are the real parameters. m denotes the range
of interaction. We note that these special terms can destroy
multiple number of a and b Majorana edge modes depending
on the nonzero values of Km and Lm, respectively. We here
assume a simplified situation Lm = 0, ∀ m, and Km = λd for
a single value of m, otherwise zero. Hence, the Eq. (8) reduces
to the form

HT = Himp + H, where

Himp = −iλdajaq,q = j + m. (9)

Using JW transformation Himp can be expressed in terms of
spin operators

Himp = λd

j+m−1∏
n=j+1

( − σ z
n

)
σ

y

j σ x
j+m.

For m = 1, it reduces to Himp = λdσ
y

j σ x
j+1, which represents

the interaction between y and x components of two nearest-
neighbor spins respectively. On the other hand, for larger m, it
becomes nonlocal in terms of the spin operators. Nevertheless,
in the Majorana language we can say it is quasilocal [see
Eq. (9)].

In the subsequent sections, we shall refer total Hamiltonian
HT as H . It has been found that the phases with two Majorana
zero modes are affected by the impurity Hamiltonian, whereas
the phase with one Majorana mode remains intact. Here, the
impurity term is applied in the left end of the open chain, hence
the Majorana modes at the left end (i.e., a type) vanishes but
the b Majorana modes at the right end remain intact. On the
other hand, if we apply the impurity in the bulk the coupling
of a1 and a2 Majorana modes becomes very weak and they do
not move away from zero energy.

III. QUENCH DYNAMICS OF THE CHAIN AND RESULTS

Here, we will study the survival probability of an edge
Majorana [38] when the different terms of the Hamiltonian
(7) are quenched from one phase to the other or to the
QCP separating two phases as shown in Fig. 1. To study
the dynamics of the zero-energy edge Majorana mode after
a sudden quench, we now define the Majorana survival
probability (MSP) Pm(t), as

Pm(t) =
∣∣∣∣∣

2N∑
n=1

|〈ψm(λ1,λ2)|	n(λ′
1,λ

′
2)〉|2e−iEnt

∣∣∣∣∣
2

, (10)

where |ψm(λ1,λ2)〉 is an initial edge Majorana state for the
parameters λ1 and λ2, and |	n(λ′

1,λ
′
2)〉 are the eigenstates

of the final Hamiltonian with new parameters λ′
1, λ′

2 while
En’s are the eigenvalues of the final Hamiltonian. We study
the dynamics of a zero-energy edge state when the final
Hamiltonian is either noncritical or critical. As mentioned
already we have kept the transverse field h = 1 for all the
quenching processes.

A. Noncritical quenching: MSP

We first discuss the effect of the impurity term [see Eq. (9)]
on the MSP (10) for the case of off-critical quenching. We here
investigate the MSP after a quenching inside a phase or across
a phase boundary while the impurity term is added only to the
final Hamiltonian.

Let us begin with a situation when the system is quenched
within the upper topological phase (n = 2) by adding an im-
purity term. For this quenching process the final Hamiltonian
Hf is simply given by initial Hamiltonian Hi with the extra
impurity term: Hf = Hi + Himp. As discussed in Sec. II, the
addition of such a term in Eq. (7) destroys the left end Majorana
modes (a1 and a2) of an open chain. We are now interested
to study the MSP in Eq. (10) associated with a1 Majorana
mode following the above-mentioned quench with q = 2. As
shown in Fig. 2(a), the MSP for a1 edge Majorana shows
perfect oscillations as a function of time t for smaller values
of λd , whereas, the damped oscillations are observed in the
case of larger values of λd . A close observation suggests that
for small λd , the time period of collapse and revival in the
MSP is inversely proportional to λd . Although, the Majorana
zero mode a1 is not present at the final Hamiltonian, it comes
back periodically at the left end of the chain with time as an
outcome of the sudden quenching.

