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The effect of imposing a constraint on a fluctuating scalar order parameter field in a system of finite volume
is studied within statistical field theory. The canonical ensemble, corresponding to a fixed total integrated order
parameter (e.g., the total number of particles), is obtained as a special case of the theory. A perturbative expansion
is developed which allows one to systematically determine the constraint-induced finite-volume corrections to the
free energy and to correlation functions. In particular, we focus on the Landau-Ginzburg model in a film geometry
(i.e., in a rectangular parallelepiped with a small aspect ratio) with periodic, Dirichlet, or Neumann boundary
conditions in the transverse direction and periodic boundary conditions in the remaining, lateral directions. Within
the expansion in terms of ε = 4 − d , where d is the spatial dimension of the bulk, the finite-size contribution to
the free energy of the confined system and the associated critical Casimir force are calculated to leading order
in ε and are compared to the corresponding expressions for an unconstrained (grand canonical) system. The
constraint restricts the fluctuations within the system and it accordingly modifies the residual finite-size free
energy. The resulting critical Casimir force is shown to depend on whether it is defined by assuming a fixed
transverse area or a fixed total volume. In the former case, the constraint is typically found to significantly enhance
the attractive character of the force as compared to the grand canonical case. In contrast to the grand canonical
Casimir force, which, for supercritical temperatures, vanishes in the limit of thick films, in the canonical case
with fixed transverse area the critical Casimir force attains for thick films a negative value for all boundary
conditions studied here. Typically, the dependence of the critical Casimir force both on the temperaturelike and
on the fieldlike scaling variables is different in the two ensembles.
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I. INTRODUCTION

In general, statistical ensembles of systems of finite size
are not equivalent [1–3]. The primary reason is that imposing
a constraint on an extensive thermodynamic variable restricts
the fluctuation spectrum of that quantity. For instance, for a
fluid the total number of particles is fixed in the canonical
ensemble, whereas it fluctuates in the grand canonical one.
While liquids are typically studied in the grand canonical
ensemble [4], there are a number of cases in which the
difference between the canonical and the grand canonical
ensemble becomes significant: most notably, these are systems
composed of relatively few particles, such as fluids confined to
nanoscale pores or capillaries [5,6]. This issue has prompted
the development of canonical density functional methods [7–
10] which explicitly take fluctuation corrections into account.
Recently, static and dynamic critical phenomena have been
investigated also within molecular dynamics [11–17] or lattice
Boltzmann simulations [18,19]. These simulation methods
typically operate in the canonical ensemble and require
finite-size corrections in order to extract physical properties
of bulk systems [3,20–22]. Ensemble differences have also
been studied extensively in the context of Bose-Einstein
condensation (see, e.g., Refs. [23–25]).

In this study, we consider statistical field theory for an
order parameter (OP) field φ(r), which represents, for instance,
the deviation of the density of a one-component fluid from
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its critical value or the deviation of the local concentration
from the critical composition of a binary liquid mixture. For
simplicity, henceforth we adopt the notation pertaining to a
one-component fluid. While the field theory discussed here is
rather general, explicit results for the residual finite-size free
energy and the critical Casimir force (CCF) are obtained for
the so-called φ4-Landau-Ginzburg model in a film geometry.
We use the notion film for a finite system of volume V with
an aspect ratio smaller than unity, while the thin-film limit
refers to the limit of a vanishing aspect ratio. The volume
integral

� =
∫

V

ddr φ(r) (1)

represents the “total mass” in the system, which can fluctuate
in the grand canonical ensemble but is fixed to a certain value
in the canonical ensemble. This constraint is mirrored by the
fluctuations within the system and, as shown here, it turns out
to typically enhance the attractive character of the CCF. For a
general introduction to the topic of CCFs, we refer to Refs. [26–
28]. There are relatively few theoretical studies which focus
on the effect of an OP constraint on critical phenomena under
confinement [29–35]. Constraining a nonordering degree of
freedom which is coupled to the OP gives rise to the so-called
Fisher renormalization of critical exponents and amplitudes
[36–42]. A discussion of ensemble differences for critical fluid
films within mean-field theory (MFT) is presented in Ref. [43]
for so-called (++) and (+−) boundary conditions, where ±
denotes surface fields of strength h1 = ±∞, which express the
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preference of the confining walls for one or the other coexisting
liquid phase.

In this study, we investigate the effect of the OP constraint
on the OP fluctuations, focusing on systems of finite volume
with periodic, Dirichlet, or Neumann boundary conditions.
Within the framework of boundary critical phenomena, the
latter two realize the so-called ordinary and special surface
universality class, respectively [44]. In the case of Dirichlet
boundary conditions, we focus on the case of zero total mass
� = 0 [Eq. (1)], while, for periodic and Neumann boundary
conditions, we consider also nonzero values of �. In Ref. [43],
it has been shown that an OP constraint can induce drastic
qualitative changes in the CCF, affecting, inter alia, its sign
and its decay behavior upon increasing the film thickness or
the associated scaling variables. These changes occur already
within MFT, i.e., in the absence of fluctuations. Here, it is
useful to recall that, within MFT and under the same thermo-
dynamic conditions [43], the film pressures are identical in
both ensembles. Accordingly, in this situation, the differences
in the CCF are due to the differences in the bulk pressures. In
turn, they arise because in the two ensembles film and bulk
are coupled differently: in the grand canonical ensemble, film
and bulk experience the same chemical potential, whereas, in
the canonical ensemble, it is natural to require that film and
bulk have the same density. As it will be shown in this study,
fluctuations induce a further change of the CCF in addition to
this mean-field effect since the OP constraint explicitly affects
the film pressure itself, rather than only the coupling between
film and bulk.

This study is organized as follows: In Sec. II, the statistical
field theory which accounts for an OP constraint is presented
and the construction of the associated perturbation theory
is described. In Sec. III, this field theory is specialized to
the Landau-Ginzburg model in a finite volume, and various
boundary conditions are investigated. In particular, pertur-
bative expressions of the residual finite-size contribution to
the free energy are derived. In Sec. IV, these results are cast
into scaling form, and the corresponding scaling functions
for the finite-size free energy and the CCFs are obtained.
Our main results are discussed in Sec. V and summarized
in Sec. VI. Important details of calculations are presented
in Appendices A–E. A glossary of the most frequently used
quantities is provided in Table I.

II. STATISTICAL FIELD THEORY WITH A
GLOBAL CONSTRAINT

A. Notation and conventions

In order to simplify the presentation of the analytical
calculations carried out in this study, we introduce the
shorthand notation ∫

r
≡
∫

V

ddr (2)

for the integration over a finite, d-dimensional volume V .
Following Ref. [45], we define, for two arbitrary scalar
functions u(r) and v(r) as well as for a function G(r,r′) which
is symmetric with respect to its two arguments, the shorthand

notations

(u,v) ≡
∫

r
u(r)v(r), (3)

(G,v)r ≡
∫

r′
G(r,r′)v(r′) =

∫
r′

G(r′,r)v(r′), (4)

and

(u,G,v) ≡
∫

r

∫
r′

u(r)G(r,r′)v(r′). (5)

In particular, we have (G,1)r ≡ ∫r′ G(r,r′). A ring above a
quantity indicates that it refers to a constrained system.

B. General framework

A method to cope with an OP constraint within a statistical
field theory has been described in Ref. [45] and is recalled
briefly here. Building upon this approach, we study the free
energy and correlation functions, focusing on the corrections
induced by the constraint, and develop a systematic pertur-
bation theory in the canonical ensemble. We consider in this
section a finite d-dimensional volume V with no additional
restriction on its geometry. In Sec. III, the theory developed
here will be applied to more specific systems. The fluctuating
OP field φ(r) is required to satisfy a constraint of the form

(w,φ) ≡
∫

r
w (r)φ(r) = �w, (6)

where �w is a constant and w (r) is a given weight function.
The case of total mass conservation corresponds to w = 1. In
fact, our expressions generally represent approximations of
the true free energy of a constrained system. (An exception is
the Gaussian model, for which exact results can be obtained.)
The linear nature of Eq. (6) is sufficiently flexible to encompass
constraints which fix the value of φ or its derivative at a certain
point s in space, corresponding to the choices w (r) = δ(r −
s) and w (r) = δ′(r − s), respectively. In addition, the present
framework can be straightforwardly extended to encompass
more than a single constraint.

Under the effect of the constraint in Eq. (6), the statistics
of the field φ is governed by the constrained probability
distribution

P̊([φ],�w ) ≡ 1

Z̊
exp(−H[φ])δ[(w,φ) − �w], (7)

where

H[φ] ≡
∫

r
L(r; [φ]) (8)

is the effective Hamiltonian which controls the statistics of the
fluctuations of φ in the absence of the constraint and L is its
density. Accordingly, the constrained partition function Z̊ is
given by

Z̊(�w) ≡
∫

Dφ exp(−H[φ])δ[(w,φ) − �w]

=
∫ ∞

−∞

dJ

2πa−1−d/2

∫
Dφ exp[−H[φ]

+ iJ (w,φ) − iJ�w], (9)
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TABLE I. Glossary of quantities frequently used in this study. Periodic, Dirichlet, and Neumann boundary conditions are indicated by the
superscripts (p), (D), and (N), respectively.

Quantitya Description Definition in

φ Order parameter (OP) field Sec. I
� Total OP (“total mass”) in the system Eq. (1)
ϕ Mean OP, ϕ = �/V Eq. (48)
w Weight functionb Eqs. (6) and (52)
�w Constrained value of the weighted total OP � Eq. (6)
� Constrained value of the total OP, � ≡ �1 Eq. (53)
Z̊ Constrained (canonical) partition functionb Eq. (9)
Z Unconstrained (grand canonical) partition function Eq. (11)
H Effective Hamiltonian Eqs. (8) and (11)
L Effective free energy functional Eqs. (8) and (49)
h Bulk field Eqs. (11) and (51)
μ Lagrange multiplier associated with the constraint Eqs. (32) and (54)
ψ Mean OP field Eq. (13)
σ Fluctuation part of the OP field Eq. (13)
G Green function Eqs. (21) and (60)
G̊ Constraint-induced Green function Eq. (26)
F Unconstrained (grand canonical) film free energy Eqs. (35) and (119)
F̊ Constrained (canonical) film free energy Eqs. (34), (75), and (106)
d Spatial dimension of the film Sec. III and Fig. 1
L Film thickness Sec. III and Fig. 1
A Transverse area Sec. III and Fig. 1
V Film volume, V = AL Sec. III and Fig. 1
z Coordinate along the transverse direction Sec. III and Fig. 1
r‖ Coordinates along the lateral directions Sec. III and Fig. 1
τ Temperature parameter Eq. (49)
g Quartic coupling constant Eq. (49)
t Reduced (renormalized) temperature Eqs. (50) and (132)
τ̂ Effective temperature parameter Eq. (79)
ς (z) Eigenfunctions Eq. (65)
ρ Aspect ratio Eq. (104)
fres,f̊res Residual finite-size free energy per volume Eqs. (115) and (126)
S Scaling function of the regularized mode sum Eqs. (108) and (C4)
u∗ Fixed point value of the renormalized quartic coupling constant Eq. (130)
r Numerical constant Eq. (131)
x Finite-size scaling variable associated with t Eq. (132)
x̂ Scaled effective temperature parameter Eq. (134)
m Scaled OP Eq. (132)
h Scaled bulk field Eq. (135)
ξ

(0)
+ , ξ (0)

ϕ , ξ
(0)
h Correlation length amplitudes associated with t , ϕ, and h Eqs. (133) and (137)

K,K̊ Critical Casimir force (CCF) Eq. (144)
�,�̊ Scaling functions of the residual free energy Eqs. (132) and (135)
�,�̊ Scaling functions of the CCF Eqs. (146) and (149)

aA subscript R on a quantity indicates its renormalized counterpart (see Sec. IV).
bThe canonical ensemble corresponds to the special case w = 1.

where in the last equation we have made use of the Fourier
representation of the δ function. As usual, the functional
integration in Eq. (9) is defined as the limit N → ∞ of
the multiple integrals over a field φi = φ(ri), i = 1, . . . ,N ,
defined on a lattice of size N [46], i.e.,∫

Dφ =̂
N∏

i=1

∫ ∞

−∞

dφ1

a1−d/2

∫ ∞

−∞

dφ2

a1−d/2
· · ·
∫ ∞

−∞

dφN

a1−d/2
, (10)

where the quantity a represents the lattice constant, the
presence of which in Eqs. (9) and (10) renders the partition
function dimensionless. However, in order to simplify the

notation and because a formally vanishes in the continuum
limit, we shall henceforth not indicate it; a can be reinstantiated
straightforwardly into the various expressions on the basis of
dimensional analysis and of Eqs. (9) and (10). As a conse-
quence, certain logarithms will seemingly have dimensionful
arguments, while, in fact, in the corresponding lattice field
theory, these arguments are multiplied by suitable powers of a

which renders them dimensionless.1 Concerning an example,

1Alternatively, this issue can be dealt with by considering Z̊/Z̊ref ,
where Z̊ref is a chosen reference partition function [29,46]. However,
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we refer to the explicit calculations within a lattice field theory
presented in Appendix A. We shall occasionally comment
on this issue further [see, e.g., Eq. (75) below]. Returning
to Eq. (9), we remark that, although H[φ] can in principle
depend on external fields, this dependence does not affect
the construction of the constrained partition function Z̊ and
therefore it will not be considered henceforth. The specific
expression ofL is not relevant for the general discussion in this
section, which will be put in practice for the Landau-Ginzburg
model in Sec. III.

The grand canonical partition functionZ(h) in the presence
of a (spatially uniform) external field h is given by

Z(h) ≡
∫

Dφ exp (−H(h; [φ])),

with H(h; [φ]) ≡ H[φ] − h

∫
r
φ. (11)

It immediately follows from the first equation in Eq. (9) that,
for w = 1, Z(h) is related to the canonical partition function
Z̊(�) at a fixed order parameter � ≡ �1 via

Z(h) =
∫ ∞

−∞
d� eh�Z̊(�). (12)

This equation forms the basis of many finite-size studies of
the grand canonical free energy and of the CCF [47–51].
In contrast to the perturbative approach developed below,
in the grand canonical ensemble Eq. (12) treats fluctua-
tions of the total OP nonperturbatively. This allows one to
overcome the well-known artifacts related to the presence
of a so-called zero mode. We will return to this aspect in
Sec. III D.

Following standard approaches [45,52], the partition func-
tions in Eqs. (9) and (11) are evaluated by means of a
saddle-point approximation. To this end, the OP field φ(r)
is split into its mean part ψ(r) ≡ 〈φ(r)〉 and a fluctuation σ (r),

φ(r) = ψ(r) + σ (r). (13)

Accordingly, the integration measure
∫
Dφ in Eqs. (9) and

(11) turns into
∫
Dσ and Eq. (13) implies that

〈σ (r)〉 = 0, (14)

where the average 〈. . .〉 = ∫ Dφ . . . P̊([φ],�w) is performed
over the probability distribution given in Eq. (7). The mean
OP ψ is left unspecified at this point, but at a later stage it will
be determined self-consistently from Eq. (14), which in fact
reduces to the equation of state relating ψ and h in the grand
canonical and ψ and � in the canonical ensemble, respectively
[see Eq. (32) below]. In the following, we focus on developing
a perturbation theory in the presence of a constraint; we simply
state the corresponding and well-known [46,52] results in the
absence of it.

such a definition induces a shift of the associated free energy, which
is undesired for the present purposes [26].

Inserting Eq. (13) into the constraint in Eq. (6) yields, after
averaging,

〈�w〉 = �w =
∫

r
w (r)[ψ(r) + 〈σ (r)〉]

=
∫

r
w (r)ψ(r) ≡ (w,ψ), (15)

i.e., the constant value �w of the constraint is entirely
determined by the nonfluctuating part ψ of the OP alone. As
an immediate consequence of Eqs. (15) and (6) one finds that
the weighted volume integral of the fluctuations must vanish:∫

r
w (r)σ (r) = 0. (16)

Returning to the calculation of Z̊ , we expand the action H in
terms of σ as [52]

H[ψ + σ ] = H[ψ] +
∫

r1

δH[ψ]

δψ(r1)
σ (r1)

+ 1

2!

∫
r1

∫
r2

δ2H[ψ]

δψ(r1)δψ(r2)
σ (r1)σ (r2)

+
∫

r
V(r; [ψ,σ ]), (17)

where, extending the analysis presented in Ref. [45], we
account also for non-Gaussian contributions in the action via
the potential V:

V(r; [ψ,σ ]) ≡ 1

3!

∫
r1

∫
r2

δ3H[ψ]

δψ(r1)δψ(r2)δψ(r)

× σ (r1)σ (r2)σ (r) + · · · . (18)

In order to facilitate the calculation of correlation functions, we
add to H a source term K(r) which couples to the fluctuation
σ (r), i.e., in the generating functional in Eq. (9) we replace
H[φ] according to

H[φ] → H[φ] −
∫

r
K(r)σ (r). (19)

Denoting the quadratic part of the action by

H(2)(r1,r2; [ψ]) ≡ δ2H[ψ]

δψ(r1)δψ(r2)
, (20)

the Green function G(r1,r2) is defined as the inverse of H(2):∫
r2

G(r1,r2)H(2)(r2,r3) =
∫

r2

H(2)(r1,r2)G(r2,r3)

= δ(r1 − r3) , (21)

with G(r1,r2) = G(r2,r1).
In order to proceed, we recall that, for an N × N matrix

Aij and fields Ki , σj , the following fundamental result for
multidimensional Gaussian integrals holds [46]:∫

Dσ exp

(
−1

2
σiAijσj + Kiσi

)
= (2π )N/2

(det A)1/2
exp

(
1

2
KiA

−1
ij Kj

)
(22)

022135-4



STATISTICAL FIELD THEORY WITH CONSTRAINTS: . . . PHYSICAL REVIEW E 96, 022135 (2017)

(with summation over repeated indices), as well as the identity ln det A = tr ln A. With the aid of these relations, the linear and
quadratic parts of the action in Eq. (9) can now be integrated over σ , yielding

Z̊(�w; [K]) =
∫ ∞

−∞

dJ

2π
exp

{
−
∫

r
V
(

r;

[
ψ,σ → δ

δK(r)

])}
exp

{
− H[ψ] − 1

2
tr lnH(2)

+ 1

2

(
δH
δψ

− K − iJ w,G,
δH
δψ

− K − iJ w
)

+ iJ (w,ψ) − iJ�w

}
. (23)

In the exponent in Eq. (23) we have neglected the term (N/2) ln(2π ) stemming from the prefactor on the right hand side
of Eq. (22). This term turns infinite in the continuum limit and leads to an unimportant additive shift of the free energy. If
(w,G,w ) 
= 0, one obtains, after performing the Gaussian integration over J , the constrained generating functional

Z̊(�w; [K]) = 1√
2π

exp

{
−
∫

r
V
(

r;

[
ψ,σ → δ

δK(r)

])}
exp

⎧⎨⎩−H[ψ] − 1

2
tr lnH(2) + 1

2

(
δH
δψ

− K,G,
δH
δψ

− K

)

− 1

2
ln(w,G,w ) − 1

2

(
δH
δψ

− K,G,w
)2

(w,G,w )
+
(

δH
δψ

− K,G,w
)
[(w,ψ) − �w]

(w,G,w )
− 1

2

[(w,ψ) − �w]2

(w,G,w )

⎫⎬⎭. (24)

Due to the constraint expressed by Eq. (15), the last two terms in Z̊[K] vanish so that

Z̊(�w; [K]) = 1√
2π

exp

{
−
∫

r
V
(

r;