We consider the overlap function αn =
|〈ψm(λ1,λ2)|	n(λ′

1,λ
′
2,λd )〉| of Eq. (10) to analyze this
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FIG. 2. (a) The MSP of an initial zero-energy edge Majorana (a1)
shows perfect oscillation with time for smaller values of λd , whereas
it decays nearly equal to zero value and does not revive significantly
for higher values of λd . The rate of decay increases as the value of
λd is increased. In this case, the initial Hamiltonian is considered
to be in the n = 2 phase with λ1 = 0.2 and λ2 = 2.0, and the final
Hamiltonian has an additional impurity term Himp = λda1a2 over the
initial Hamiltonian. (b) indicates that the energy corresponding a1

edge Majorana increases linearly with λd followed by a saturation as
λd becomes large. (c) shows the behavior of MSP for a1 with λd =
0.2 for different interaction range of impurity term Himp = λda1aq

where q can take even or odd values. (d) indicates that the energy
corresponding the a1 Majorana decays exponentially with q. On the
other hand, inset shows that the prefactor of the exponential fall is
different for even and odd q. Here, N = 200.

off-critical oscillation of the MSP. We find that the overlap
(αn) of an initial Majorana edge state with the nth eigenstate
of the final Hamiltonian for small λd becomes nonzero for
only two values of n, i.e., the states that deviate from zero
energies due to the application of the impurity term. Hence it
is clear that the impurity term of smaller strength affects only
two zero-energy states corresponding to a1 and a2 Majorana
modes and the other eigenstates remain unchanged, which are
indeed orthogonal to the initial edge Majorana resulting in
zero overlaps.

To analyze the off-critical oscillation quantitatively, we
would like to employ the degenerate perturbation theory. Let
us consider the final Hamiltonian, Hf = Hi + Himp, where
Himp can be treated as the perturbation. Then the first-order
correction to the zero energy of two Majorana edge states be-
comes E± = 1/2(W11 + W22 ±

√
(W11 − W22)2 + 4|W12|2),

with W11 = 〈ψ1|Himp|ψ1〉, W22 = 〈ψ2|Himp|ψ2〉 and W12 =
〈ψ1|Himp|ψ2〉; |ψ1/2〉 are two wave functions of the a-type
Majorana modes at the left end of the chain that are destroyed
due to the application of Himp. In Majorana basis, the wave
functions of a-type Majorana edge modes are given by ψT

n =
(cn1,0,cn2,0,cn3, . . .), where n = 1,2 and cni ∈ R. Since these
Majorana modes are localized at the end of the chain, the value
of |cni |2 falls exponentially as i is increased. Now, writing Himp

as given in Eq. (9) in real space matrix form, it is easy to show
that W11 = W22 = 0 and, only W12 becomes nonzero, which

provides E± = ±λd

√
c2

2,qc
2
1,j + c2

1,qc
2
2,j . Therefore, due to the

application of this small perturbation, the Majorana modes
at each end mix with each other and move away from zero
energy in pair [11]. One can also note that if we apply the
impurity term deep inside the bulk, the edge states do not move
away from zero energy, since |cni |2 decreases with increasing
i. On the other hand, if the number of Majorana modes at
each end is odd, one mode always remains at zero energy.
In the present situation of off-critical quench, the initial edge
Majorana interacts with these two nondegenerate states only
and oscillates between them that reduces it to effectively a
two-level problem.

The time period (To) of this collapse and revival is
determined by the energy difference 
E between these two
low-energy levels (E±), given by

T0 = 2π


E
∝ 1

λd

. (11)

One can find that the energies associated with these two levels
increase linearly with λd up to a certain value and then there is a
saturation in energy [see Fig. 2(b)] for larger values of λd . This
suggests that the time period To of collapse and revival in the
MSP is inversely proportional to λd as observed in Fig. 2(a).
The above observations lead to a conclusion that when an
impurity term is suddenly added in the system the initial
Majorana oscillates between two Majorana sites a1 and a2

with a time period being inversely proportional to the strength
of the impurity. This is an interesting observation that even
for the off-critical quench the MSP shows a perfect oscillation
consisting of collapse and revival as a function of time. On the
other hand, for higher values of λd the MSP exhibits a damped
oscillation indicating that the initial Majorana decoheres with
time [see Fig. 2(a)]. In these cases, we find that the overlap αn

becomes nonzero even for bulk energy levels. As one increases
λd , the initial edge Majorana couples with the more number of
interior bulk levels and hence the temporal decay in the MSP
is faster with increasing λd .

At the same time, we numerically calculate the MSP using
the above quenching protocol to study the effect of quasilocal
impurity, i.e., when q > 2 in Eq. (9). In Fig. 2(c), the MSP
shows perfect collapse and revival for different values of q

with λd = 0.2. We find that the logarithm of the time period of
these oscillations is proportional to q [see Eq. (9)]; To ∝ eβq

where the factor β is different for odd and even q. This form of
time period can be explained by analyzing two energy levels
(with nonvanishing αn) close to zero as shown in the inset
of Fig. 2(d). This plot shows that the energy levels decrease
exponentially as a function of q with two different values of β

for odd and even q; these are in good agreement with that of
the obtained from To.

Let us now focus on the quenching from upper n = 2
phase to n = 1 phase and study the MSP for different values
of impurity strength applied to the final Hamiltonian [see
Figs. 3(a), 3(b)]. We numerically investigate the dynamics of
both a1 and a2 Majorana modes initially existed in the upper
n = 2 phase. In this quenching process the MSP for a1, shown
in Fig. 3(a), does not decay rather fluctuates haphazardly with
a mean value close to unity. This is due to the fact that a1

Majorana mode in the n = 1 phase remains unaffected in the
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FIG. 3. The MSP as a function of time when the system is
quenched from upper n = 2 phase (λ1 = 1.8, λ2 = 3.0) to n = 1
phase (λ1 = 2.2, λ2 = 3.0) or vice versa. (a) The MSP of a1 Majorana
mode decays initially and then becomes rapidly oscillating function of
time with different mean values depending upon the values of λd . (b)
On the other hand, the MSP of a2 Majorana mode decays rapidly and
does not revive significantly for this quenching scheme. (c) shows the
MSP of a1 mode as a function of time t for smaller value of λd when
the sudden quenching is carried out in the reverse path, i.e., from
n = 1 phase to n = 2 phase. We consider N = 200 for the above
three cases. (d) This plot indicates that the time period of the collapse
and revival of the MSP here is independent of system size confirming
the off-criticality of the associated dynamics. Here, λd = 0.2. For all
the cases we consider λda1a2 as the impurity Hamiltonian.

presence of the impurity term. A pair of Majorana modes (a1

and bN ) exists at two ends of the chain even on the critical line
λ2 = 1 + λ1 separating upper n = 2 and n = 1 topological
phases, which continues to the n = 1 phase also. Therefore, in
the true sense λ2 = 1 + λ1 is not a phase boundary for the a1

edge Majorana mode. It is noteworthy that the mean value of
the MSP decreases as one increases λd in the final Hamiltonian.
On the other hand, the MSP for a2 mode decays rapidly to
zero and remains at zero with some irregular oscillations for
the above quenching process [see Fig. 3(b)], since the n = 1
phase does not have a2 Majorana edge mode. The different
curves of the MSP for various values of λd fall on top of each
other, thus confirming that the n = 1 phase remains unaffected
by the application of λd .

We now perform a rapid quench following the inverse path
as compared to previous one, i.e., the initial Hamiltonian is
in phase n = 1 while the final Hamiltonian is in phase n = 2
with an impurity term Himp = λda1a2. As shown in Fig. 3(c),
the MSP for a1 mode with λd = 0 remains unity as a function
of time. This is due to the fact that a1 Majorana mode exists in
the phase n = 2 when the impurity term is not applied there. In
contrast, we find that the MSP shows collapse and revival with
time having time period To ∝ λ−1

d when an impurity term of
smaller strength is applied in the final Hamiltonian. This also
can be explained with the same lines of arguments as given for
Fig. 2(a). Similar to the case of off-critical quenching inside the
same phase, here also the MSP displays damped oscillations
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FIG. 4. Variation of the MSP of a zero-energy Majorana mode
(a1) as a function of time when the Hamiltonian is quenched from
lower n = 2 phase (λ1 = 1.0, λ2 = −1.1) to the QCP (λ1 = 1.0,
λ2 = −1.0) lying on b-d line. (a) Beating pattern in the MSP as a
function of time when the impurity term of small magnitude is applied
along with the final Hamiltonian. It can be observed that the time
period of the envelope of the beating structure varies as Tr2 ∝ 1/λd .
(b) On the other hand, for larger values of λd one can not find any
beating pattern in the MSP. Here, N = 100 for the above two plots.
(c) depicts that the interior frequency of oscillation in the beating
pattern is linearly dependent on N . Here, λd = 0.1. (d) Variation of
the energy difference between two consecutive energy levels of low
lying states as a function of λd . For all the above cases we consider
λda1a2 as the impurity term.

when λd becomes large. The signature of off-criticality of the
dynamics is depicted in Fig. 3(d) showing that collapse and
revival nature of MSP is independent of N .