[
ψ,σ → δ

δK(r)

])}
exp

⎧⎨⎩−H[ψ] − 1

2
tr lnH(2)

+ 1

2

(
δH
δψ

− K,G,
δH
δψ

− K

)
− 1

2
ln(w,G,w ) − 1

2

(
δH
δψ

− K,G,w
)2

(w,G,w )

⎫⎬⎭. (25)

The last two terms in Eq. (25) emerge as a direct consequence of the constraint. Introducing a Green function G̊ which accounts
for the constraint as

G̊(r1,r2) ≡ G(r1,r2) − (G,w )r1 (G,w )r2

(w,G,w )
, (26)

the constrained generating functional in Eq. (25) finally reduces to

Z̊(�w; [K]) = 1√
2π

exp

{
−
∫

r
V
(

r;

[
ψ,σ → δ

δK(r)

])}
exp

{
− H[ψ] − 1

2
tr lnH(2)

+ 1

2

(
δH
δψ

− K,G̊,
δH
δψ

− K

)
− 1

2
ln(w,G,w )

}
. (27)

It is useful to note that

(G̊,w )r =
∫

r′
G̊(r,r′)w (r′) = 0 (28)

for all r, which follows immediately from Eq. (26). Returning to Eq. (23), we find that, if (w,G,w ) = 0, the integral over J is
readily obtained as

Z̊0(�w; [K]) ≡ exp

{
−
∫

r
V
(

r;

[
ψ,σ → δ

δK(r)

])}
exp

{
− H[ψ] − 1

2
tr lnH(2) + 1

2

(
δH
δψ

− K,G,
δH
δψ

− K

)}
(29)

instead of Eq. (27). The case (w,G,w ) = 0 occurs for models where the complete set of fluctuation modes [see Eqs. (68) and
(73) below] respect the constraint from the outset. For the specific systems investigated in this study (see Sec. III) one actually
has (w,G,w ) 
= 0 and therefore the constrained partition function is the one in Eq. (27). Aside from occasional comments, we
shall therefore no longer consider the case (w,G,w ) = 0. Finally, repeating the above derivation for the grand canonical partition
function in Eq. (11), one obtains the well-known generating functional [46,52]

Z(h; [K]) = exp

{
−
∫

r
V
(

r;

[
ψ,σ → δ

δK(r)

])}
exp

{
− H(h; [ψ]) − 1

2
tr lnH(2)

+ 1

2

(
δH(h; [ψ])

δψ
− K,G,

δH(h; [ψ])

δψ
− K

)}
. (30)
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In the case w = 1, corresponding to a constraint on the total
OP, we observe that Z̊(�; [K]) in Eq. (27) has, apart from
the last term in the curly brackets, the same expression as
Z(h; [K]) in Eq. (30) provided one replaces G by G̊ and
H(h; [ψ]) by H[ψ]. Accordingly, also the perturbation theory
for the constrained case based on Eq. (27) or Eq. (29) leads to
expressions formally analogous to those in the unconstrained
case based on Eq. (30). Note that, even if the constraint
does not explicitly appear in the expression of Z̊0, it still
acts via Eqs. (15) and (16), which have to be fulfilled in the
construction of ψ and σ (see Sec. II C below).

C. Gaussian approximation

Here, we investigate the constrained generating functional
in Eq. (27) within the Gaussian approximation, i.e., neglecting
the nonquadratic interactions collected summarily in the po-
tential V [Eq. (18)]. Within this approximation, the condition
in Eq. (14) results in

0 = 〈σ (r)〉 = −δ ln Z̊(�w; [K])

δK(r)

∣∣∣∣
K=0

=
(

G̊,
δH
δψ

)
r
. (31)

Due to the property of G̊ expressed in Eq. (28), this condition
can be satisfied by requiring [45]

δH
δψ(r)

= μw (r), (32)

where the spatially constant μ can be interpreted as a Lagrange
multiplier which must be chosen in order to satisfy the
constraint in Eq. (15), which leads to μ�w = (δH/δψ,ψ).2

Owing to the dependence of H(2) on ψ [see Eq. (20)],
the constraint also affects the fluctuations described by the
theory, which will be discussed further in Sec. III. In the
case w = 1, which corresponds to total OP conservation,
Eq. (32) represents the equation of state within mean-field
approximation and μ plays the role of a bulk field or of
the chemical potential. If (w,G,w ) = 0, Eq. (31) must be
evaluated with Z̊ [see Eq. (29)] replaced by Z̊0, which yields
(G,δH/δψ) = 0. This condition can be fulfilled by Eq. (32)
with μ = 0, as in the grand canonical case.

Once the mean OP ψ is fixed according to Eq. (32), the
constrained generating functional in Eq. (27) reduces to

Z̊(�w; [K]) = 1√
2π

exp

{
−H[ψ] − 1

2
tr lnH(2)

−1

2
ln(w,G,w ) + 1

2
(K,G̊,K)

}
. (33)

As remarked above, terms involving w are absent in the analo-
gous expression for the partition function in the unconstrained
case or if (w,G,w ) = 0. From Eq. (33), the constrained free
energy F̊ within the Gaussian approximation (i.e., at one-loop

2Note that the choice δH/δψ = 0, which also satisfies Eq. (31),
does not lead to a dependence of ψ on μ, making it impossible to
satisfy Eq. (15) in general.

order) follows as

F̊(�w) ≡ − ln Z̊(�w; K = 0)

= H[ψ] + 1
2 tr lnH(2) + 1

2 ln [2π (w,G,w )]. (34)

For comparison, we also report here the corresponding expres-
sion for the unconstrained free energy F , which, according to
Eq. (30), is given by [46,52,53]

F(h) ≡ − lnZ(h; K = 0) = H(h; [ψ]) + 1
2 tr lnH(2). (35)

In the expression for the free energy [Eq. (34)] we keep
numerical constants such as (1/2) ln(2π ) because they are
required for a consistent relation between the canonical and
the grand canonical ensembles according to Eq. (12) (see also
Ref. [51]). Explicit expressions of F̊ and F will be presented
below in Sec. III, where also the required regularization
is discussed. The constraint-induced two-point correlation
function C̊ of the OP fluctuations σ follows from Eq. (33) as

C̊(r1,r2) ≡ 〈σ (r1)σ (r2)〉 = δ2 ln Z̊(�w; [K])

δK(r1)δK(r2)

∣∣∣∣
K=0

= G̊(r1,r2) = G(r1,r2) − (G,w )r1 (G,w )r2

(w,G,w )
, (36)

where, as before, the last term is only present if (w,G,w ) 
= 0.
From Eq. (36) it follows directly that∫

r
w (r)C̊(r,r′) =

∫
r′

w (r′)C̊(r,r′) = 0 (37)

for all r, consistently with Eq. (28). In the unconstrained case,
the two-point correlation function C coincides with the Green
function, i.e., C = G [46,53]. In contrast, within the Gaussian
approximation, the constraint affects the free energy [Eq. (34)]
and the correlation function [Eq. (36)] in two ways: explicitly,
via the generation of correction terms involving w and,
implicitly, via the dependence of ψ on μw and �w as required
by Eq. (32). The latter dependence is a consequence of the fact
that the operator H(2) and, therefore, also the Green function
G, which is its functional inverse [Eq. (21)], are affected by the
constraint only via their dependence on ψ . However, the ana-
lytic form of H(2) and G, as well as the spectrum and the form
of the eigenfunctions of H(2), are identical in the constrained
and the unconstrained cases (see Sec. III below). The fact that
the constraint restricts the allowed modes of a fluctuation [see
Eq. (16)] is accounted for by additive corrections to the free
energy [Eq. (34)] and the correlation function [Eq. (36)]. The
meaning of these terms will be further elucidated in Sec. III,
where we apply the present framework to specific systems.

D. Perturbation theory

In order to be able to illustrate the perturbative calculation of
corrections beyond the Gaussian approximation, an expression
for the interaction potential V in Eq. (27) has to be specified.
We assume in the following that the corresponding interaction
term in L [Eq. (8)] is of the form gφ(r)4/4! [see also Eq. (49)
below], where g > 0 is a coupling constant. It is well known
that a model based on such a density L captures properly the
universal features associated with critical phenomena in the
Ising universality class [46,53]. Apart from this interaction, no

022135-6



STATISTICAL FIELD THEORY WITH CONSTRAINTS: . . . PHYSICAL REVIEW E 96, 022135 (2017)

additional nonquadratic terms in φ are assumed to appear in
L. (This is in line with the vanishing of the coupling constants
of the other higher-order terms under renormalization group
flow.) For this choice of L, the potential V defined in Eq. (18)
becomes

V(r; [ψ,σ ]) = 1

3!
g ψ(r)σ 3(r) + 1

4!
g σ 4(r)

=
∫

s
δ(r − s)

[
1

3!
g ψ(s)σ 3(s) + 1

4!
g σ 4(s)

]
,

(38)

where the last expression serves to reveal the functional form
and pointlike interaction character of V . Note the appearance
of a three-point vertex proportional to the mean field OP ψ .

1. Mean order parameter

As a first application, we calculate the perturbative correc-
tion to O(g) of the mean-field expression for ψ . Using Eq. (38),
the generating functional in Eq. (27) up to O(g) becomes

Z̊(�w; [K]) �
[

1 − g

3!

∫
y
ψ(y)

(
δ

δK(y)

)3

− g

4!

∫
y

(
δ

δK(y)

)4
]

× exp

{
1

2
(K,G̊,K) −

(
K,G̊,

δH
δψ

)
+ terms independent of K

}
, (39)

from which the condition in Eq. (14), which defines ψ , results as

0 = 〈σ (r)〉 = −δ ln Z̊(�w; [K])

δK(r)

∣∣∣∣∣
K=0

=
∫

y
G̊(r,y)

[
δH

δψ(y)
+ 1

2
gψ(y)G̊(y,y) + 1

2
gψ(y)

(
G̊,

δH
δψ

)2

y
− 1

2
gG̊(y,y)

(
G̊,

δH
δψ

)
y
− 1

6
g

(
G̊,

δH
δψ

)3

y

]
. (40)

In obtaining the right hand side of the last equation, we used ln(1 + X) � X. Analogously to Eq. (31), Eq. (40) must be solved
for δH/δψ up to O(g). Importantly, at this stage, no assumption concerning the order in g of ψ should be made, i.e., ψ should
be formally assumed to be of O(g0). It is only after imposing the corresponding equation of state [see Eq. (41) below] that
ψ turns into a quantity of O(g−1/2) [compare also Eq. (143) and the associated discussion]. The solution of Eq. (40) can thus
be iteratively constructed as a series in g by considering δH/δψ and ψ in Eq. (40) to be formally of O(g0). This yields a
perturbatively corrected version of Eq. (32):

δH
δψ(r)

+ 1

2
gψ(r)G̊(r,r) = μw (r). (41)

Making use of Eq. (28), we find that this expression of δH/δψ indeed solves Eq. (40) up to and including O(g) and therefore it
implicitly provides the desired leading-order perturbative correction to the mean OP ψ . Note that Eq. (41) in fact coincides (upon
interpreting μ as an external field) with the corresponding expression in the grand canonical ensemble [54,55]. As in Eq. (32),
the parameter μ in Eq. (41) has to be chosen such that the constraint on ψ in Eq. (15) is fulfilled. We recall that G̊ itself depends
on ψ(r) through its definition in Eq. (21) as the inverse of H(2). In practice, Eq. (41) must therefore be solved iteratively (see
Sec. III B for further discussion).

In order to obtain the perturbative corrections at O(g) to the free energy or to a correlation function, Eq. (41) has to be imposed
as an implicit definition of ψ . As a consequence, ψ becomes a quantity of O(g−1/2). Inserting Eq. (41) for δH/δψ into Eq. (27)
and using Eqs. (28) and (38) yields the generating functional valid up to O(g):

Z̊(�w; [K]) �
{

1 −
∫

y
V
(

y;

[
ψ,σ → δ

δK(y)

])
+ 1

72
g2

[∫
y
ψ(y)

δ3

δK(y)3

]2
}

exp

[
1

2
(K,G̊,K)

+ 1

2
g(K,G̊,ψG̊) + 1

8
g2(ψG̊,G̊,ψG̊) − H[ψ] − 1

2
tr lnH(2) − 1

2
ln[2π (w,G,w )]

]
, (42)

where we have used the compact notation introduced in Eq. (5),
e.g., (ψG̊,G̊,K) = ∫r

∫
r′ ψ(r)G̊(r,r)G̊(r,r′)K(r′). The term in

curly brackets in Eq. (42) arises from an expansion of the first
exponential term in Eq. (27), keeping only those terms which
contribute up to O(g), taking into account that ψ ∼ O(g−1/2).
It is interesting to specialize Eq. (42) to the case w = 1 and
a translationally invariant system, e.g., a uniform system with
periodic boundary conditions in all directions. In this case, one

has a spatially constant ψ(r) = ϕ as well as G̊(r,r) = G̊(0),
i.e., also the Green function evaluated at coinciding argu-
ments does not depend on the spatial location.3 Accordingly,

3The Green function G(r,r) is formally infinite and therefore
requires a suitable regularization [46]. However, this aspect does
not affect the conclusions in the present paragraph.
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using Eq. (28) with w = 1, one obtains (ψG̊,G̊, . . .) =
ϕG̊(0)(1,G̊, . . .) = 0, implying that the second and the third
terms in the second exponential of Eq. (42) vanish in this case.

2. Free energy

The constrained free energy to O(g) [recall that ψ ∼
O(g−1/2)] follows from Eq. (42) as

F̊(�w ) = − ln Z̊(�w; K = 0)

= − ln

{[
1 − 1

8
g

∫
y
[G̊(y,y)]2 − 1

8
g2(ψG̊,G̊,ψG̊) + 1

12
g2
∫

x

∫
y
ψ(x)ψ(y)[G̊(x,y)]3

]
× exp

[
−H[ψ] − 1

2
tr lnH(2) − 1

2
ln [2π (w,G,w )] + 1

8
g2(ψG̊,G̊,ψG̊)

]}
= H[ψ] + 1

2
tr lnH(2) + 1

2
ln [2π (w,G,w )] + 1

8
g

∫
y
[G̊(y,y)]2 − 1

12
g2
∫

x

∫
y
ψ(x)ψ(y)[G̊(x,y)]3, (43)

where, as before, we have approximated ln(1 + X) � X in
order to evaluate the contribution to O(g) from the logarithm
in the second equation.4 We remark that the expression in
Eq. (43) reduces to the corresponding two-loop result for
periodic boundary conditions obtained in a different context in
Refs. [56,57]. The fourth term in the last equation of Eq. (43)
involving the constraint-induced Green function G̊ can be
rewritten as∫

y
[G̊(y,y)]2 =

∫
y

{
[G(y,y)]2 − 2G(y,y)

(G,w )2
y

(w,G,w )

+ (G,w )4
y

(w,G,w )2

}
, (44)

where have we used Eq. (26) as well as the symmetry of G

with respect to an exchange of its arguments. An analogous
expression applies also to the last term in Eq. (43). Equation
(44) explicitly shows the higher-order contributions to the
free energy stemming from the constraint. The two-loop
constrained free energy including the required renormalization
will be discussed further elsewhere.

E. Summary

In this section, a statistical field theory for an OP field
subject to the integral constraint given in Eq. (6) has been
developed based on the approach introduced in Ref. [45]. The
special case w = 1 of the weight function, which enters into the
definition of the constraint, leads to a theoretical description
within the canonical ensemble. In order to estimate the typical
magnitude of the constraint-induced corrections to the free
energy [Eq. (34)] and to the correlation function [Eq. (36)],
we consider, having periodic boundary conditions in mind, a
film geometry of volume V = AL, where A is the transverse
area and L the film thickness. Since the Green function G in
fact represents the correlation function, one finds the estimate

(G,1) ∼ χ (45a)

4The term (1/8)g2(ψG̊,G̊,ψG̊) in Eq. (42) is canceled by the
perturbative corrections generated by the last term in curly brackets
in Eq. (42).

and therefore

(1,G,1) ∼ χV, (45b)

where χ denotes the global OP susceptibility. Accordingly,
one obtains an estimate for the correction term on the right
hand side in Eq. (26):

(G,1)2

(1,G,1)
∼ χ

V
. (46)

These relations are confirmed below in Sec. III by means of
analytical calculations for the Landau-Ginzburg model [see,
e.g., Eq. (81) below]. Based on Eq. (46) we conclude that
the constraint correction to the Green function vanishes for a
system of infinite volume:

G̊(r,r′) → G(r,r′) for V → ∞. (47)

Extending this analysis to the free energy, we note that
(after introducing a suitable regularization, see Sec. III C)
the first two terms on the right hand side of Eq. (34)
scale ∝V at leading order. According to Eq. (45b), the
constraint correction ∝ ln(1,G,1), instead, scales ∝ln V and,
therefore, the constraint correction becomes irrelevant in the
thermodynamic limit (AL → ∞) and ensemble equivalence is
recovered. In this case, the canonical and the grand canonical
free energies are related via a Legendre transform.

Note that the infinite-volume limit encompasses the case
in which fewer than the d dimensions of the system become
infinite, in particular, also the case A → ∞ at fixed L (thin-film
limit). Consider, for instance, for fixed L and A → ∞, the
situation at the critical point: assuming that the correlation
length ξ scales with the largest size in the system and that
the system exhibits critical behavior of a (d − 1)-dimensional
system, we have χ ∝ ξ 2−η ∝ A(2−η)/(d−1) with the usual
critical exponent η. Hence, provided d � 3 − η, the result in
Eq. (47) is expected to hold also near criticality.

We emphasize that this analysis does not imply that in the
thin-film limit the residual finite-size free energy or the CCF
are generally equivalent among the various ensembles. Indeed,
as has been shown in Ref. [43], this is not the case for systems
with inhomogeneities caused by external bulk or surface fields.
The reason for the ensemble inequivalence of the CCF in such
systems is that the CCF refers to a bulk system, the coupling of
which to the film itself depends on the ensemble [43]. In fact,

022135-8



STATISTICAL FIELD THEORY WITH CONSTRAINTS: . . . PHYSICAL REVIEW E 96, 022135 (2017)

if one considers the thin-film limit, which is natural for MFT,
it is reasonable to define the constraint with respect to the total
“mass” � per transverse area A, such that Eq. (6) reduces
to
∫
L

dz φ(z) = �/A = const, with formally w = 1/A. This
definition is motivated by the idea that the thermodynamic
limit should in general be performed by keeping the mean OP

ϕ = �

V
(48)

(e.g., the particle density) constant.
In a finite volume, the OP constraint generally modifies

the fluctuations, reflecting the fact that those fluctuations
which change the total number of particles in the system
[or, in general, the value of the integral in Eq. (6)] are not
permitted within the canonical ensemble. This also means
that the canonical free energy [Eq. (34)] is no longer the
Legendre transform of the grand canonical one [Eq. (35)],
but it exhibits additive corrections [represented by the last
term in Eq. (34)].5 While the presence of these finite-volume
corrections is in principle known [3,7,58], they have so far
not been systematically discussed within a statistical field
theory and their significance for critical Casimir forces in the
canonical ensemble has not been elucidated.

We close this section by summarizing the essential conse-
quences of the OP constraint.

(1) The constraint causes the presence of a bulk fieldlike
parameter μ in the equation which determines the mean OP
ψ [see Eqs. (32) and (41)] [45]. This parameter essentially
corresponds to the Lagrange multiplier associated with the
constrained minimization of the action within the mean-field
approximation [43].

(2) The Green function G, defined as the inverse of the
quadratic part of the action [see Eq. (20)], is affected by the
constraint only implicitly, via its dependence on the mean
OP ψ .

(3) Within the Gaussian approximation, the constrained
free energy F̊ differs from the unconstrained one F by
an additive correction of the form (1/2) ln [2π (w,G,w )]
[Eq. (34)].

(4) By introducing a constrained Green function G̊ [see
Eq. (26)], the generating functional in Eq. (27) assumes the
same form as in the unconstrained case with a nonzero mean
OP. As a consequence, perturbation theory can be introduced
analogously, implying that perturbative results formally carry
over from the unconstrained to the constrained theory by
simply replacing the usual Green function G with G̊.

(5) Within the Gaussian approximation, the two-point
correlation function C̊ of the OP fluctuations [Eq. (36)]
is modified compared to the unconstrained case such that
its weighted integral vanishes [Eq. (37)]. The constrained
Gaussian correlation function is, in fact, identical to the
constrained Green function, i.e., G̊ = C̊. Contributions from

5Indeed, applying a Legendre transform to the grand canonical
free energy [Eq. (35)] would yield a canonical free energy without
the constraint-induced correction terms, which is incorrect in finite
volumes. In order to obtain the correct canonical finite-size free
energy, the constraint must be imposed at the level of the partition
function [Eq. (9)].

higher loop orders provide further constraint corrections to the
free energy and to correlation functions. Specific examples are
given in Eq. (41) for the one-loop equation determining the
constraint-induced OP and in Eq. (43) for the two-loop free
energy.

(6) In the limit of infinite volume V → ∞, the constraint-
induced fluctuation corrections to the free energy and the
correlation function vanish and G̊ reduces to G [see Eq. (47)].
As remarked above, for the idealized case of a thin film
with a transverse area A → ∞ at fixed thickness L, mean-
field contributions to the model can still be affected by the
constraint [43].

III. APPLICATION TO THE LANDAU-GINZBURG MODEL

A. Model and general results

In the remaining part of this study, we consider a d-
dimensional film of volume V = AL which is translationally
invariant and has periodic boundary conditions along the first
(d − 1) lateral directions, but which can be inhomogeneous in
the remaining direction (z) of extent L, as sketched in Fig. 1.
The boundaries of the film are taken to be located at z = 0 and
L, while we indicate the coordinates along the lateral directions
by the subscript ‖, i.e., we decompose the generic position
vector as r = (r‖,z). We shall interchangeably use the notation
G(r‖,r′

‖,z,z
′) for the Green function G(r,r′). The subsequent

discussion shows how the field-theoretical formalism, which
is well-known in the grand canonical ensemble [44,52,59],
carries over to the canonical case.

In the following we focus on the one-loop (Gaussian)
approximation of the field theory developed in Sec. II. This
approximation already displays the essential effects induced
by the constraint. Specifically, we consider the scalar Landau-
Ginzburg form of the effective free energy density [Eq. (8)],

FIG. 1. We consider a film of finite volume V = AL in d spatial
dimensions, where A is the (d − 1)-dimensional transverse area and
L is the thickness of the film. The coordinate along the transverse
direction is denoted by z, while the lateral coordinates along the
confining surfaces are collectively denoted by r‖. Depending on the
specific system under consideration, periodic, Dirichlet, or Neumann
boundary conditions are applied at z = 0 and L (see Sec. III B). In
all cases, periodic boundary conditions are assumed along all lateral
directions.
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i.e.,

L(r,τ,g; [φ]) = 1

2
[∇φ(r)]2 + 1

2
τφ2(r) + 1

4!
gφ4(r)

+
[
−h1φ(r) + 1

2
cφ2(r)

]
[δ(z) + δ(z − L)]

≡ 1

2
(∇φ)2 + Lb(r,τ,g; [φ])

+Ls(r,h1,c; [φ])[δ(z)+δ(z−L)], (49)

where the second equation defines the effective bulk and
surface free energy densities Lb and Ls , respectively. The
parameter τ is proportional to the reduced temperature

t ≡ T − Tc

Tc

, (50)

where Tc is the bulk critical temperature; g > 0 is a coupling
constant, h1 is a surface field, and c is the so-called surface
enhancement [44]. The interaction potential V [see Eq. (18)]
which pertains to the action in Eq. (49) has already been
reported in Eq. (38). In the grand canonical ensemble, we
additionally consider a bulk field h and define

L(r,τ,g,h; [φ]) ≡ L(r,τ,g; [φ]) − hφ(r),
(51)

Lb(r,τ,g,h; [φ]) ≡ Lb(r,τ,g; [φ]) − hφ(r).

In order to simplify the notation, we occasionally suppress the
dependence of L, Lb, and Ls on the parameters τ , g, h1, and
c, and write L[φ(r)] ≡ L(r; [φ]) (analogously for Lb and Ls).
Henceforth, in the notation of Eq. (6) we set

w = 1 , (52)

i.e., as it is the case for the canonical ensemble, a constraint is
imposed on the spatial integral of the OP [see Eqs. (15) and
(16)]: ∫

r
φ(r) =

∫
r
ψ(r) = �1 ≡ �, (53)

where � is the imposed total mass in the system. Since we
assume translational invariance in the lateral directions, the
mean profile ψ(r) = ψ(z) is a function of z only.

At the leading order, which corresponds to the mean-field
approximation, in the canonical ensemble ψ(z) is determined
by Eq. (32), which yields, for L given in Eq. (49),

μ = δH
δψ(r)

= −∇2ψ(r) + L′
b[ψ(r)] + {∂zψ(r) + L′

s[ψ(r)]}

δ(z − L) + {−∂zψ(r) + L′
s[ψ(r)]}δ(z). (54)

This expression implies the Euler-Lagrange equation

μ = −∂2
z ψ(z) + L′

b[ψ(z)] = −∂2
z ψ(z) + τψ(z) + 1

6gψ3(z)

(55)

and the boundary conditions

∂zψ(z)|z=0 = L′
s[ψ(z)]|z=0 = −h1 + cψ(z)|z=0,

(56)−∂zψ(z)|z=L = L′
s[ψ(z)]|z=L = −h1 + cψ(z)|z=L.

The parameter μ is the Lagrange multiplier required to
satisfy the OP constraint in Eq. (53). Dirichlet boundary
conditions [ψ(0) = ψ(L) = 0] are realized for |h1| < ∞ and

c → ∞, while (within MFT) Neumann boundary conditions
hold [∂zψ(0) = ∂zψ(L) = 0] for h1 = 0 and c = 0. Upon
accounting for the one-loop corrections, Eq. (55) is modified
as in Eq. (41) and it turns into6

μ = −∂2
z ψ(z) + τψ(z) + 1

6gψ3(z) + 1
2gψ(z)G̊(z,z). (57)

Here, for simplicity, we use the notation G̊(z,z) ≡
G̊(r‖,r‖,z,z) which, due to translation invariance, does actually
not depend on r‖. We anticipate that consistency with the ε ex-
pansion of the one-loop free energy [which includes terms up to
O(ε0)] requires to use the mean-field Euler-Lagrange equation
in Eq. (55) instead of Eq. (57) in order to obtain ψ(z). The rea-
son is that ψ itself is a quantity of O(g−1/2), implying that the
last term on the right hand side in Eq. (57) becomes formally of
O(ε1/2) (see, e.g., Ref. [53] and the discussion in Sec. IV A 2).
Accordingly, in the grand canonical ensemble one has,
analogously to Eq. (55), the mean-field equation of state

h = −∂2
z ψ(z) + τψ(z) + 1

6gψ3(z). (58)

Equation (56) continues to hold for the boundary conditions
in the grand canonical case.

Unless specified otherwise, the following expressions apply
to both the canonical and the grand canonical ensembles
because neither the constraint-induced field μ nor the bulk
field h appear explicitly in them. Instead, the information
about the constraint or the external field is implicitly contained
in the mean-field contribution ψ (see also the discussion in
Sec. II E). The expression of H(2) [Eq. (20)] follows from
a second functional differentiation of the right hand side of
Eq. (54) with respect to ψ(r′):

H(2)(r,r′; [ψ]) = {−∇2 + L′′
b[ψ(z)]

+ δ(z − L){∂z + L′′
s [ψ(z)]}

+ δ(z){−∂z + L′′
s [ψ(z)]}}δ(r − r′)

= {−∇2
r‖ − ∂2

z + τ + 1
2gψ2(z)

+ δ(z − L)(∂z + c) + δ(z)(−∂z + c)
}

× δ(r‖ − r′
‖)δ(z − z′). (59)

Accordingly, the definition in Eq. (21) yields the following
differential equation for the (unconstrained) Green function G:[−∇2

r‖ − ∂2
z + τ + 1

2gψ2(z)
]
G(r‖,r′

‖,z,z
′)

= δ(r‖ − r′
‖)δ(z − z′), (60)

together with the boundary conditions

∂zG(r‖,r′
‖,z,z

′)|z=zs
= ±L′′

s [ψ(z)]G(r‖,r′
‖,zs,z

′), (61)

where zs ∈ {0,L} denotes the position of one of the sur-
faces, z′ is off the surface, and the minus (plus) sign
applies to the case zs = L (zs = 0). In the case of Dirichlet
boundary conditions, Eq. (61) reduces to G(r‖,r′

‖,zs,z
′) =

G(r‖,r′
‖,z,z

′
s) = 0, while for Neumann boundary conditions,

one has ∂zG(r‖,r′
‖,z,z

′)|z=zs
= 0. In the case of periodic

boundary conditions in the transverse direction, instead of

6Concerning methods to solve Eq. (57) we refer to Refs. [55,82],
which discuss the analogous grand canonical case.
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Eq. (61), one has G(r‖,r′
‖,z + L,z′ + L) = G(r‖,r′

‖,z,z
′) for

all z and z′.
In order to proceed, we introduce a complete set of

orthonormal eigenfunctions σk‖,n of the operator contained
in the curly brackets in H(2) [Eq. (59)]:

σk‖,n(r) = 1√
A

exp(ik‖ · r‖)ςn(z), (62)

where and A =∏d−1
α=1 Lα and k‖ is determined by the periodic

boundary conditions in all lateral directions α = 1, . . . ,d − 1
of extent Lα as

k‖α = 2πnα

Lα

, with nα = 0,±1,±2, . . . . (63)

The eigenfunctions ςn and the corresponding index n pertain
to the transverse direction and the associated boundary
conditions. Denoting the eigenvalue of the operator −∂2

z +
(g/2)ψ2(z) as En, the bulk term in Eq. (59) yields the
eigenvalue equation for σk‖,n:[−∇2

r‖ − ∂2
z + τ + 1

2gψ2(z)
]
σk‖,n(r‖,z)

= (k2
‖ + τ + En)σk‖,n(r‖,z), (64)

which, using Eq. (62), results in an eigenvalue equation for ςn:[
k2

‖ − ∂2
z + τ + 1

2gψ2(z)
]
ςn(z) = (k2

‖ + τ + En)ςn(z). (65)

The boundary terms in Eq. (59) imply the boundary conditions

∂zςn(zs) = ±L′′
s [ψ(zs)]ςn(zs) = ±c ςn(zs), (66)

where, as before, zs ∈ {0,L} and the minus (plus) sign applies
to the case zs = L (zs = 0). Periodic boundary conditions in
the transverse directions imply ςn(z + L) = ςn(z) for all z,
replacing Eq. (66). Also, the functions ςn fulfill completeness
and orthonormality relations, i.e.,∑

n

ς∗
n (z)ςn(z′) = δ(z − z′), (67a)

∫ L

0
dz ς∗

n (z)ςm(z) = δn,m. (67b)

The formal solution of Eqs. (60) and (61) can now be given
in terms of the spectral representation of the Green function:

G(r‖,r′
‖,z,z

′) = 1

A

∑
k‖,n

eik‖·(r‖−r′
‖)ςn(z)ς∗

n (z′)
k2

‖ + τ + En

. (68)

Due to the assumed translational invariance along the lateral
directions, G in fact depends only on the difference r‖ − r′

‖.

It is therefore convenient to introduce its Fourier transform Ĝ

along the lateral coordinates

Ĝ(p,z,z′) = A

∫
A

dd−1r‖ exp(−ip · r‖)G(r‖,0,z,z′)

= A
∑

n

ςn(z)ς∗
n (z′)

p2 + τ + En

, (69)

referred to as the pz representation of G. Here, consistently
with the periodicity of G(r‖,0,z,z′) along the lateral directions,
the components of p take the discrete values pα = 2πnα/Lα ,

with nα = 0,±1,±2, . . . for α = 1, . . . ,d − 1. In obtaining
the last expression in Eq. (69), we have furthermore used
Eq. (B4). The transverse area A appears as a prefactor because
here we consider Ĝ to be a function of only a single wave
vector p, whereas, in real space, G is defined as a function
of two positions r‖ and r′

‖ (see Appendix B). The fluctuating
field σ [see Eq. (13)] can also be expanded in terms of the
eigenfunctions in Eq. (62):

σ (r‖,z) = 1√
A

∑
k‖,n

cn(k‖) exp(ik‖ · r‖)ςn(z), (70)

with the coefficients cn given by cn(k‖) = (1/
√

A)
∫ L

0 dz∫
A

dd−1r‖ exp(−ik‖ · r‖)ς∗
n (z)σ (r‖,z). Since Eq. (16) con-

strains the function σ as a whole, nothing can be stated at
this point about each individual cn, except that

0 =
∫

A

dd−1r‖
∫ L

0
dz σ (r‖,z)

=
√

A
∑

n

cn(0)
∫ L

0
dz ςn(z). (71)

In particular, we emphasize that it is not justified to include in
the expansion in Eq. (70) only those eigenfunctions ςn which
satisfy the constraint in Eq. (16) [with w = 1, see Eq. (53)].

In order to be able to calculate the constrained Green func-
tion G̊ [Eq. (26)] and the constrained free energy F̊ [Eq. (34)],
expressions for the quantities (G,1) and (1,G,1) have to be
worked out. Making use of the spectral representation of G

[Eq. (68)] as well as of Eqs. (B4) and (69), we eventually find

(G,1)z =
∫

A

dd−1r ′
‖

∫ L

0
dz′ G(r‖,r′

‖,z,z
′)

= 1

A

∫ L

0
dz′Ĝ(p = 0,z,z′). (72)

As a consequence of translational invariance, this expression
does not depend on the lateral coordinate r‖. The quantity
(1,G,1) follows as

(1,G,1) =
∫

A

dd−1r‖
∫

A

dd−1r ′
‖

∫ L

0
dz

∫ L

0
dz′ G(r‖,r′

‖,z,z
′)

=
∫ L

0
dz

∫ L

0
dz′Ĝ(p = 0,z,z′) , (73)

which, in general, does not vanish (see Sec. III B below), so
that the generating functional defined in Eq. (27) applies to the
constrained case. The pz representation of the constrained
correlation function in Eq. (36) follows, analogously to
Eq. (69), as

ˆ̊
C(p,z,z′) = Ĝ(p,z,z′) − A2δp,0

(G,1)z(G,1)z′

(1,G,1)
. (74)

The constrained (canonical) free energy F̊ within the Gaussian
approximation [see Eq. (34)] takes the form

F̊(�) = H[ψ] + 1

2

∑
k‖

∑
n

ln(k2
‖ + τ + En)

+1

2
ln[2π (1,G,1)]. (75)
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The right hand side of this expression depends on � via
the mean field ψ [Eqs. (53) and (55)], the eigenvalues En

[Eq. (65)], and the Green function [Eq. (60)]. The second
term in Eq. (75) requires a suitable regularization in order
to render a physically meaningful, finite result. This issue
as well as the relevance of the constraint correction will be
discussed in Sec. III C below. We recall that in Eq. (75) we
have suppressed the lattice constant a, the presence of which
is implied within the corresponding discrete field theory via the
definition of the functional integral in Eq. (10). Accordingly,
the arguments of the first and second logarithms in Eq. (75)
would have to be multiplied by a2 and a2+d , respectively,
which renders them dimensionless (see, e.g., Refs. [50,51]
and Appendix A). However, a physical observable with
universal features, such as the CCF, is independent of the
lattice constant.

B. Specialization to various boundary conditions

We now specialize the general expressions derived above to
single-phase systems having periodic, Dirichlet, or Neumann
boundary conditions at both boundaries z = 0 and L. Within
the Gaussian approximation, the latter two boundary condi-
tions are realized by setting h1 = 0,c = ∞ and h1 = 0,c = 0,
respectively, in Ls [Eq. (49)]. In the case of periodic boundary
conditions, instead, one has Ls = 0 and requires φ(r‖,0) =
φ(r‖,L). In all cases, periodic boundary conditions along the
lateral directions are applied (see Fig. 1). The calculation of the
regularized free energy [see Eq. (75)] is deferred to Sec. III C.

1. Periodic boundary conditions

For periodic boundary conditions along the z direction, the
system is homogeneous in all directions, with the mean OP
[see Eqs. (15) and (48)]

ϕ ≡ �

V
= ψ(r), (76)

which does not vary spatially. Within the mean-field approx-
imation, ϕ is determined by Eq. (55), which, for periodic
boundary conditions, turns into

τϕ + 1
6gϕ3 = μ. (77)

The parameter μ must be chosen such that the constraint
in Eq. (76) is obeyed by the solution of Eq. (77) for ϕ.
The orthonormal eigenfunctions σk ≡ σk‖,n [see Eq. (62)]
are given by

σk(r) = 1√
V

exp (ik · r)

with kα = 2πnα

Lα

and nα = 0,±1,±2, . . . , (78)

for α = 1,2, . . . ,d and V =∏d
α=1 Lα . Note that here we have

simplified the notation used in Eq. (62). The functions σk
in Eq. (78) fulfill the eigenvalue equation in Eq. (64) with
En = k2

z + (g/2)ϕ2 and n ≡ nz (denoting by z the last of the
d Cartesian coordinates). The temperature parameter τ enters

these expressions in combination with the mean OP density ϕ

in the form of an effective, shifted temperature

τ̂ ≡ τ + 1
2gϕ2. (79)

Due to Eq. (B4), the eigenfunctions in Eq. (78) for periodic
boundary conditions include a single zero mode σk=0, which
is spatially constant. Accordingly, the Green function G(p) has
the spectral representation [see Eq. (68)]

G(p)(r,r′) = 1

V

∑
k

eik·(r−r′)

k2 + τ̂
. (80)

By using this equation together with Eq. (B4), one readily
finds

(G(p),1)r =
∫

r′
G(p)(r,r′) = 1

τ̂
(81)

and

(1,G(p),1) =
∫

r

∫
r′

G(p)(r,r′) = V

τ̂
. (82)

Since χ = 1/τ̂ is the susceptibility within MFT, these results
confirm the estimates in Eq. (45).

In order to gain further insight into the effect of the
constraint on the free energy, we insert Eq. (82) into Eq. (75)
and obtain

F̊ (p)(�) = H[ϕ] + 1

2

∑
k

ln(k2 + τ̂ ) + 1

2
ln

(
2πV

τ̂

)

= H[ϕ] + 1

2

∑
k

k 
= 0

ln(k2 + τ̂ ) + 1

2
ln (2πV ).

(83)

As expected for this particular case, the effect of the constraint
consists of, apart from generating an additional term ∝ln V ,
the cancellation of the zero-mode contribution from the free
energy. [Regarding the dimensions of the last two terms in
Eq. (83), see the discussions after Eqs. (10) and (75).] Con-
strained free energies of the type given in Eq. (83) have in fact
been studied previously in the context of finite-size criticality
within the grand canonical ensemble [32,47,48,50,51,56,57].
Here, we have obtained Eq. (83) by explicitly taking into
account the OP constraint. In particular, the contribution ∝ln V

in Eq. (83) is relevant for the calculation of the canonical CCF.
Finite-size properties of the free energy will be investigated
further in Sec. III C below.