B. Critical quenching: MSP

In this section, we study the MSP when the system is
suddenly quenched up to a critical point with an additional
impurity term Himp in the final Hamiltonian. We will restrict
our focus only on the Majorana mode, which is destroyed by
the application of λd in phase n = 2, i.e., a1 and a2 modes that
give interesting results.

Let us first investigate the time evolution of the Majorana
modes a1 and a2 under the sudden quenching from n = 2
phase to (n = 2)-(n = 0) phase boundary designated by bcd

line of the phase diagram (see Fig. 1). As shown in Figs. 4(a),
4(c) MSP exhibits a beating like structure as a function of
time for the critical quench with a small impurity term in
the final Hamiltonian. This implies that the system has two
different energy scales or frequencies in such situation. A
close observation of Figs. 4(a), 4(c) suggests that these two
frequencies are related to the system size N and impurity
strength λd . At the critical point, the energy levels close to
zero energy are inversely proportional to the system size, i.e.,
E ∝ N−1. On the other hand, similar to the case of off-critical
quench, here also the application of λd gives rise to another
energy scale in the system.
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We will now analyze the beating phenomena of the MSP
in detail. We have found that there are two types of energy
differences between two consecutive low-lying energy levels
of the critical Hamiltonian: one is marked by δEL whose
value is larger than the other one (δES). We find that
the smaller energy difference δES ∝ λd for a fixed N and
δES ∝ N−1 for a fixed λd . On the other hand, δEL is very
weakly dependent on λd and rather strongly proportional
to N−1 with changing N . For small λd , these two energy
differences remain almost constant over a few low-energy
levels for which the overlap function αn becomes nonzero.
As a result, the nonzero contribution in the summation of
Eq. (10) arises due to the overlap of the Majorana edge
mode with a few low-energy bulk states, which have two
types of equispaced energy levels (with the corresponding
consecutive energy differences δEL and δES) alternatively.
These two constant energy differences is the key factor to
provide two frequencies in the nonequilibrium dynamics of
the system. As mentioned already, the relatively shorter time
period of the interior oscillations in the MSP is governed by the
larger energy difference δEL: Tr1 ∼ 2π/δEL ∝ N , whereas,
the larger time period of the envelope is Tr2 ∼ 2π/δES ∝ λ−1

d

or N . Therefore, we can conclude that only N controls the
interior frequency and the envelope frequency of the MSP is
dependent on both N and λd . For the case of λd → 0, the
value of δES is very small and we find δEL/δES ∼ O(102)
leading to Tr2/Tr1 ∼ O(102). We find that the time period of
the envelope associated with the beating structure for λd → 0
is very large compared to the interior oscillation.

One can intuitively understand the oscillation in the MSP
that depends on N for the critical quenching. Considering
the periodic boundary condition without the impurity term,
the Loschmidt echo in momentum representation can be
represented as L(t) = ∏

k>0 [1 − Bk sin2(Ekt)], where Bk is
a very slowly varying positive function of the momentum k

[38,47]. Now as long as the dispersion Ek is linearly dependent
on k near the critical mode, the revival time tk = 1

2pN |∂Ek/∂k|
for each k becomes independent of k, with p being an integer.
The MSP is indeed the Loschmidt echo with the initial ground
state replaced by the initial zero-energy edge Majorana state
[38]; therefore, MSP follows the similar kind of behavior in
the critical quenching. Hence, in addition to the λd energy
scale, which also appeared in the off-critical quench, here the
N -dependent energy scale comes into play in the dynamics
resulting in the beating structure in the MSP.

On the other hand, for larger values of λd , the overlap
αn remains nonzero for a higher number of low-energy bulk
modes as compared to the case of small λd . Also, δES and
δEL do not remain constant (rather become irregular) for all
these bulk energy states for which the overlap αn is nonzero.
As a result, we do not get any prominent beating like pattern
in the time evolution of the MSP [see Fig. 4(b)]. We have
also shown that the energy difference (δE) between two
consecutive low-lying energy levels varies linearly for small
values of λd , whereas it becomes nonlinear for higher λd [see
Fig. 4(d)]. Although, in Fig. 4(d), we have shown only one
consecutive energy difference, the nature of the plot remains
almost same for other few low-lying energy levels.