According to Eq. (36), the correlation function C̊(p) of
a constrained system with periodic boundary conditions is,
within the Gaussian approximation, given by

C̊(p)(r − r′) = G̊(p)(r − r′) = 〈σ (r)σ (r′)〉

= G(p)(r − r′) − 1

τ̂V
= 1

V

∑
k

k 
= 0

eik·(r−r′)

k2 + τ̂
. (84)

As expected from Eq. (37), one has
∫

r C̊(p)(r) = 0. Since
C(p)(r) typically vanishes exponentially upon increasing |r|,
the fact that C̊(p) is shifted by the amount −1/(τ̂V ) relative to
C(p) = G(p) means that the constraint induces anticorrelations
of fluctuations at large distances. However, at least within
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the Gaussian approximation, the constraint does not cause
C̊(p)(r) to approach its limit for large |r| differently than
in the unconstrained system. We finally note that, in the
continuum limit, i.e., with

∑
k → V

(2π)d
∫

k, Eq. (80) becomes

G(p) � (2π )−d
∫

k eik·(r−r′)/(k2 + τ̂ ), showing that G(p) is a
quantity of O(V 0). Hence, for V → ∞, which includes the
case of a film with A → ∞ at finite L, it follows from Eq. (84)
that G̊(p) = G(p), as anticipated in Eq. (47).

2. Dirichlet boundary conditions

For a system with Dirichlet boundary conditions at z = 0
and L, the mean OP ψ within MFT is determined by [Eq. (55)]

− ψ ′′(z) + τψ(z) + 1
6gψ3(z) = μ,

with ψ(0) = ψ(L) = 0. (85)

According to Eqs. (66) and (70), the fluctuating component
σ of the OP [see Eq. (13)] also fulfills Dirichlet boundary
conditions, i.e., σ (r‖,0) = σ (r‖,L) = 0. For nonvanishing μ,
an explicit analytical solution of Eq. (85) is not available.7

Although in principle Eq. (85) can be solved numerically, this
poses additional challenges due to the presence of a spatially
varying profile ψ(z). For the purpose of highlighting the effects
of the constraint, in the following we focus on the simpler case
μ = 0 (and τ � 0), corresponding to a vanishing total mass
� = 0, for which Eq. (85) is solved by

ψ = 0 = ϕ. (86)

Consequently, the set of orthonormal eigenfunctions ςn [see
Eq. (62)] is given by

ς (D)
n (z) =

√
2

L
sin
(π

L
nz
)
, n = 1,2, . . . (87)

with eigenvalues [see Eq. (65)]

E(D)
n =

(π

L
n
)2

, (88)

as in the grand canonical ensemble [59]. Since∫ L

0
dz ς (D)

n (z) =
{

2
√

2L
π n

, odd n

0, even n
(89)

all eigenfunctions ς (D)
n with odd n contribute to the fluctuation

constraint in Eq. (71), in contrast to the case of periodic
boundary conditions, in which only the mode [see Eq. (78)]
with k = 0 contributes. The Green function can be straight-
forwardly obtained by solving the differential equation in
Eq. (60), subject to the boundary conditions given in Eq. (61)
(with ψ = 0 and L′′

s [ψ] = c = ∞), in the pz representation
[see Eq. (69)]. This yields [44,60,61]

Ĝ(D)(p,z,z′)

= A
cosh[κ(L − |z − z′|)] − cosh[κ(L − z − z′)]

2κ sinh(κL)
,

with κ ≡
√

p2 + τ . (90)

7For μ = 0, instead, see, e.g., the Appendix in Ref. [60]

Ĝ(D) is symmetric with respect to z ↔ z′ and it has a finite
limit for κ → 0:

Ĝ(D)(p = 0,z,z′)|τ=0 = A min(z,z′)
(

1 − max(z,z′)
L

)
. (91)

The evaluation of the two-point correlation function C̊ accord-
ing to Eq. (36) requires the calculation of the term (G(D),1)
defined in Eq. (72), which is easily inferred from Eq. (90):

(G(D),1)z = 1

A

∫ L

0
dz′Ĝ(D)(p = 0,z,z′)

= sinh(L
√

τ ) − sinh[(L − z)
√

τ ] − sinh(z
√

τ )

τ sinh(L
√

τ )
.

(92)

This quantity is finite for all τ � 0 and, for τ → 0, it turns into
(G(D),1)z|τ→0 = (L − z)z/2. Further integrations over r‖ and
z of Eq. (92) yield [see Eq. (73)]

(1,G(D),1) =
∫ L

0
dz

∫ L

0
dz′ Ĝ(D)(p = 0,z,z′)

= AL3

[
1

τL2
− 2

(τL2)3/2
tanh(L

√
τ/2)

]
.

(93)

For τL2 → 0, (1,G(D),1) is finite with the expansion

(1,G(D),1) �
{

AL3
(

1
12 − 1

120τL2
)

for τL2 → 0,

AL3

τL2 for τL2 → ∞,

(94)

where the latter behavior also applies to the case τ → ∞
at fixed L. In contrast, for L → ∞ at fixed τ , one has
(1,G(D),1) � AL/τ .

In the pz representation, the constraint-induced correlation

function ˆ̊
C(D) [Eq. (74)] for Dirichlet boundary conditions is

then given by

ˆ̊
C(D)(p,z,z′) = Ĝ(D)(p,z,z′) − A2δp,0

(1,G(D))z(1,G(D))z′

(1,G(D),1)
.

(95)

Note that both terms on the right hand side of Eq. (95) are
proportional to A. Figure 2 illustrates the typical behavior

of ˆ̊
C(D)(p = 0,z,z′) as a function of z for a fixed value of

z′. In contrast to the corresponding unconstrained correlation
function Ĉ, which takes only positive values and is identical

to Ĝ(D), ˆ̊
C(D)(p = 0,z,z′) is modified such that, in accordance

with Eq. (37), the integral over either of its arguments z and z′
vanishes.

3. Neumann boundary conditions

In the case of Neumann boundary conditions the mean OP
ψ is determined by Eq. (55). For τ � 0, this equation is solved
by a constant OP profile ψ(z) = ϕ, which fulfills

τϕ + 1
6gϕ3 = μ (96)
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FIG. 2. Correlation function ˆ̊
C(D)(p,z,z′) [Eq. (95), solid black

line], Green function Ĝ(D)(p,z,z′) [Eq. (90), dashed blue line,
corresponding to the correlation function in the unconstrained case],
and the correction term due to the constraint given by the second
term on the right hand side of Eq. (95) (dotted red line) for Dirichlet
boundary conditions and p = 0. For illustrative purposes, we have
chosen here τL2 = 25 and z′ = L/4, but the qualitative features of
the various curves (such as the cusp at z = z′) do not depend on this
specific choice. Note that both terms on the right hand side of Eq. (95)
are proportional to A.

and satisfies the boundary conditions ψ ′(0) = ψ ′(L) = 0.
Equations (65) and (66) for the eigenfunctions ςn(z) turn into(−∂2

z + τ + 1
2gϕ2

)
ςn(z) = (τ + En)ςn(z),

ς ′
n(0) = ς ′

n(L) = 0. (97)

As in the case of periodic boundary conditions [see Eq. (79)],
the temperature parameter τ enters these expressions in
combination with the mean OP ϕ in the form given by Eq. (79).
Equation (97) is solved by the eigenfunctions

ςn(z) =
⎧⎨⎩

1√
L
, n = 0√

2
L

cos
(

π
L
nz
)
, n = 1,2, . . .

(98)

with eigenvalues

En = 1

2
gϕ2 +

(π

L
n
)2

. (99)

Since ∫ L

0
dz ςn(z) =

{√
L, n = 0

0, n = 1,2, . . . ,
(100)

Neumann boundary conditions entail a well-defined zero
mode σk‖=0,n=0, similarly to the case of periodic boundary
conditions. Equations (72) and (73), upon using Eq. (68),
render the expressions

(G(N),1)r = 1

τ̂
(101)

and

(1,G(N),1) = V

τ̂
, (102)

which coincide with the ones obtained for periodic boundary
conditions and reported in Eqs. (81) and (82). The (uncon-
strained) Green function in the pz representation [see Eq. (69)]

is given by [44]

Ĝ(N)(p,z,z′)

= A
cosh[κ(L − |z − z′|)] + cosh[κ(L − z − z′)]

2κ sinh(κL)
, (103)

with κ ≡
√

p2 + τ̂ . According to Eqs. (26), (101), and (102),
the presence of the constraint simply gives rise to an overall
τ -dependent shift of the unconstrained correlation function, as
it is the case for the periodic boundary conditions discussed
above.

C. Canonical free energy

Here, we discuss, within the one-loop (Gaussian) approx-
imation, the canonical free energy F̊ [Eq. (75)] for finite
systems with aspect ratio

ρ ≡ L

A1/(d−1)
(104)

and exhibiting periodic, Dirichlet, or Neumann boundary
conditions at both surfaces, located at z = 0 and L. In all
three cases, periodic boundary conditions are imposed in the
remaining lateral directions and phase separation is excluded.
Analytical results for the finite-size free energy of constrained
systems with periodic boundary conditions have been pre-
sented for ρ = 1, e.g., in Refs. [29,47,62–64] and, for ϕ = 0
and arbitrary ρ, in Refs. [50,51]. The finite-size free energy for
Dirichlet boundary conditions and cubical volumes (i.e., ρ =
1) has been studied, e.g., in Refs. [57,65]. With the exception of
Ref. [29], these studies aimed, however, for the grand canonical
free energy [which, according to Eq. (12), can be constructed
from the canonical free energy discussed here]. Instead, here
we focus on the canonical ensemble and, extending previous
studies, we allow also for a nonzero mean OP ϕ in the case
of periodic and Neumann boundary conditions. The details
of the corresponding perturbative calculation are deferred
to Appendix C. The results reported here are subsequently
improved in Sec. IV by means of renormalization group theory.

Analogously to what is expected for the grand canonical
free energy F [27,66], the canonical free energy F̊ of a d-
dimensional system of volume V = AL decomposes into a
bulk ( f̊

b
), a surface ( f̊

s
), and a residual finite-size contribution

F̊res [see also Eq. (121) below]:

F̊(τ,ϕ,A,L) = ALf̊
b
(τ,ϕ) + Af̊

s
(τ,ϕ) + AF̊res(τ,ϕ,ρ,L).

(105)

We anticipate that in our case the residual finite-size free
energy (per area A) F̊res depends on the area only via the
aspect ratio ρ. Explicitly, from Eq. (75), the total, regularized
free energies for periodic, Dirichlet, and Neumann boundary
conditions turn out to be [see Eqs. (C11), (C19), and (C28)]

F̊ (p) = AL

[
Lb(ϕ) − Ad

d
τ̂ d/2

]
+ 1

2
AL−d+1S (p)

d,reg(τ̂L2,ρ) + δF (p)(τ̂ ,A,L), (106a)

F̊ (D) = −AL
Ad

d
τd/2 + A

2

Ad−1

d − 1
τ (d−1)/2

+ 1

2
AL−d+1S (D)

d,reg(τL2,ρ) + δF (D)(τ,A,L), (106b)
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F̊ (N) = AL

[
Lb(ϕ) − Ad

d
τ̂ d/2

]
− A

2

Ad−1

d − 1
τ̂ (d−1)/2

+ 1

2
AL−d+1S (N)

d,reg(τ̂L2,ρ) + δF (N)(τ̂ ,A,L), (106c)

where
Ad ≡ −(4π )−d/2�(1 − d/2) (107)

and τ̂ is defined in Eq. (79) {recall that, for Dirichlet boundary
conditions, τ̂ = τ because in that case we focus on the
choice ϕ = 0 [see Eq. (86)]}. The quantities S (p)

d,reg, S (D)
d,reg,

and S (N)
d,reg represent the regularized dimensionless expressions

of the corresponding mode sum, i.e., the second term in
Eq. (75). They are given by [see Eqs. (C4), (C17), and (C25)]

S (p)
d,reg(x̂,ρ) =

∫ ∞

0
dy y−1 exp

(
− x̂y

4π2

)

×
{(

π

y

)d/2

− [ρ ϑ(ρ2y)]d−1ϑ(y)

}
, (108a)

S (D)
d,reg(x,ρ) = 2−dS (p)

d,reg(4x,2ρ) − 1

2
ρd−1S (p)

d−1,reg(x/ρ2,1),

(108b)

S (N)
d,reg(x̂,ρ) = 2−dS (p)

d,reg(4x̂,2ρ) + 1

2
ρd−1S (p)

d−1,reg(x̂/ρ2,1)

(108c)

for periodic, Dirichlet, and Neumann boundary conditions,
respectively. In Eq. (108a), ϑ is a Jacobi theta function [see
Eq. (C5)]. In Eq. (108), we introduced the notions x = τL2 and
x̂ = τ̂L2. For all these boundary conditions, far from criticality
one has

Sd,reg(x̂ → ∞,ρ) → 0. (109)

For periodic and Neumann boundary conditions, Sd,reg(x̂,ρ)
diverges logarithmically upon approaching bulk criticality, i.e.,
for x̂ → 0 [see Eq. (C6)]:

S (p,N)
d,reg (x̂ → 0,ρ) � ρd−1 ln x̂, (110)

while S (D)
d,reg is finite in that limit. We shall return to this aspect

in Sec. III D. The quantities δF (p,D,N) in Eq. (106) represent
the correction stemming from the OP constraint in Eq. (53).
Within the one-loop approximation, one has [see Eqs. (82),
(93), and (102)]

δF (τ̂ ,A,L) = 1

2
ln [2π (1,G,1)] =

⎧⎪⎪⎨⎪⎪⎩
1
2 ln 2πV

τ̂
, periodic

1
2 ln
{
2πV L2

[
1

τL2 − 2
(τL2)3/2 tanh(L

√
τ/2)

]}
, Dirichlet

1
2 ln 2πV

τ̂
, Neumann

(111a)

(111b)

(111c)

for the indicated boundary conditions. It is interesting to
note that the same form of the constraint correction δF (p)

as in Eq. (111a) is obtained also for an uncorrelated Gaussian
field [which is described by the Hamiltonian

∫
V

ddr τφ2(r)/2
instead of the one in Eq. (49)] in a finite volume (see
Appendix A). Since the perturbation theory in the canonical
ensemble is based on the modified Green function G̊ [see
Eq. (26)], higher-order constraint corrections are, however,
sensitive to the presence of a finite correlation length in the
system [see, e.g., Eq. (43)].

In view of the formulation of the scaling theory in Sec. IV
below, it is convenient to cast δF given by Eq. (111) into the
form

δF (τ̂ ,A,L)

=
{

δF
(p,N)
s (τ̂L2,ρ) + δFns(L), periodic, Neumann

δF (D)
s (τL2,ρ) + δFns(L), Dirichlet

(112)

where

δF (p,N)
s (x̂,ρ) = −1

2
ln

ρd−1x̂

2π
, (113a)

δF (D)
s (x,ρ) = 1

2
ln

{[
1

x
− 2

x3/2
tanh(

√
x/2)

]
2πρ−d+1

}
(113b)

is a “scaling” contribution, which is specific to each boundary
condition, while

δFns(L) = 1
2 ln Ld+2 (114)

is a “nonscaling” contribution, which is common to all
boundary conditions considered here. Upon reinstating the
lattice spacing a, which we formally disregarded in taking the
continuum limit [see Eq. (10)], the arguments of the logarithms
in Eqs. (111) and (114) are divided by a factor ad+2, which
renders them dimensionless [compare Eq. (A12)].

According to Eq. (105), the residual finite-size free energy
per volume, f̊res, is given by

f̊res = F̊ − ALf̊
b
− Af̊

s

AL
= F̊res

L
, (115)

which, upon using Eqs. (106) and (112) and noting that AL =
Ld/ρd−1 [see Eq. (104)], can be expressed as

f̊res(τ,ϕ,ρ,L) = L−d [�̊(τ̂L2,ρ) + ρd−1δFns(L)]. (116)

The scaling function �̊ introduced in this expression contains
the contribution δFs from the constraint correction given in
Eq. (113):

�̊(x̂,ρ) = 1
2Sd,reg(x̂,ρ) + ρd−1δFs(x̂,ρ). (117)

Note that the divergence of S (p,N)
d,reg for x̂ → 0 [see Eq. (110)] is

canceled by that of δF
(p,N)
s [Eq. (113a)], such that �̊ remains
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finite for x̂ = 0. In the case of Dirichlet boundary conditions,
neitherS (D)

d,reg [Eq. (108b)] nor δF (D)
s [Eq. (113b)] diverge in the

limit x → 0. Accordingly, at bulk criticality, f̊res [Eq. (116)]
generally scales ∝L−d while F̊res [Eqs. (105) and (115)]
scales ∝L−(d−1), as in the grand canonical ensemble. Since
Sd,reg(x̂ → ∞) → 0, the canonical scaling function �̊ turns
out to diverge logarithmically for x̂ � 1, i.e.,

�̊(x̂ � 1,ρ) � −1

2
ρd−1 ln

x̂ρd−1

2π
, (118)

due to the term δFs in Eq. (113). This behavior applies to all
three boundary conditions considered here. In the thin-film
limit, one has �̊(x̂ � 1,ρ → 0) → 0. The residual finite-size
free energy will be discussed further in Sec. V.

D. Grand canonical free energy

For comparison, here we report the corresponding expres-
sions for the one-loop free energy F(τ,h,A,L) in the grand
canonical ensemble. Field theory yields the well-known pertur-
bative expression forF in Eq. (35) [29,47,50,51,57,59,62–65].
The corresponding regularized forms of F coincide with the
ones in Eq. (106) for the various boundary conditions, except
for the fact that Lb(ϕ) is replaced by Lb(ϕ,h) ≡ Lb(ϕ) − hϕ

[see Eq. (51)] and that the constraint-induced term δF

[Eq. (111)] is absent:

F (p) = AL

(
Lb(ϕ,h) − Ad

d
τ̂ d/2

)
+ 1

2
AL−d+1S (p)

d,reg(τ̂L2,ρ), (119a)

F (D) = −AL
Ad

d
τd/2 + A

2

Ad−1

d − 1
τ (d−1)/2

+ 1

2
AL−d+1S (D)

d,reg(τL2,ρ), (119b)

F (N) = AL

(
Lb(ϕ,h) − Ad

d
τ̂ d/2

)
− A

2

Ad−1

d − 1
τ̂ (d−1)/2

+ 1

2
AL−d+1S (N)

d,reg(τ̂L2,ρ). (119c)

The expressions for Sd,reg are reported in Eq. (108). In the
case of periodic and Neumann boundary conditions, the mean
OP ϕ is a function of the bulk field h via the equation of state,
which, within the presently considered approximation, is given
by Eq. (58):

h = ∂ϕLb(ϕ) = τϕ + 1
6gϕ3. (120)

Equation (120) takes already into account that for periodic
and Neumann boundary conditions the system is spatially
homogeneous so that ψ(r) = ϕ. For Dirichlet boundary
conditions, as explained below Eq. (85), we focus on the
simple case h = 0, i.e., ϕ = 0. Note that Eq. (120) in fact
coincides with the equation of state for the corresponding
bulk system. Finite-size corrections enter through higher loop
orders, analogous to Eq. (57). The renormalized forms of these
expressions will be discussed in Sec. IV below.

As it is well known from general finite-size scaling
arguments [27,66,67], the grand canonical free energy F

of a confined d-dimensional system of volume V = AL

decomposes into a bulk (f
b
), a surface (f

s
), and a residual

finite-size Fres contribution [compare Eq. (105)]:

F(τ,h,A,L) = ALf
b
(τ,h) + Af

s
(τ,h) + AFres(τ,h,ρ,L).

(121)

Crucially, in order to be able to cast Eq. (119) into the form
prescribed by Eq. (121),F must be first expressed as a function
of the bulk field h, which is the relevant thermodynamic control
parameter in the grand canonical ensemble. In their present
form, the expressions in Eq. (119) are still explicit functions
of ϕ. To proceed, any ϕ occurring in Eq. (119) must therefore
be replaced by the ϕ(h) determined from the equation of state.
Before turning to the specific approximation for the latter as
given by Eq. (120), for the time being we adopt a generic
equation of state of the form ϕ = ϕ(τ,h,ρ,L). In this case,
bulk and surface free energies can be identified based on their
scaling behavior with L according to Eq. (121). In particular,
the bulk limit is obtained by taking L → ∞ and by assuming A

to be either constant or to scale with a certain positive power of
L (the precise formulation does not matter here). Accordingly,
from Eq. (119) the bulk free energy follows as

fb(τ,h) = lim
L→∞

F
AL

= f̊
b
(τ,ϕb) − hϕb

= Lb(ϕb,h) − Ad

d
[τ̂ (τ,ϕb)]d/2, (122)

with the bulk OP given by

ϕb = ϕb(τ,h) = lim
L→∞

ϕ(τ,h,ρ,L). (123)

The surface free energy (per area A) is defined as the L-
independent part of the total free energy. Therefore, it can be
obtained as the dominant contribution toF in the limit L → ∞
after subtracting the bulk contribution f

b
:

f
s
(τ,h) = 1

A
lim

L→∞
[F(τ,h,ρ,L) − ALf

b
(τ,h)]. (124)

Note that the limit L → ∞ implies again the use of the bulk
OP for the evaluation of f

s
. Neumann boundary conditions are

the only case considered in this study for which f
s

does not
vanish, and Eq. (119c) yields

f (N)
s

(τ,h) = −1

2

Ad−1

d − 1
τ̂ (d−1)/2

∣∣∣∣
ϕ=ϕb

. (125)

The residual finite-size free energy per volume fres = Fres/V

in the grand canonical ensemble follows according to Eq. (121)
as

fres(τ,h,ρ,L)

= f (τ,h,ρ,L)|ϕ(h) − f
b
(τ,h)|ϕb(h) − 1

L
f
s
(τ,h)|ϕb(h), (126)

with f ≡ F/V . Since one generally expects ϕ 
= ϕb due to
finite-size effects (see, e.g., Refs. [43,68]), it follows from
Eq. (126) that the residual finite-size free energy in this
case does not necessarily coincide with the last term in
each of the Eqs. (119a)–(119c), in spite of the fact that they
apparently display the appropriate scaling as a function of L,
but for fixed ϕ only. However, within the presently considered
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approximation of O(g0) for the equation of state in Eq. (120),
finite-size effects are absent and therefore

ϕ(h) = ϕb(h) + O(g). (127)

Accordingly, Eqs. (119) and (126) immediately yield

fres(τ,h,ρ,L) = L−d�(τ̂L2,ρ)|ϕ(h) (128)

with the scaling function

�(x̂,ρ) = 1
2Sd,reg(x̂,ρ) + O(g). (129)

The subscript on the right hand side of Eq. (128) indicates that
τ̂ [Eq. (79)] is to be evaluated by using ϕ = ϕ(h).

According to Eqs. (110) and (129), the grand canonical
residual finite-size free energy for periodic and Neumann
boundary conditions diverges logarithmically for x̂ → 0 in the
case ρ > 0, while this divergence is absent in the thin-film limit
(ρ = 0). This behavior is a well-known artifact of perturbation
theory and stems from the contribution of the zero mode
to the free energy [47–50,69,70] [see also Eq. (83) and the
related discussion]. In order to overcome this problem, the
zero mode must be treated nonperturbatively, which results
in a finite residual finite-size free energy for x̂ = 0. Since
here we are interested in a comparison between the canonical
and grand-canonical ensembles, we do not consider such im-
provements of the theory further. Instead, we note that, for the
grand canonical ensemble in the case ρ > 0, the perturbative
expressions of the residual finite-size free energy and the CCF
for periodic and Neumann boundary conditions are reliable
only for x̂ � 1. Since Dirichlet boundary conditions do not
involve zero-mode fluctuations, the perturbative results for
�(D) are well behaved for all x � 0.

IV. RENORMALIZATION AND SCALING

A. Residual finite-size free energy

1. Canonical residual finite-size free energy

In order to be applicable in the critical regime, the perturba-
tive results of Sec. III must be renormalized [46,53]. On general
grounds, it is expected that the short-distance singularities of
field theory are not affected by the finiteness of the volume of
the system [46,53,56,62,71]. As it has been shown in Ref. [29],
renormalization based on minimal subtraction of dimensional
poles in conjunction with an expansion in ε = 4 − d is
applicable also in the canonical ensemble and it requires
the same additive and multiplicative counterterms which are
known from the grand canonical case [44,59]. In particular, the
findings of Ref. [29] apply also to this study because here we
focus on planar surfaces only (compare Ref. [63]) and do not
consider surface correlation functions. Furthermore, because
off the surfaces neither Dirichlet nor Neumann boundary
conditions introduce new dimensional poles as d ↗ 4, the
same counterterms as for periodic boundary conditions can be
used in these cases as well. The renormalized (grand) canonical
free energy can be constructed by following the same steps
as in Refs. [29,44,59]; for further details we refer to these
studies.8 Along these lines one obtains the expected scaling

8Conventionally, the definition of the renormalized total free energy
involves the subtraction of the bare free energy and of its first two

laws for the free energy near the infrared renormalization
group (RG) fixed point, at which, within the ε expansion,
the renormalized coupling constant u is given by

u∗ = 1
3ε + O(ε2). (130)

We adopt the same conventions as in Refs. [44,59] and define
g = μεZuru, where μ is the RG momentum scale, Zu is the
standard Z factor for the coupling constant, and

r ≡ (4π )d/2. (131)

In the following, we focus directly on the renormalization of
the residual finite-size free energy, which turns out to not
require any additive renormalization in order to cancel its
dimensional poles (see also Ref. [70]). From Eq. (116), one
obtains the following finite-size scaling form of the residual
finite-size free energy per volume and per kBTc:

f̊
R,res(t,ϕR,ρ,L)

= L−d

⎡⎣�̊

⎛⎝x̂

⎛⎝x =
(

L

ξ
(0)
+

)1/ν

t,m =
(

L

ξ
(0)
ϕ

)β/ν

ϕR

⎞⎠,ρ

⎞⎠
+ ρd−1δFns(L)

⎤⎦, (132)

where t = (T − Tc)/Tc is the reduced temperature [Eq. (50)].
We recall that δFns(L) = (1/2) ln Ld+2 [see Eq. (114)] is a
contribution stemming from the constraint which cannot be
expressed solely in terms of scaling variables. The subscript R

indicates a dimensionless, renormalized quantity. Specifically,
t and ϕR can be related to the correlation length ξ (t,ϕR) via
the nonuniversal critical amplitudes ξ

(0)
+ and ξ (0)

ϕ [72]:

ξ (t → 0+,ϕR = 0) = ξ
(0)
+ t−ν, (133a)

ξ (t = 0,ϕR → 0) = ξ (0)
ϕ ϕ

−ν/β

R . (133b)

The amplitude ξ (0)
ϕ can be related to the amplitude ξ

(0)
h of

the correlation length at Tc as a function of the bulk field [see
Eq. (138) below]. The scaling variable corresponding to τ̂ ,
which has been introduced in Eq. (79), is defined by

x̂(x,m) ≡ x + 1
2 ru∗m 2. (134)

The expressions of the scaling functions �̊ are reported in
Eqs. (108), (113), and (117) for the respective boundary
conditions. Consistently with the considered one-loop approx-
imation for the free energy, the scaling functions �̊ are to
be evaluated to O(ε0), i.e., for d = 4. Since the constraint-
induced terms δFs,ns turn out to be ∝ρd−1, they are negligible in

temperature derivatives taken at a certain reference temperature (see,
e.g., Eq. (3.1) in Ref. [59]). With such a prescription, the non-scaling
contribution δFns [see Eqs. (106) and (114)] to the canonical free
energy is eliminated. However, such a definition also introduces a
shift of the renormalized residual finite-size free energy, which is
undesired for our purposes. Consistently with the literature (see, e.g.,
Refs. [26,59,70]), we therefore proceed by studying the un-subtracted
but renormalized residual finite-size free energy.
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the thin-film limit ρ → 0. They are also negligible, together
with f̊res, in the thermodynamic limit obtained for L → ∞. We
note that m 2 ∼ O(u−1), such that the last term in Eq. (134) is
actually of O(ε0). This expression and the equation of state
[see Eq. (140) below] are the only instances in which within
the approximation O(ε0) the renormalized coupling constant
u appears in the final expressions of the residual finite-size
free energy and of the CCF.

2. Grand canonical residual finite-size free energy

Here, we summarize the scaling forms obtained for the
grand canonical residual free energy based on the renormal-
ization of the perturbative results in Sec. III D. In particular,
at the fixed point, the RG yields the scaling property of the
renormalized grand canonical residual free energy per volume
and per kBTc (see, e.g., Refs. [44,59,70])

f
R,res(t,hR,ρ,L)

= L−d �̃

⎛⎝x =
(

L

ξ
(0)
+

)1/ν

t,h =
(

L

ξ
(0)
h

)βδ/ν

hR,ρ

⎞⎠.

(135)

The scaling function �̃(x,h,ρ) is related to �(x̂(x,m),ρ) in
Eq. (129) via

�̃(x,h,ρ) = �(x̂(x,m (x,h,ρ)),ρ), (136)

and m (x,h,ρ) is the scaling form of the equation of state
[see Eq. (142) below]. The renormalized bulk field hR can
be introduced on the basis of the correlation length [72]:

ξ (t = 0,hR → 0) = ξ
(0)
h h

−ν/�

R , (137)

which also serves as a definition of the amplitude ξ
(0)
h . It

is useful to recall the relation � = δβ between standard
bulk critical exponents. We emphasize that Eq. (133b) can
be obtained from Eq. (137) and from the relation ϕR(t =
0,hR → 0) = φ

(0)
h h

1/δ

R [72], which defines the amplitude φ
(0)
h

and thereby yields the expression

ξ (0)
ϕ = ξ

(0)
h

(
φ

(0)
h

)ν/β
(138)

for the amplitude ξ (0)
ϕ .

The equation of state exhibits the scaling form

hR(t,ϕR,ρ,L)

= L−βδ/νh

⎛⎝x =
(

L

ξ
(0)
+

)1/ν

t,m =
(

L

ξ
(0)
ϕ

)β/ν

ϕR,ρ

⎞⎠,

(139)

where the scaling function h results from Eq. (120) within the
approximation O(ε0) as

h (x,m,ρ) = xm + 1
6 ru∗m 3, (140)

which is, in fact, independent of ρ. Within that approximation,
this equation of state applies to all boundary conditions and
it coincides with the one in the bulk [see Eq. (127)]. An
alternative form of the equation of state can be obtained
from the total grand canonical free energy f

R
via the basic

thermodynamic relation ϕR = ∂f
R
/∂hR . This leads to the

scaling form (see, e.g., Ref. [43])

ϕR(t,hR,ρ,L)

= L−β/νm̂

⎛⎝x =
(

L

ξ
(0)
+

)1/ν

t,m =
(

L

ξ
(0)
h

)βδ/ν

h,ρ

⎞⎠. (141)

It can be shown that the scaling function m (x,h,ρ) ≡
m̂ (x,h,ρ)(ξ (0)

h )βδ/ν is universal [73]. In the bulk limit, i.e., for
x � 1 or h � 1, the scaling function m reduces to (see, e.g.,
Ref. [53])

m (x,h,ρ) = h1/δmb(xh−1/(δβ),ρ). (142)

Within the considered approximation O(ε0), Eq. (142) holds
for all x and h, where mb follows from Eq. (140) as9

mb(y,ρ) = {2y[
√

9(ru∗) + 8y3 − 3(ru∗)1/2]−1/3

− [
√

9(ru∗) + 8y3 − 3(ru∗)1/2]1/3}/(ru∗)1/2,

(143)

which is, in fact, independent of ρ. Finite-size effects for a
certain boundary condition enter the equation of state at O(ε).
Within field theory, the finite-size scaling function m (x,h,ρ)
has been investigated further, e.g., in Ref. [68].

B. Critical Casimir force

The critical Casimir force K (per area and per kBTc) is
defined in terms of the residual finite-size free energy Lfres per
area A and per kBTc [26–28]:

K ≡ −d (Lfres)

dL

∣∣∣∣
A=const

. (144)

We emphasize that this derivative is to be calculated by keeping
the area as well as the appropriate thermodynamic control
parameters of the respective ensemble constant: these are, in
the grand canonical ensemble, the reduced temperature t and
the bulk field hR , whereas in the canonical ensemble, these
are t and the total mass � [Eq. (53)]. Furthermore, in order
to obtain the CCF for a system with vanishing aspect ratio,
in Eq. (144) the limit ρ → 0 must be taken only at the end
of the calculation. Alternatively to Eq. (144), the CCF can be
defined as the pressure difference between the film and the
surrounding fluid. While these definitions are equivalent in the
grand canonical ensemble, this is not necessarily the case in
the canonical ensemble [43]. We briefly discuss these aspects
in Appendix D, but continue to use the definition in Eq. (144)
for the remainder of this study. The consequences of defining
the CCF under the condition of a fixed total volume V = AL

instead of a fixed area are discussed in Appendix E.
As alluded to above, in order to evaluate Eq. (144) in the

canonical ensemble, we have to take into account the global OP

9It is useful to note that Eq. (142) can expressed alternatively

as m (x,h,ρ) � ĥ
1/δ

m̂b(xĥ
−1/δβ

,ρ) with a scaling function m̂b(y,ρ) =
(ru∗)−1/2[2y(

√
9 + 8y3 − 3)

1/3 − (
√

9 + 8y3 − 3)
1/3

] and ĥ ≡
(ru∗)1/2h. This form shows explicitly that m and h are quantities
of O(u−1/2).
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constraint [Eq. (53)], ϕAL = � = const, which immediately
implies a dependence of the mean OP ϕ on L according to

dϕ

dL

∣∣∣∣
A=const

= −ϕ

L
, (145)

assuming a fixed transverse area A. (We note that, as a
consequence of this assumption, ρ varies upon changing L.)
From Eqs. (132) and (144) we then obtain the canonical CCF
(per area and per kBTc)

K̊(t,ϕR,ρ,L)

= L−d�̊

⎛⎝x =
(

L

ξ
(0)
+

)1/ν

t,m =
(

L

ξ
(0)
h

)β/ν

ϕR,ρ

⎞⎠, (146)

with the universal scaling function

�̊(x,m,ρ) = (d − 1) ˚̂�(x,m,ρ)

− 1

ν
x∂x

˚̂�(x,m,ρ) −
(

β

ν
− 1

)
m∂m

˚̂�(x,m,ρ)

− ρ∂ρ
˚̂�(x,m,ρ) + δ�̊ns(ρ), (147)

where ˚̂�(x,m,ρ) ≡ �̊(x̂(x,m),ρ). The contribution

δ�̊ns(ρ) ≡ − 1
2 (d + 2)ρd−1 (148)

stems from the nonscaling term δFns in Eq. (114). Note that,
while δFns is an explicitly L-dependent contribution to the
residual finite-size free energy [see Eq. (132)], δ�̊ns can be
expressed fully in terms of the scaling variable ρ and therefore
can be considered as a universal contribution to the CCF.

In the grand canonical ensemble, assuming a fixed bulk
field hR , one obtains from Eqs. (135) and (144) the CCF (per
area and per kBTc)

K(t,hR,ρ,L)

= L−d�̃

⎛⎝x =
(

L

ξ
(0)
+

)1/ν

t,h =
(

L

ξ
(0)
h

)βδ/ν

hR,ρ

⎞⎠, (149)

with the universal scaling function

�̃(x,h,ρ) = (d − 1)�̃(x,h,ρ) − 1

ν
x∂x�̃(x,h,ρ)

− βδ

ν
h∂h�̃(x,h,ρ) − ρ∂ρ�̃(x,h,ρ) (150)

in terms of �̃(x,h,ρ) defined in Eq. (135). Furthermore, the
right hand side of Eq. (150) can be expressed in terms of
�̂(x,m,ρ) = �(x̂(x,m),ρ) defined in Eq. (136) as

�̃(x,h,ρ) = (d − 1)�̂ − 1

ν
x

[
∂x�̂ + ∂m

∂x
∂m�̂

]
− βδ

ν
h
∂m
∂h

∂m�̂ − ρ

(
∂m
∂ρ

∂m + ∂ρ

)
�̂, (151)

where m is determined as a function of x and h via the
corresponding equation of state [see Eq. (141)].

We now focus specifically on the approximation O(ε0) of
the CCF. In this case, the scaling form of the equation of state
in Eq. (142) applies and can be used to express Eq. (151) as a
function of m instead of h :

�(x,m,ρ) = (d − 1)�̂(x,m,ρ) − 1

ν
x∂x�̂(x,m,ρ)

− β

ν
m∂m�̂(x,m,ρ) − ρ

(
∂m
∂ρ

∂m + ∂ρ

)
�̂(x,m,ρ).

(152)

Beyond O(ε0), Eq. (142) applies in general only in the bulk
limit, i.e., for x,h � 1. We note that Eq. (152) presupposes that
both in Eq. (142) and in Eq. (151) the same approximation
for the values of the critical exponents is used. Within the
mean-field or Gaussian approximation considered here, one
has in particular β = ν and, consequently, in Eq. (147) the

term proportional to ∂m
˚̂� vanishes. Furthermore, upon using

Eq. (134), the fact that β = 1
2 , and noting that ∂ρm = 0 for

the boundary conditions considered here [see Eq. (143)],
we can express Eq. (152) in terms of the scaling function
�(x̂(x,m),ρ) = �̂(x,m,ρ) [see Eq. (129)] as

�(x,m,ρ) = (d − 1)�(x̂,ρ)

− 1

ν
x̂∂x̂�(x̂,ρ) − ρ∂ρ�(x̂,ρ) + O(ε). (153)

In order to analogously simplify the canonical CCF
[Eq. (147)], we define δK̊ as the total contribution to the
canonical CCF K̊ [Eq. (146)] stemming from the constraint-
induced term δF [Eq. (111)]:

δK̊(t,ϕR,A,L) = − 1

A

d δF

dL

∣∣∣∣
A=const

= L−dδ�̊

⎛⎝x =
(

L

ξ
(0)
+

)1/ν

t,m =
(

L

ξ
(0)
h

)β/ν

ϕR,ρ

⎞⎠ (154)

with the associated universal scaling function [see Eq. (134)]

δ�̊(x,m,ρ) =

⎧⎪⎪⎨⎪⎪⎩
−1

2
ρd−1

x + 3
2 ru∗m 2

x̂
, periodic and Neumann

−1

2
ρd−1

√
x tanh(

√
x/2)√

x coth(
√

x/2) − 2
, Dirichlet.