Our next aim is to investigate the behavior of MSP under
the quenching from n = 2 phase to (n = 2)-(n = 1) phase

 0

 0.3

 0.6

 0.9

 0  2  4  6  8

Pm(t)

t
×103

λd=0.1
λd=0.2
λd=1.2

FIG. 5. Pm(t) for a1 Majorana mode as a function of time t for
the quenching from upper n = 2 phase (λ1 = 0.2, λ2 = 2) to (n =
2)-(n = 1) phase boundary (λ1 = 1 and λ2 = 2) for different values
of λd with impurity term Himp = λda1a2 in the final Hamiltonian. In
this case the MSP does not exhibit any beating pattern and also the
revival structure destroys with increasing value of λd .

boundary. As shown in Fig. 5, for this case the MSP of the a1

zero-energy Majorana mode does not show a beating pattern
even for the smaller values of λd . There exists mainly one
type of consecutive energy difference, i.e., δE ∼ δEL ∼ δES .
We observe that δE ∼ N (for fixed λd ) though it becomes
nearly independent on λd except for the level nearest to the
zero energy. Hence the interference effect results in a collapse
and revival type of behavior rather than a beating pattern; the
time period of the revival is linearly proportional to N . We also
observe that the revival structure of the MSP destroys for larger
values of λd . With increasing value of λd , the δE changes more
rapidly even for the low-energy levels. As a result, the terms
of the summation in Eq. (10) interfere destructively and the
revival structure of the MSP destroys with increasing λd .

We also investigate the MSP following the quenching to
the (n = 0)-(n = 1) phase boundary (aed line of the phase
diagram as shown in Fig. 1) starting from n = 1 phase. Here,
we do not observe any beating like structure in the MSP as the
impurity can not give rise to another new energy scale other
than the regular energy scale determined by N . As shown
in Fig. 6, we find that the MSP displays a perfect collapse
and revival with the revival time period Tr ∝ N . It also has
been observed that the MSP curves for different impurity
strengths overlap with each other suggesting the fact that
the energy levels of the system on the (n = 1)-(n = 0) phase
boundary remain unaffected by λd . In this situation, the system
contains only one energy difference δE ∼ δEL ∼ δES , which
is inversely proportional to N and independent of λd .

We can now make a comment after a rigorous inspection
of all the critical quenching cases that the beating like nature
is an outcome of the existence of two types of consecutive
energy difference in the low-lying levels namely, δES and
δEL. The frequencies of the envelope and interior oscillations
are dependent on the behavior that how δES and δEL vary
with N and λd . On the other hand, the regular collapse and
revival of MSP is observed when there exists only one type
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FIG. 6. Time evolution of the MSP of a zero-energy Majorana
mode (a1) becomes independent of the impurity strength λd when the
Hamiltonian is quenched from n = 1 phase (λ1 = 1.0, λ2 = 0.2) to
the QCP (λ1 = 1.0, λ2 = 0.0) lying on the a-d phase boundary. Here,
N = 200.

of energy difference δE between consecutive levels; δE is
inversely proportional to N and nearly independent of λd .

IV. CONCLUSIONS

In summary, we consider a next-nearest-neighbor inter-
acting p-wave superconductor derived from a three-spin
interacting Ising model in presence of a transverse field; we
investigate the effect of an impurity term in the evolution of

the MSP following different sudden quenches. It already has
been shown that the impurity term that we have considered
changes the topological nature of the topologically nontrivial
phase with two zero-energy Majorana modes [44]. We have
found perfect oscillation of the MSP as a function of time when
an impurity term of small magnitude is applied in the system
residing in a topological phase with two Majorana modes at
each end. We attribute this phenomena of perfect oscillation of
Majorana, even though the final system remains at a off-critical
point, to the coupling of the initial Majorana state with only
two energy levels close to zero energy of the final Hamiltonian.
As a result, this eventually reduces to the two-level problem.

Additionally, we find that there exists two types of bulk
energy difference of two consecutive equispaced low-energy
states on the (n = 0)-(n − 2) phase boundary. This leads to
a nice beating like structure in the MSP when the system
is quenched from the two edge Majorana phase to the (n =
0)-(n = 2) phase boundary. The underlying two frequencies
that generate the beating structure are connected with the
impurity strength and the system size. The beating pattern be-
comes irregular when the strength of the impurity is increased
appreciably since the Majorana state then starts mixing with
higher-energy bulk states, which are not equispaced.
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