(155a)

(155b)

We note that, in fact, δ�̊ = δ�̊ns + δ�̊s, where δ�̊ns is given in
Eq. (148) and the scaling function δ�̊s is defined, analogously

to Eq. (154), by L−dδ�̊s = −(1/A)dδFs/dL in terms of δFs

in Eq. (113). Using Eqs. (117), (129), and (154), �̊ in Eq. (147)
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can now be expressed in terms of �(x̂,ρ) as

�̊(x,m,ρ) = (d − 1)�(x̂,ρ)

− 1

ν
x̂∂x̂�(x̂,ρ) + ru∗m 2∂x̂�(x̂,ρ) − ∂ρ�(x̂,ρ)

+ δ�̊(x,m,ρ) + O(ε). (156)

Comparing Eqs. (153) and (156) reveals that the scaling
functions of the canonical and grand canonical CCF are related
as

�̊(x,m,ρ) = �(x,m,ρ) + ru∗m 2∂x̂�(x̂,ρ)

+ δ�̊(x,m,ρ) + O(ε), (157)

where �(x̂,ρ) = 1
2Sd,reg(x̂,ρ) with Sd,reg given in Eq. (108).

We also recall that, according to Eq. (134), ru∗m 2∂x̂�(x̂,ρ) =
m∂m�(x̂(x,m),ρ). In the next section, the implications of
Eq. (157) are discussed further. We remark that, if the CCF
is defined under the condition of a fixed volume V [see
Appendix E], the resulting scaling functions for periodic and
Neumann boundary conditions coincide in the two ensembles
[see Eq. (E10)]. In fact, in those cases the constraint-induced
correction δ�̊ in Eq. (155) vanishes identically, whereas for
Dirichlet boundary conditions [see Eq. (E7)] it is nonzero and
takes a form different from Eq. (155b).

V. DISCUSSION

Here, we discuss the residual finite-size free energy reported
in Eqs. (132) and (135), with the scaling functions defined
in Eqs. (117) and (129), respectively, and the associated
CCF given in Eqs. (153) and (156) within the one-loop
approximation, i.e., to O(ε0). A meaningful comparison of the
two ensembles requires to evaluate the scaling functions for
the same value of the scaled mean OP m. This can be achieved
by relating m to h via the finite-size equation of state reported
in Eqs. (142) and (143). In Sec. III D it has been shown that,
within the approximation O(ε0) considered here, the grand
canonical residual finite-size free energy can be expressed
as in Eq. (129) [see also Eq. (136)]. This result provides
the desired grand canonical scaling function �(x̂(x,m),ρ)
expressed in terms of m. Furthermore, in the discussion of the
residual finite-size free energy, we shall omit the nonscaling
contribution δFns in Eq. (114) stemming from the constraint.
However, this latter contribution is taken into account for the
scaling function of the CCF, because, as shown in Eq. (148),
it takes on a scaling form. We recall here that the perturbative
results in this study refer to cubical systems with aspect ratios
0 � ρ � 1. The description of rodlike geometries with ρ � 1
would require, inter alia, a different set of scaling variables
[51,74]. In addition, certain features of the (grand canonical)
CCF for ρ � 1 near bulk criticality (x = h = 0) [74] are not
captured by our analytical expressions. Instead, they require
more refined approaches, such as those described in Ref. [51].
In the subsequent discussion of the residual finite-size free
energy and CCF for the various boundary conditions, we shall
therefore focus on the case 0 � ρ � 1.

A. Periodic boundary conditions

1. Residual finite-size free energy

We recall that, in the grand canonical ensemble, the scaling
function of the renormalized residual finite-size free energy is
given by Eqs. (129) and (136):

�(p)(x̂,ρ) = 1
2S

(p)
d,reg(x̂,ρ), (158)

whereas, in the canonical ensemble, we have [see Eq. (117)]

�̊(p)(x̂,ρ) = 1
2S

(p)
d,reg(x̂,ρ) + δ�̊(p)

s (x̂,ρ). (159)

The function S (p)
d,reg is reported in Eq. (108a) and x̂ = x̂(x,m) is

defined in Eq. (134). In the canonical ensemble, the constraint
contributes to the scaling function �̊(p) the expression [see
Eq. (113a)]

δ�̊(p)
s (x̂,ρ) ≡ −1

2
ρd−1 ln

ρd−1x̂

2π
. (160)

Within the considered one-loop approximation, both �(p)

and �̊(p) have to be evaluated at ε = 0, i.e., d = 4. For a
system with ρ 
= 0 and either periodic or Neumann boundary
conditions, perturbative results for the grand canonical residual
finite-size free energy are applicable only for x̂ � 1 (see,
in this respect, the discussion in Sec. III D). Accordingly,
in these cases, the region x̂ � 1 will be excluded from the
corresponding plots. For ρ = 0, our perturbative results for
periodic or Neumann boundary conditions are well behaved
even for x,h � 1 and agree with the ones reported in Ref. [59]
(see also Refs. [69,70] for further discussions).

Since the contribution δ�̊
(p)
s due to the constraint [Eq. (160)]

vanishes for ρ → 0, the canonical and grand canonical scaling
functions for periodic boundary conditions become identical
in the thin-film limit, i.e.,

�(p)(x̂,ρ = 0) = �̊(p)(x̂,ρ = 0). (161)

This is visualized in Fig. 3(a), where �(p)(x̂,ρ = 0) is plotted
as a function of x̂. In Figs. 3(b) and 3(c), we compare the
dependence on x̂ of the scaling functions in the two ensembles
for fixed nonzero aspect ratios ρ. The difference between
�̊(p) (solid curve) and �(p) (dashed curve) stems solely from
the constraint-induced term δ�̊

(p)
s in Eq. (159) because the

contribution from the regularized mode sum S (p)
d,reg is the

same in both ensembles. Consequently, while �(p) vanishes
for x̂ → ∞, |�̊(p)| grows logarithmically upon increasing x̂

[see Eq. (118)]. This behavior stems from the absence of the
zero-mode fluctuations in the canonical ensemble [see also
Eq. (83)], which, being spatially homogeneous, affect the
residual free energy of a finite system for all values of L.
Figure 3(d) illustrates that a change in the aspect ratio ρ has a
strong effect on the canonical residual finite-size free energy,
inducing, inter alia, a change of sign of �̊(p) at small x̂. In
contrast, in the grand canonical case (not shown), increasing ρ

leads, within the considered range of x̂, mainly to an increase
in the overall strength of �(p).

2. Critical Casimir force

At O(ε0), the difference between the canonical and grand
canonical CCF is given by Eq. (157). Since δ�̊(p)(x̂,ρ=0)=0

022135-20



STATISTICAL FIELD THEORY WITH CONSTRAINTS: . . . PHYSICAL REVIEW E 96, 022135 (2017)

FIG. 3. Scaling functions �(p) of the residual finite-size free energy at O(ε0) for periodic boundary conditions in the canonical [Eq. (159),
solid line] and the grand canonical [Eq. (158), dashed line] ensemble. In both ensembles, the scaling functions depend on the scaled temperature
x and on the scaled mean OP m via the quantity x̂ defined in Eq. (134). In the grand canonical ensemble, m is related to the scaled bulk field
h via Eq. (140). For ρ = 0 [(a)], the canonical and grand canonical scaling functions are identical [see Eq. (161)]. For ρ > 0 [(b) and (c)],
the perturbative expression for � [Eq. (158)] applies only in the region x̂ � 1. The difference between �̊(p) and �(p) stems solely from the
constraint-induced term in Eq. (160), which leads to a logarithmic divergence �̊(p) ∝ −ρd−1 ln x̂ in the limit x̂ → ∞. (d) Illustrates how the
dependence on x̂ of the canonical scaling function �̊(p) changes upon varying the aspect ratio ρ. The unlabeled dashed, dotted, and dashed-dotted
curves (with distinct blue shading) correspond to ρ = 0.2, 0.4, and 0.6, respectively.

[see Eq. (155a)], Eq. (157) in the thin-film limit renders

�(x,m,ρ = 0) = �̊(x,m,ρ = 0) − m∂m�̊(x̂(x,m),ρ = 0),

(162)

where we have used Eq. (134). We recall that the term m∂m�̊ in
Eq. (162) stems from Eq. (145), which is a direct consequence
of the OP constraint and of the assumption of a fixed transverse
area A. For aspect ratios ρ > 0, δ�̊(p) [Eq. (155a)] is in general
nonzero and reduces to the limiting expressions

δ�̊(p)(x,m = 0,ρ) = δ�̊(p)(x → ∞,m,ρ) = − 1
2ρd−1

(163a)

and

δ�̊(p)(x = 0,m,ρ) = δ�̊(p)(x,m → ∞,ρ) = − 3
2ρd−1.

(163b)

In both limits, δ�̊(p) is independent of m and x. According
to Eqs. (155a) and (157), in general the constraint-induced
contribution δ�̊(p) enhances the attractive character of the CCF
compared to the unconstrained case. This is expected intu-
itively because the constraint reduces the number of available
fluctuation modes and thus the “fluctuation pressure” of the
confined system compared to that of the bulk. Interestingly,
however, this effect is absent if the CCF is defined under the

condition of a fixed total volume V instead of a fixed transverse
area (see Appendix E). In this case, the CCF for periodic
boundary conditions is identical in the two ensembles. For
m = 0, the canonical and the grand canonical CCFs defined
with fixed transverse area are related by a constant shift:

�̊(p)(x,m = 0,ρ)

= �(p)(x,m = 0,ρ) + δ�̊(p)(x,m = 0,ρ) + O(ε). (164)

Note that, beyond the approximation at O(ε0), m is in general
expected to acquire a dependence on ρ [68], such that Eq. (152)
has to be used.

The scaling functions �̊(p) and �(p) of the CCF at O(ε0) in
the two ensembles are shown in Fig. 4 for a vanishing mean
OP, i.e., m = 0. According to Eq. (162), �̊(p) and �(p) become
identical in the thin-film limit ρ = 0, as shown in Fig. 4(a).
For ρ > 0 [Figs. 4(b)–4(d)], �̊(p) approaches the constant in
Eq. (163a) for large values x � 1, while, correspondingly, �(p)

vanishes. We recall that, for ρ > 0, the results obtained per-
turbatively in the grand canonical ensemble are not expected
to be reliable near the bulk critical point. Correspondingly, in
spite of Eq. (164), we plot the grand canonical CCF in this
case only for x̂ � 1. As Fig. 4(d) illustrates, upon increasing
ρ the absolute strength of �̊(p) for m = 0 increases, while its
functional form does not change significantly.
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FIG. 4. (a)–(c) Scaling functions of the CCF [Eq. (144)] at O(ε0) for periodic boundary conditions in the canonical and the grand canonical
ensembles [Eqs. (147) and (152), respectively] as functions of the scaled temperature x = (L/ξ

(0)
+ )1/ν t for m = 0 and three aspect ratios ρ. For

m = 0 one has x̂ = x and �̊(p) = �(p) + δ�̊(p) with δ�̊(p) given in Eq. (155a). For x � 1 and m � 1, respectively, the canonical CCF attains
the asymptotic values given in Eq. (163) [short dashed-dotted lines in (b) and (c)]. (d) Dependence of �̊(p)(x,m = 0,ρ) on x for various values
of the aspect ratio ρ, increasing from 0 to 0.8 in steps of 0.1 from the top to the bottom curve (with distinct blue shading).

In Fig. 5, the scaling functions of the CCF are shown as
functions of the scaled mean OP m for x = 0. In the thin-film
limit ρ = 0 [Fig. 5(a)], in which the perturbative results at
this order in ε are reliable in the whole domain of m, the
only difference between �̊(p) and �(p) is due to Eq. (162). We
conclude that, in contrast to δ�̊ [Eq. (155a)], the constraint-
induced effect expressed in Eq. (145) increases the value of
�̊ compared to the one of �. For nonzero ρ [Figs. 5(b) and
5(c)], the OP constraint decreases the value of the canonical
CCF relative to the grand canonical one by the amount given
in Eq. (163b). Accordingly, for nonzero aspect ratios ρ and in
the limit m → ∞, the canonical CCF approaches a negative
value.10 Figure 5(d) illustrates in more detail the dependence
of the canonical scaling function �̊(p) on m for x = 0 upon
changing the aspect ratio. In passing, we mention that in the
limit m → ∞ the CCF defined under the condition of constant
volume (see Appendix E) vanishes in both ensembles.

B. Dirichlet boundary conditions

1. Residual finite-size free energy

For Dirichlet boundary conditions we consider only the
case m = h = 0; hence, the scaling functions of the residual
finite-size free energy [Eqs. (117) and (129)] depend solely

10A similar result has been obtained in Ref. [43] for (++) boundary
conditions.

on x. The only difference between the residual finite-size free
energies in the two ensembles is provided by the constraint-
induced term δF (D) [Eq. (111b)], which contributes to �̊(D)

with the expression [Eq. (113b)]

δ�̊(D)
s (x,ρ) ≡ ρd−1δF (D)

s (x,ρ)

= 1

2
ρd−1 ln

{[
1

x
− 2

x3/2
tanh(

√
x/2)

]
2πρ−d+1

}
.

(165)

In the thin-film limit (ρ → 0), δ�̊(D)
s (x,ρ) vanishes, so that in

this case the canonical and grand canonical scaling functions
are identical. In Fig. 6 the canonical (�̊(D)) and grand
canonical (�(D)) scaling functions are shown for Dirichlet
boundary conditions, for m = 0, and for various aspect ratios
ρ. Due to Eq. (165), �̊(D) significantly differs from �(D) upon
increasing the aspect ratio ρ. In particular, while �(D) vanishes
exponentially for x → ∞, �̊(D) diverges logarithmically in the
same limit; this latter behavior is similar to the one discussed
above for periodic boundary conditions (see Sec. V A 1) and
is due to the constraint-induced contribution [see Eq. (118)].

2. Critical Casimir force

Since here we are considering m = 0, according to Eq. (157)
the constraint-induced term δ�̊(D) in Eq. (155b) provides the
only difference between the canonical and grand canonical
CCFs. Therefore, in the thin-film limit (ρ → 0) the CCFs
for Dirichlet boundary conditions and m = 0 are identical in
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FIG. 5. (a)–(c) Scaling functions of the CCF [Eq. (144)] at O(ε0) for periodic boundary conditions in the canonical and the grand canonical
ensembles [Eqs. (147) and (152), respectively] as functions of the scaled magnetization m = (L/ξ (0)

ϕ )β/νϕR for x = 0 and three aspect ratios ρ.
For m = 0 one has x̂ = x. Both for x � 1 and for m � 1 the canonical CCF attains the asymptotic values given in Eq. (163) [short dashed-dotted
lines in (b) and (c)]. (d) Dependence of �̊(p)(x = 0,m,ρ) on m for various values of the aspect ratio ρ, increasing from 0 to 0.8 in steps of 0.1
from the top to the bottom curve (with distinct blue shading).

FIG. 6. (a)–(c) Scaling functions of the residual finite-size free energy at O(ε0) for Dirichlet boundary conditions in the canonical
[Eqs. (108b) and (117)] and the grand canonical ensembles [Eqs. (108b) and (129)], as function of the scaling variable x̂ [Eq. (134)] for three
aspect ratios ρ. For the case m = 0 considered here, one actually has x̂ = x. For ρ 
= 0 and x → ∞, �̊(D) diverges ∝−ρd−1 ln x. (d) Illustrates
how the dependence on x of the canonical scaling function �̊(D) changes upon varying the aspect ratio ρ. The unlabeled dashed, dotted, and
dashed-dotted curves (with distinct blue shading) correspond to ρ = 0.2, 0.4, and 0.6, respectively.
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FIG. 7. (a)–(c) Scaling functions of the CCF [Eq. (144)] at O(ε0) for Dirichlet boundary conditions in the canonical and the grand canonical
ensembles [Eqs. (147) and (152), respectively] as functions of the scaled temperature x for m = 0 and three aspect ratios ρ. For m = 0, �̊ and
� differ only by the constraint-induced term given in Eq. (155b). As a consequence, for ρ > 0 the canonical CCF attains a nonzero value in
the limit x → ∞ [see Eq. (166) and the short dashed-dotted lines in (b) and (c)]. In the case of Dirichlet boundary conditions, this asymptotic
value is approached slower than for periodic ones [see Fig. 4]. (d) Dependence of �̊(D)(x,m = 0,ρ) on x for various values of the aspect ratio
ρ, increasing from 0 to 0.8 in steps of 0.1 from the top to the bottom curve (with distinct blue shading).

the two ensembles, as are the corresponding residual finite-
size free energies. The quantity δ�̊(D) attains two distinct ρ-
dependent values for x → 0 and x → ∞:

δ�̊(D) =
{

− 3
2ρd−1 for x → 0,

− 1
2ρd−1 for x → ∞,

(166)

which coincide with the corresponding limits of δ�̊(p) for
periodic boundary conditions [see Eq. (163)]. Accordingly,
while �(D) vanishes in the limit x → ∞, the scaling function
�̊(D) of the canonical CCF does not. This means that the effect
of the OP constraint [Eq. (6)] on the fluctuations manifests
itself in the form of an attractive contribution to the CCF
even for arbitrarily thick films. The scaling functions �(D)

and �̊(D) of the CCF for Dirichlet boundary conditions are
illustrated in Figs. 7(a)–7(c) for various aspect ratios. In
general, the canonical CCF turns out to be attractive for all
aspect ratios considered here and its strength is found to be
significantly larger than that of the grand canonical CCF. We
remark that a similar constraint-induced effect is present also
for the CCF defined under the constraint of a fixed volume
and for Dirichlet boundary conditions (see Appendix E). As
Fig. 7(d) shows, the strength of the canonical CCF significantly
grows upon increasing the aspect ratio from thin-film geometry
towards a cubical system. In contrast to the canonical CCF, the
grand canonical CCF changes its character from attractive to
repulsive upon increasing the aspect ratio ρ [see Fig. 7(c)].

C. Neumann boundary conditions

1. Residual finite-size free energy

The scaling functions �̊(N) and �(N) of the canonical and the
grand canonical residual finite-size free energy for Neumann
boundary conditions [Eqs. (117) and (129), respectively]
are shown in Fig. 8 as functions of the scaling variable x̂

[Eq. (134)] for various values of the aspect ratio ρ. Due to the
presence of the constraint-induced term δF (N)

s [Eq. (113a)],
�̊ and � are equal only for ρ = 0, while they increasingly
differ for larger values of ρ. The qualitative behavior of �(N)

is similar to that of the scaling function �(p) for periodic
boundary conditions (see Fig. 3). However, for ρ = 0, �(N)

is about 50 times smaller in strength than �(p); the strengths
become comparable only for ρ � 1. As discussed in Sec. III D,
in the grand canonical ensemble and for ρ > 0, the perturbative
expressions for the residual finite-size free energy and the CCF
are reliable only for x̂ � 1.

2. Critical Casimir force

The scaling functions �̊(N) and �(N) of the canonical and
the grand canonical CCF are shown in Fig. 9 as functions of the
scaled temperature x (for m = 0) and in Fig. 10 as functions of
the scaled mean OP m (for x = 0) for various aspect ratios ρ.
For ρ = 0, the contribution δ�̊(N) in Eq. (155a) vanishes, such
that, according to Eqs. (134) and (157), the scaling functions
of the canonical and the grand canonical CCF are related as
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FIG. 8. (a)–(c) Scaling functions at O(ε0) of the residual finite-size free energy for Neumann boundary conditions in the canonical
[Eqs. (108c) and (117), solid line] and the grand canonical [Eqs. (108c) and (129), dashed line] ensembles for various aspect ratios ρ. In
both ensembles, the scaling functions depend on the scaled temperature x and on the scaled mean OP m via the quantity x̂ [see Eq. (134)].
In the grand canonical ensemble, m is related to the scaled bulk field h according to Eq. (140). For ρ > 0, the perturbative expression of �

reported in Eq. (129) is reliable only for x̂ � 1. For ρ = 0 (a), the canonical and the grand canonical scaling functions are identical. For ρ > 0
the difference between �̊(N) and �(N) stems solely from the constraint-induced correction term [given in Eq. (113a)]. For ρ 
= 0 and x̂ → ∞
the scaling function �̊(N) diverges ∝−ρd−1 ln x. (d) Illustrates how the dependence on x̂ of the canonical scaling function �̊(N) changes upon
varying the aspect ratio ρ. The unlabeled dashed, dotted, and dashed-dotted curves (with distinct blue shading) correspond to ρ = 0.2, 0.4,
and 0.6, respectively.

follows:

�(N)(x,m,ρ = 0)

= �̊(N)(x,m,ρ = 0) − m∂m�̊(N)(x̂(x,m),ρ = 0). (167)

Hence, for m = 0 and ρ = 0, the CCFs in the two ensembles
are identical, as illustrated in Fig. 9(a). For nonzero mean
OP m 
= 0 and ρ = 0, the difference between the CCFs stems
from the last term in Eq. (167), the presence of which is a direct
consequence of Eq. (145). As shown in Fig. 10(a), similarly to
the case with periodic boundary conditions, this contribution
causes the canonical CCF to be less attractive than the grand
canonical one. In contrast, for nonzero aspect ratios ρ > 0, the
contribution δ�̊(N) [Eq. (155a)] dominates in Eq. (157) and
typically leads to a more attractive canonical CCF compared
to the grand canonical one. This is illustrated by the panels
(b) and (c) of Figs. 9 and 10. For ρ > 0, �̊(N) approaches a
nonzero constant in the limit x̂ → ∞, whereas �(N) vanishes.
Specifically, Eq. (155a) implies

δ�̊(N)(x,m = 0,ρ) = δ�̊(N)(x → ∞,m,ρ) = − 1
2ρd−1

(168a)

and

δ�̊(N)(x = 0,m,ρ) = δ�̊(N)(x,m → ∞,ρ) = − 3
2ρd−1,

(168b)

as in the case of periodic and Dirichlet boundary conditions.
The canonical CCF remains attractive for all aspect ratios
ρ considered here and its strength grows significantly upon
increasing ρ [see Figs. 9(d) and 10(d)]. In contrast, the
grand canonical CCF changes its character from attractive to
repulsive upon increasing ρ [see Figs. 9(c) and 10(c)]. Under
the constraint of a fixed total volume, the associated CCF for
Neumann boundary conditions (see Appendix E) turns out to
be identical in the two ensembles for all values of x, m, and ρ

considered here.

VI. SUMMARY AND OUTLOOK

In this study, we have investigated the implications of a
global constraint on a scalar OP within a field-theoretical
approach. Generic results, which are independent of the
specific form of the field-theoretic action describing the
confined system, are summarized in Sec. II E and will not be
repeated here. We have subsequently applied this formalism to
a Landau-Ginzburg model for a finite cubical volume V = AL

in the supercritical regime (T � Tc, where Tc is the bulk critical
temperature). We have considered periodic, Dirichlet, and
Neumann boundary conditions along the transverse direction
of extent L and periodic boundary conditions along the
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FIG. 9. (a)–(c) Scaling functions of the CCF [Eq. (144)] at O(ε0) for Neumann boundary conditions in the canonical and the grand canonical
ensembles [Eqs. (147) and (152), respectively] as functions of the scaled temperature x for m = 0 and three aspect ratios ρ. While the grand
canonical CCF vanishes both for x → ∞ and for m → ∞, in these limits the canonical CCF approaches the values given by Eq. (168) [short
dashed-dotted lines in (b) and (c)]. (d) Dependence of �̊(N)(x,m = 0,ρ) on x for various values of the aspect ratio ρ, increasing from 0 to 0.8
in steps of 0.1 from the top to the bottom curve (with distinct blue shading).

FIG. 10. (a)–(c) Scaling functions of the CCF [Eq. (144)] at O(ε0) for Neumann boundary conditions in the canonical and the grand
canonical ensembles [Eqs. (147) and (152), respectively] as functions of the scaled magnetization m for x = 0 and three aspect ratios ρ. While
the grand canonical CCF vanishes both for x → ∞ and for m → ∞, in these limits the canonical CCF approaches the values given by Eq. (168)
[short dashed-dotted lines in (b) and (c)]. (d) Dependence of �̊(N)(x = 0,m,ρ) on m for various values of the aspect ratio ρ, increasing from 0
to 0.8 in steps of 0.1 from the top to the bottom curve (with distinct blue shading).
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remaining lateral directions (see Fig. 1). Our approach is
expected to be applicable for films, i.e., for systems with
aspect ratios ρ [Eq. (104) and Fig. 1] fulfilling 0 � ρ � 1.
Perturbative expressions for the residual finite-size free energy
and the CCF have been obtained within an ε expansion
to O(ε0), corresponding to the Gaussian approximation of
the free energy and to the mean-field approximation of the
equation of state. While most of this study focuses on the
CCF emerging under the condition of fixed transverse area
A [see Eq. (144)], Appendix E considers the alternative
condition of having a fixed volume V , which is also briefly
summarized below. Within the Gaussian approximation, the
OP constraint can be implemented exactly and one obtains the
expressions of the canonical free energy presented in Eq. (106).
Non-Gaussian contributions to the field-theoretic action can
be accounted for perturbatively, based on a suitably defined
Green function [Eq. (26)]. Apart from the contribution of the
φ4 term to the effective temperature variable τ̂ [Eq. (79)],
non-Gaussian effects have not been considered.

The consequences of the constraint on the residual finite-
size free energy and on the CCF are summarized as follows:

(1) The canonical residual finite-size free energy f̊res [per
volume AL and per kBTc, see Eq. (115)] differs at O(ε0) from
the grand canonical fres by an extra contribution δF (τ̂ ,A,L)
[Eq. (111)]. This term is induced by fluctuations only. Its
presence can be most easily understood for periodic boundary
conditions: in this case, in fact, it simply removes the zero
mode from the mode sum in the free energy [see Eq. (83)].
δF can be decomposed into a scaling and a nonscaling
contribution as in Eq. (112), where the latter explicitly depends
on the film thickness L. For periodic and Neumann boundary
conditions, the constraint-induced contribution cancels the
divergence of the grand canonical residual finite-size free
energy at criticality caused by the zero mode [47,48]. In
the limit x → ∞ or m → ∞, δF gives rise to a logarithmic
divergence of the scaling function of the residual finite-
size free energy in the canonical ensemble, �̊ ∝ ρd−1 ln x̂,
independently of the choice of the boundary conditions [see
Eq. (118) and panels (b), (c), and (d) of Figs. 3, 6, and 8].

(2) For a vanishing aspect ratio (ρ = 0), the constraint-
induced contribution to the residual finite-size free energy
vanishes [see Eqs. (116) and (117)]. This holds for all boundary
conditions considered here and to all orders in perturbation
theory (see the discussion in Sec. II E). As a consequence, at
O(ε0) the canonical and the grand canonical residual finite-size
free energies are identical [see panel (a) in Figs. 3, 6, and 8]
and reduce (for m = 0) to the one-loop results of Ref. [59]. For
the boundary conditions considered here, the equation of state
acquires finite-size corrections only beyond the leading order
in the ε expansion.11

(3) The CCF depends on whether it is defined under the
constraint of a constant transverse area A (Sec. IV B) or a
constant total volume V = AL (Appendix E). In the latter

11For nonzero symmetry breaking surface fields h1, the equation of
state acquires finite-size contributions already at the mean-field level
[43]. This is expected to hold also for Dirichlet boundary conditions
for a nonzero mean OP.

case, at O(ε0) the OP constraint has no effect on the scaling
functions for periodic and Neumann boundary conditions (see
Fig. 11), i.e., the canonical and the grand canonical CCF
coincide. For Dirichlet boundary conditions, instead, ensemble
differences are present for both definitions of the CCF. They
vanish, however, in the thin-film limit (ρ → 0).

(4) If the CCF is defined under the condition of a fixed
transverse area A, the OP constraint is reflected by two distinct
contributions to the canonical CCF: first, the fluctuation-
induced term δF in the residual finite-size free energy yields,
via Eq. (144), a contribution δ�̊ to the scaling function of
the CCF [see Eq. (154)]. Within the Gaussian approximation,
the expressions of δF and hence δ�̊ coincide for periodic
and Neumann boundary conditions [see Eq. (155a); δ�̊(D) for
Dirichlet boundary conditions is reported in Eq. (155b)]. These
contributions vanish in the thin-film limit (ρ → 0). A second
difference between the canonical and the grand canonical
CCFs arises from the fact that the mean OP ϕ, which enters
into the definition of the OP scaling variable m [see Eq. (146)],
is affected, via Eq. (145), by the constraint of having a fixed
total OP � and a fixed area A. This effect occurs also within
MFT [43].

(5) For nonzero aspect ratios (ρ > 0), the canonical CCF
is typically more attractive than the grand canonical CCF (see
Figs. 4, 5, 7, 9, and 10). Indeed, a restriction on the OP [see
Eq. (16)] is expected to reduce the fluctuation contribution
to the pressure of the confined system and therefore leads to
an additional, attractive contribution to the CCF. However,
this effect is absent for periodic and Neumann boundary
conditions if the CCF is defined with a fixed total volume
V (see Appendix E). In the limit x → ∞ or m → ∞, the
scaling function �̊ of the canonical CCF for fixed transverse
area approaches a negative constant ∝ρd−1 [see Eq. (163)].
This asymptotic value is the same for all boundary conditions
studied here. In contrast, the CCF defined with constant
volume vanishes in the limit x → ∞ or m → ∞ for all
boundary conditions considered.

(6) For ρ = 0 and vanishing mean OP m = 0, the canonical
and the grand canonical CCF defined for fixed transverse areas
coincide [see panel (a) of Figs. 4, 7, and 9] and reduce to
the expressions reported in Ref. [59]. In contrast, for ρ = 0
and nonzero mean OPs m 
= 0, the OP constraint yields, via
Eq. (145), a repulsive contribution to the canonical CCF [see
Figs. 5(a) and 10(a)], although in that case the corresponding
residual finite-size free energies are identical. In general,
this repulsive contribution is absent for the CCF defined for
constant volume because in that case dϕ/dL = 0. For ρ = 0,
in general the canonical CCF vanishes in the limits x → ∞ or
m → ∞.

We mention that the perturbative results obtained here for
the grand canonical CCF agree qualitatively with correspond-
ing Monte Carlo simulation data [74–76]. If one aims at
improving the analytical predictions in the grand canonical
ensemble, in particular the issues associated with the presence
of a zero mode must be dealt with appropriately (see, e.g.,
Refs. [51,64,65,69,70]). The purpose of this study is, however,
not to present quantitatively accurate expressions for the grand
canonical CCF, but to provide a self-contained treatment of
ensemble differences due to fluctuations in a near-critical,
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FIG. 11. Scaling functions �̊V (x,m,ρ) [Eq. (E9)] of the canonical CCF defined according to Eq. (E1) under the condition of fixed volume
for various aspect ratios ρ. These scaling functions depend on x and m via x̂ [Eq. (134)] only [noting that x̂(x,m = 0) = x and δ�̊V (x,ρ) = 0
for periodic and Neumann boundary conditions). For periodic (p) and Neumann (N) boundary conditions, the canonical and the grand canonical
scaling functions coincide, i.e., �̊V = �V at O(ε0) [see Eq. (E10)]. For Dirichlet (D) boundary conditions, we consider a mean OP m = 0,
for which the scaling functions depend on x and are related according to Eq. (E11). The aspect ratio ρ increases in steps of 0.2 between the
unlabeled curves as indicated by the distinct blue shading of the curves [in panel (a), the curves for ρ = 0 and 0.2 are not distinguishable].

confined fluid. We remark that, for the Ising model at very
high temperatures [see Eqs. (131) and (132) in Ref. [43]], the
constraint induced contribution to the free energy and CCF
reduces (up to irrelevant constants) to the expressions given in
Eqs. (118) and (163).

This study can be considered as a sequel to Ref. [43], where
we have investigated the ensemble differences within MFT for
(++) and (+−) boundary conditions, i.e., for a confined, near-
critical fluid which exhibits strong adsorption at the container
walls in the transverse direction. For periodic and Neumann
boundary conditions, as well as for the disordered phase with
Dirichlet boundary conditions, a mean-field contribution to the
residual finite-size free energy is in general absent. Periodic
boundary conditions, although not experimentally relevant
(see, however, Ref. [77]), are arguably the simplest case for
which the influence of a constraint on the OP fluctuations
can be studied analytically. Dirichlet boundary conditions
apply at the RG fixed point of the so-called ordinary surface
universality class [44]. Generically, confining surfaces exhibit
a preference for one of the two species of a binary liquid
mixture, which gives rise to a symmetry breaking surface
field and therefore to (++) or (+−) boundary conditions.
If the surface is endowed with a periodically striped pattern of
alternating surface fields, for thick films such surfaces behave
effectively as if there is a Dirichlet boundary condition (see
Sec. III B in Ref. [78]). This way, Dirichlet boundary condi-
tions can be realized even for classical binary liquid mixtures.
Neumann boundary conditions apply at the fixed point of the

so-called special surface universality class and correspond
to weak adsorption. Our predictions lend themselves to be
tested by Monte Carlo [43,79] or molecular dynamics [16,17]
simulations. In future studies, the theory developed here could
be extended to the subcritical region, where, so far, predictions
for the canonical CCF are not available.
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APPENDIX A: GAUSSIAN LATTICE FIELD THEORY AND
DIMENSIONAL CONSIDERATIONS

Here, we consider an uncorrelated Gaussian random field
on a d-dimensional hypercubic lattice of volume V = Nad ,
where N is the number of lattice points and a the lattice
constant. This is arguably the simplest system for which the
effect of the constraint on the OP field [Eq. (1)] can be studied
exactly. In addition, the finite lattice constant of the model
provides a natural regularization. Before proceeding, we recall
that the OP field φ, the reduced temperature τ , and the bulk
field h appearing in the action [see Eq. (49)] must have the
engineering dimensions

[φ] = a1−d/2, [τ ] = a−2, [h] = a−1−d/2, (A1)
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in order to render H in Eq. (11), and thus also the free energy
F in units of kBTc, dimensionless [53].

1. Grand canonical ensemble

We consider a dimensionless Hamiltonian of the form

H({φi},h) = τ

2
ad

N∑
i=1

φ2
i − adh

N∑
i=1

φi, (A2)

corresponding to a Gaussian ensemble of uncorrelated random
variables φi . Using the lattice constant a to render the inte-
gration measure dimensionless, the lattice partition function
corresponding to Eq. (11) is given by

Z(h) =
N∏

i=1

∫ ∞

−∞

dφi

a1−d/2
exp

(
−τ

2
ad

N∑
i=1

φ2
i + adh

N∑
i=1

φi

)

=
(

2π

τa2

)N/2

exp

(
Nadh2

2τ

)
= Z(0) exp

(
V h2

2τ

)
. (A3)

We point out that the contribution which diverges in the
continuum limit a → 0 (with fixed volume V ) is contained
completely in Z(0). It is therefore convenient to define the
actual grand canonical partition function by dividing Z(h) by
Z(0).12 However, since this term does not interfere with others,
we carry it along in our calculations. The bulk field h can be
related to the average 〈�〉 of the total OP

� ≡ ad

N∑
i=1

φi (A4)

by noting that, according to Eq. (A3), 〈�〉 = ∂ lnZ/∂h =
V h/τ and thus

h = τ
〈�〉
V

. (A5)

Accordingly, the free energy in units of kBTc follows as

F(h) = − lnZ(h)

= −1

2
N ln 2π + 1

2
N ln

[
τL2
( a

L

)2
]

− 1

2
τV

( 〈�〉
V

)2

= − lnZ(0) − 1

2
τV

( 〈�〉
V

)2

. (A6)

Below, we compare these results with the corresponding
expressions in the canonical ensemble.

2. Canonical ensemble

The counterpart of Eq. (A2) in the canonical ensemble is
given by

H({φi}) = ad

N∑
i=1

τ

2
φ2

i , (A7)

subject to a constraint of the form

ad

N∑
i=1

wiφi = �, (A8)

which is imposed on the field {φi} such that Eq. (A4) is
recovered for wi = 1. Here, we keep the general expression
involving wi in order to be able to track the influence of
the constraint. Using the lattice constant a in order to render
the integration measures and the argument of the δ function
dimensionless (note that [�] = a1+d/2), the constrained lattice
partition function corresponding to Eq. (9) is given by

Z̊(�) =
⎛⎝ N∏

j=1

∫ ∞

−∞

dφj

a1−d/2

⎞⎠ exp

⎛⎝−τ

2
ad

N∑
j=1

φ2
j

⎞⎠δ

⎡⎣⎛⎝ad

N∑
j=1

wjφj − �

⎞⎠a−(1+d/2)

⎤⎦
= 1

2π

∫ ∞

−∞

dJ

a−1−d/2

⎛⎝ N∏
j=1

∫
dφj

a1−d/2

⎞⎠ exp

⎛⎝−τ

2
ad

N∑
j=1

φ2
j + iJ ad

N∑
j=1

wjφj − iJ�

⎞⎠. (A9)

Because we require the weights wi to be dimensionless, the dimension of the auxiliary integration variable J is [J ] = a−(1+d/2).
Accordingly, Z̊ in Eq. (A9) is dimensionless. In Eq. (A9), first performing the Gaussian integrals over {φj } and then the remaining
one over J , we obtain

Z̊(�) = 1

2π

∫ ∞

−∞

dJ

a−(1+d/2)

(
2π

τa2

)N/2

exp

[
−1

2
J 2

ad
∑

j w 2
j

τ
− iJ�

]

=
(

2π

τa2

)N/2
(

τa2+d

2πad
∑

j w 2
j

)1/2

exp

[
− τ�2

2ad
∑

j w 2
j

]
w j =1= Z(0)

(
τa2+d

2πV

)1/2

exp

(
−τ�2

2V

)
. (A10)

12This is, in fact, a commonly adopted definition of a path integral [61].
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This result can also be obtained directly from Eqs. (A3) and (A9) by noting that

Z̊(�) = 1

2π

∫ ∞

−∞

dJ

a−(1+d/2)
exp(−iJ�)Z(iJ ). (A11)

Accordingly, the free energy of the constrained system, in units of kBTc, is given by

F̊(�) = − ln Z̊(�) = − lnZ(0) + 1

2
ln

⎛⎝ 2π

τa2

∑
j

w 2
j

⎞⎠+ τ

2

�2

ad
∑

j w 2
j

wj =1= − lnZ(0) + 1

2
ln

(
2πρ−d+1

τL2

L2+d

a2+d

)
+ τ

2
V

(
�

V

)2

. (A12)

In the last step of Eq. (A12), we have introduced the aspect ratio
ρ = L/A1/(d−1), assuming a lattice of cubical geometry and
volume V = AL. Introducing the lattice correlation function
Gij for this model of an uncorrelated random field {φi} in the
form Gij = δi,j /(adτ ) (which has an engineering dimension
of a2−d ), the second term on the right-hand side of the
second equation in Eq. (A12) can be written alternatively as
1
2 ln (2πad−2∑

i,j wiGij wj ). In the continuum limit (a → 0
with fixed V ), this expression reduces, upon recalling that∑

i a
d → ∫

dV and by neglecting a divergent factor a−d−2, to
the term 1

2 ln [2π (w,G,w )] in the corresponding expression
for the free energy in Eq. (34). The second term on the
right-hand side of the last equation in Eq. (A12) is a constraint-
induced contribution which appears in the same form also
for periodic and Neumann boundary conditions within the
corresponding continuum field theory [see Eqs. (111a) and
(111c), respectively]. The last term in Eq. (A12) is the
usual canonical bulk free energy. Its sign is opposite to
that of the analogous term in Eq. (A6) because the bulk
contributions to F(h) and F̊(�) are related via a Legendre
transform.

APPENDIX B: FOURIER TRANSFORMS

We consider a function f (r) which is periodic with respect
to a D-dimensional macroblock of volume A = �D

α=1Lα (D �
d) with edges of length Lα:

f (r) = f (r + Tm), Tm = (m1L1,m2L2, . . . ,mDLD),

m ∈ ZD. (B1)

This function can be expressed in terms of a Fourier series

f (r) = 1

A

∑
k

exp(ik · r)f̂ (k). (B2)

Equation (B1) implies that k is discrete, i.e., k = 2π

(n1/L1, . . . ,nD/LD) with n ∈ ZD . Forming
∫
A

dDr exp
(−ik · r)f (r) and inserting Eq. (B2) yields the inverse Fourier
transform

f̂ (k) =
∫

A

dDr exp(−ik · r)f (r) (B3)

by using ∫
A

dDr exp[i(k − k′) · r] = Aδk,k′ . (B4)

The Fourier transform F̂ (k,k′) of a function F (r,r′) = f (r −
r′), where f is periodic and kα and k′

α are discrete (as above),
is given by

F̂ (k,k′) =
∫

A

dDr

∫
A

dDr ′ exp(−ik · r − ik′ · r′)F (r,r′)

= 1

A

∑
p

∫
A

dDr

∫
A

dDr ′ exp[−i(k − p) · r

− i(k′ + p) · r′]f̂ (p)

= 1

A

∑
p

f̂ (p)
∫

A

dDr exp[−i(k − p) · r]

×
∫

A

dDr ′ exp[−i(k′ + p) · r′]

= 1

A

∑
p

f̂ (p)Aδk,pAδk′,−p = Af̂ (k)δk,−k′ , (B5)

where Eq. (B4) has been used.

APPENDIX C: CANONICAL FINITE-SIZE FREE ENERGY

1. Periodic boundary conditions

In order to determine the regularized finite-size free energy
for a system with periodic boundary conditions in all spatial
directions and arbitrary aspect ratio, we follow the approach
as taken in Refs. [50,51]. In these studies, only the case ϕ = 0
was considered. Within the present theory, the generalization
of the free energy to nonzero ϕ amounts to replacing the
temperature parameter τ by τ̂ [see Eq. (79)]. In order to
extract the finite-size part of the mode sum [see Eqs. (75)
and (83)]

S(p)
d (τ̂ ,L,A) ≡

∑
k

ln(k2 + τ̂ ), (C1)

we introduce as a regularization the subtraction of the
corresponding bulk expression

S(p)
d,reg(τ̂ ,L,A) ≡

∑
k

ln(k2 + τ̂ ) − AL

∫
ddk

(2π )d
ln(k2 + τ̂ ).

(C2)

As shown in Refs. [50,51], this expression can be simplified
to

S(p)
d,reg(τ̂ ,L,A) = AL−d+1S (p)

d,reg(τ̂L2,ρ) (C3)
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with

S (p)
d,reg(x̂,ρ) =

∫ ∞

0
dy y−1 exp

(
− x̂y

4π2

)

×
{(

π

y

)d/2

− [ρϑ(ρ2y)]d−1ϑ(y)

}
, (C4)

where

ϑ(y) ≡ θ3(0|e−y) =
∞∑

n=−∞
e−yn2

(C5)

is the elliptic Jacobi theta function θ3(z|q) [80]. Due to the
presence of the theta function, S (p)

d,reg is not a homogeneous
function of its first argument, i.e., there is no value of κ

for which, with arbitrary x̂ and b, one has S (p)
d,reg(bx̂,ρ) =

bκS (p)
d,reg(x̂,ρ). In order to facilitate the analysis of the scaling

behavior (see Sec. IV), S(p)
d,reg in Eq. (C3) has been brought

directly into a suitable scaling form.
It is useful to note the limiting behaviors ϑ(y → ∞) = 1

and ϑ(y → 0) � (π/y)1/2[1 + 2 exp(−π2/y)]. Accordingly,
the integrand in Eq. (C4) vanishes in the limit y → 0 for
all ρ and x̂,13 and decays exponentially as a function of y

for y → ∞ and x̂ 
= 0. Thus, S (p)
d,reg is finite for all d and

x̂ 
= 0. In contrast, for x̂ → 0 and nonzero ρ, S (p)
d,reg diverges

asymptotically as

S (p)
d,reg(x̂ → 0,ρ 
= 0) � ρd−1 ln x̂, (C6)

due to the leading behavior of the integrand in Eq. (C4) at
the upper limit of integration.14 Below, this property will be
discussed further [see Eq. (C13)]. Since limρ→0 ρϑ(ρ2y) =√

π/y, Eq. (C4) reduces in the thin-film limit ρ → 0 to

S (p)
d,reg(x̂,ρ = 0) = 1

π

∫ ∞

0
dy exp

(
− x̂y

4π2

)(
π

y

)(d+1)/2

×
[(

π

y

)1/2

− ϑ(y)

]
, (C7)

which can be shown [81] to be identical to the expression
derived in Ref. [59]:

S (p)
d,reg(x̂,ρ = 0) = −22−dπ (1−d)/2x̂d/2

�[(d − 1)/2]
g(d−1)/2(

√
x̂/2), (C8)

13For ρ < 1, y → 0, and all x̂, the integrand in Eq. (C4) behaves in
leading order as 2πd/2y−d/2−1 exp(−π 2/y).

14For a sufficiently large constant A ensuring ϑ(A) � 1 and B � A,
the r.h.s. of Eq. (C4) can be estimated as C(x̂) − D(x̂), where D(x̂) ≡
ρd−1

∫ B

A
dyy−1 exp(−x̂y/(4π 2)) and C(x̂) captures the remaining

contributions of the integrand for small y. According to the preceding
discussion in the main text, C(x̂) is thus finite for all x̂. In fact,
the dominant contribution for x̂ → 0 stems from the term D(x̂).
This follows from noting that, for small x̂, the integrand in D(x̂)
contributes only if y � 4π2/x̂, for which exp(−x̂y/(4π 2)) � 1. Ac-

cordingly, one obtains the estimates D(x̂) ∼ −ρd−1
∫ 4π2/x̂

A
dyy−1 ∼

−ρd−1 ln(4π 2/(x̂A)) up to x̂-independent terms, which gives the
asymptotic result in Eq. (C6).

where � is the gamma function and

g
a
(x) = 1

a

∫ ∞

1
dt

(t2 − 1)a

exp(2xt) − 1
. (C9)

As implied by Eq. (C6), S (p)
d,reg(x,ρ = 0) [Eq. (C7)] is finite for

all x̂ � 0.
In order to evaluate the bulk expression appearing in the

subtraction in Eq. (C2), we note that, for an arbitrary constant
a > 0, one has in dimensional regularization [47,53]∫

ddk

(2π )d
ln(k2 + a) −

∫
ddk

(2π )d
ln(k2)

=
∫ a

0
ds

∫
ddk

(2π )d
1

k2 + s
= −Ad

∫ a

0
ds sd/2−1

= −2Ad

d
ad/2, (C10)

with

Ad ≡ −(4π )−d/2�(1 − d/2).

In summary, for periodic boundary conditions and finite aspect
ratio ρ, the total free energy defined in Eq. (75) takes the
form

F̊ (p) = AL

(
Lb(ϕ) − Ad

d
τ̂ d/2

)
+ 1

2
AL

∫
ddk

(2π )d
ln(k2)

+ 1

2
AL−d+1S (p)

d,reg(τ̂L2,ρ) + δF (p)(τ̂ ,A,L), (C11)

where Lb is defined in Eq. (49) and the constraint-induced
contribution δF (p) is reported in Eq. (111a). The contribution
in Eq. (C11) involving the term

∫
ddk ln(k2) formally vanishes

in dimensional regularization [46] and will be disregarded
henceforth. (This term would be canceled also by additive
renormalization of the total free energy [59].)

Following Eq. (115), we extract from Eq. (C11) the residual
finite-size free energy per volume

f̊
(p)

res(τ̂ ,ρ,L) = 1

2
L−dS (p)

d,reg(τ̂L2,ρ) + 1

AL
δF (p)(τ̂L2)

= L−d [�̊(p)(τ̂L2,ρ) + ρd−1δFns(L)],

(C12)

with the scaling function

�̊(p)(x̂,ρ) ≡ 1
2S

(p)
d,reg(x̂,ρ) + ρd−1δF (p)

s (x̂,ρ), (C13)

where δF
(p)
s = − 1

2 ln[ρd−1x̂/(2π )] [Eq. (113a)] is the scaling
contribution to the constraint-induced term and δFns is the
nonscaling contribution [Eq. (114)]. The divergence of S (p)

d,reg

expressed in Eq. (C6) is canceled by δF
(p)
s in �̊(p), which

therefore remains finite for all x̂ � 0 and all aspect ratios
ρ. In contrast, for an unconstrained system with ρ 
= 0,
the corresponding residual finite-size free energy diverges
for x̂ → 0 as in Eq. (C6). This divergence originates from
the contribution of the mode with k = 0 in the mode sum
in Eq. (C1).15 Since S (p)

d,reg(x̂ → ∞) → 0, the presence of

15We remark that, also in the thin-film limit ρ → 0, a problematic
infrared divergence of the residual finite-size free energy occurs at
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the constraint-induced term δF
(p)
s leads to a logarithmic

divergence of �̊(p) for x̂ � 1:

�̊(p)(x̂ � 1,ρ) � −1

2
ρd−1 ln

x̂ρd−1

2π
. (C14)

2. Dirichlet boundary conditions

We consider a d-dimensional box with periodic bound-
ary conditions in the d − 1 lateral directions and Dirichlet
boundary conditions at z = 0,L (see Sec. III B 2). In the basic
expression for the free energy in Eq. (75), we have ψ = ϕ = 0;
En is defined in Eq. (88) and the quantity ( 1

2 ) ln(w,G,w ) is
reported in Eq. (111b). The expression of the corresponding
mode sum can be obtained from the one for periodic boundary
conditions by noting that, due to Eqs. (75) and (88), one has

S(D)
d (τ,L,A) ≡

∞∑
n=1

∑
k‖

ln

[
k2

‖ +
(πn

L

)2
+ τ

]

= 1

2

∞∑
n = −∞
n 
= 0

∑
k‖

ln

[
k2

‖ +
(

2πn

L′

)2

+ τ

]

= 1

2

∑
p′

∑
k‖

ln[k2
‖ + p′2 + τ ] − 1

2

∑
k‖

ln(k2
‖ + τ )

= 1

2
S(p)

d (τ,2L,Ld−1
‖ ) − 1

2
S(p)

d−1(τ,L‖,Ld−2
‖ ),

(C15)

with L′ ≡ 2L and where we introduced the wave number
p′ ≡ 2πn/L′ with n ∈ Z. In the last line in Eq. (C15), we
have identified the first term as (half of) the mode sum of
a d-dimensional system with periodic boundary conditions
and aspect ratio L′/L‖, and the second term as (half of) the
mode sum of a (d − 1)-dimensional cubic system of volume
Ld−1

‖ with periodic boundary conditions [see Eq. (C2)]. Using
Eq. (C3), we can thus express the regularized mode sum for
Dirichlet boundary conditions as

S(D)
d,reg(τL2,L,L‖) = AL−d+1S (D)

d,reg(τL2,ρ), (C16)

with

S (D)
d,reg(x,ρ) ≡ 2−dS (p)

d,reg(4x,2ρ) − 1
2ρd−1S (p)

d−1,reg(x/ρ2,1).

(C17)

Since, for x → ∞, S (p)
d−1,reg(x,1) vanishes exponentially as a

function of x, upon using Eq. (C8) one recovers in the thin-film
limit (ρ → 0) the expression contained in Ref. [59]:

S (D)
d,reg(x,ρ = 0) = 22−dπ (1−d)/2xd/2

�[(d − 1)/2]
g(d−1)/2(

√
x). (C18)

Furthermore, due to Eq. (C6), the divergences for x → 0 of the
two separate terms in Eq. (C17) cancel, rendering S (D)

d,reg finite

higher orders in perturbation theory [69,70], despite the finiteness
of fres at the Gaussian level [see Eq. (C8)]. However, this fact is
immaterial for the present discussion.

for x = 0 and all aspect ratios. Taking into account Eqs. (C2)
and (C10), the free energy of the constrained system [Eq. (75)]
for Dirichlet boundary conditions with vanishing mean OP
follows as

F̊ (D) = 1

2
AL

∫
ddk

(2π )d
ln(k2 + τ ) − 1

4
A

∫
dd−1k‖
(2π )d

ln(k2
‖ + τ )

+ 1

2
S(D)

d,reg(τL2,ρ) + δF (D)(τL2)

= −AL
Ad

d
τd/2 + 1

2
AL

∫
ddk

(2π )d
ln(k2)

+ A

2

Ad−1

d − 1
τ (d−1)/2 − 1

4
A

∫
dd−1k‖
(2π )d−1

ln(k2
‖)

+ 1

2
AL−d+1S (D)

d,reg(τL2,ρ) + δF (D)(τ,A,L). (C19)

The constraint-induced term δF (D) is reported in Eq. (111b).
From Eq. (115), one obtains the residual finite-size free energy
per volume:

f̊
(D)

res (τ,ρ,L) = L−d [�̊(D)(τL2,ρ) + ρd−1δFns(L)]

(C20)

with the scaling function

�̊(D)(x,ρ) ≡ 1
2S

(D)
d,reg(x,ρ) + ρd−1δF (D)

s (x,ρ), (C21)

where δFs and δFns are given in Eqs. (113b) and (114),
respectively. For x � 1, S (D)

d,reg(x,ρ) vanishes exponentially
so that the asymptotic behavior of δF (D)

s dominates, resulting
in a logarithmic divergence of �̊(D):

�̊(D)(x � 1) � −1

2
ρd−1 ln

xρd−1

2π
, (C22)

analogously to �(p) [Eq. (C14)]. Since both S (D)
d,reg and δF (D)

s

are finite for x → 0 [see Eq. (94)], also �̊(D) remains finite in
that limit.

3. Neumann boundary conditions

The mode sum for Neumann boundary conditions can be
related to the one for Dirichlet boundary conditions [Eq. (C15)]
by writing

S(N)
d (τ̂ ,L,A) ≡

∞∑
n=0

∑
k‖

ln

[
k2

‖ +
(πn

L

)2
+ τ̂

]
= S(D)

d (τ̂ ,L,A) +
∑

k‖

ln(k2
‖ + τ̂ ). (C23)

From Eqs. (C16) and (C17) we thus obtain the regularized
mode sum

S(N)
d,reg(τ̂L2,L,L‖) = AL−d+1S (N)

d,reg(τ̂L2,ρ), (C24)

with

S (N)
d,reg(x̂,ρ) ≡ 2−dS (p)

d,reg(4x̂,2ρ) + 1
2ρd−1S (p)

d−1,reg(x̂/ρ2,1),

(C25)
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where S(p)
d,reg is given by Eq. (C4). In the thin-film limit (ρ → 0)

the second term in Eq. (C25) vanishes so that

S (N)
d,reg(x̂,ρ = 0) = S (D)

d,reg(x̂,ρ = 0), (C26)

with S (D)
d,reg(x̂,ρ = 0) given by Eq. (C18), in agreement with

explicit calculations for ρ = 0 reported in Ref. [59]. However,
in contrast to the case of Dirichlet boundary conditions, S (N)

d,reg
diverges for x̂ → 0 and nonzero ρ:

S (N)
d,reg(x̂ → 0,ρ 
= 0) � ρd−1 ln x̂, (C27)

due to Eq. (C6). The free energy of the constrained system
[Eq. (75)] for Neumann boundary conditions is given by

F̊ (N) = AL

(
Lb(ϕ) − Ad

d
τ̂ d/2

)
+ 1

2
AL

∫
ddk

(2π )d
ln(k2)

− A

2

Ad−1

d − 1
τ̂ (d−1)/2 + 1

4
A

∫
dd−1k‖
(2π )d−1

ln(k2
‖)

+ 1

2
AL−d+1S (N)

d,reg(τ̂L2,ρ) + δF (N)(τ̂ ,A,L), (C28)

where Lb is defined in Eq. (49) and the constraint-induced
contribution δF (N) is reported in Eq. (111c). We remark that,
for ϕ = 0, the grand canonical F (N) and F (D) are identical
[Eq. (C19)], except that the sign of the surface contribution
is reversed. The residual finite-size free energy per volume
follows from Eq. (115) as

f̊
(N)

res (τ̂ ,ρ,L) = L−d [�̊(N)(τ̂L2,ρ) + ρd−1δFns(L)]

(C29)

with the scaling function

�̊(N)(x̂,ρ) ≡ 1
2S

(N)
d,reg(x̂,ρ) + ρd−1δF (N)

s (x̂,ρ), (C30)

where δFs and δFns are given in Eqs. (113a) and (114),
respectively. In the thin-film limit (ρ → 0) and for a vanishing
mean OP ϕ [implying x̂ → x, see Eq. (134)], the scaling
functions for Dirichlet and Neumann boundary conditions are
identical, �̊(D) = �̊(N), as a consequence of Eq. (C26). Since
S (N)

d,reg(x̂,ρ) → 0 for x → ∞, it follows from the presence of

δF (N)
s that �̊(N) diverges logarithmically for x̂ � 1:

�̊(N)(x̂ � 1) � −1

2
ρd−1 ln

x̂ρd−1

2π
. (C31)

The divergences for x̂ → 0 of S (N)
d,reg [Eq. (C27)] and δF (N)

s

[Eq. (113a)] cancel in �̊(N), rendering the residual finite-size
free energy in the canonical case and at bulk criticality finite
for all aspect ratios. In contrast, in the grand canonical case,
Eq. (C27) implies a divergent residual finite-size free energy
for x̂ → 0 and nonzero ρ. This divergence is due to a zero
mode in the fluctuation spectrum, as it is also the case for
periodic boundary conditions.

APPENDIX D: CRITICAL CASIMIR FORCES OBTAINED
FROM PRESSURE DIFFERENCES

Alternatively to the definition based on the residual finite-
size free energy [Eq. (144)], the CCF K can be defined as the

difference between the pressure p in the confined system and
the pressure pb in the surrounding bulk medium:

K = p − pb. (D1)

For fixed area A = V/L, these pressures follow from the
corresponding free energy densities f and f

b
:

p = −d(Lf )

dL
, (D2a)

pb = −d(Lf
b
)

dL
. (D2b)

The same relations apply also in the canonical ensemble.
The bulk pressure can be obtained from the thermodynamic
limit:

pb = lim
L → ∞,

A → ∞

p, (D3)

which is to be performed by keeping a fixed mean OP ϕ in
the canonical ensemble and a fixed bulk field h in the grand
canonical ensemble.

Turning first to the canonical ensemble, we employ the
decomposition property in Eq. (105) to formally write the
pressure p̊ as consisting of bulk, surface, and residual finite-
size contributions:

p̊ = p̊b + p̊s + p̊res, (D4)

where

p̊s ≡ −d f̊
s

dL
(D5)

is a “surface” pressure and

p̊res ≡ −d(Lf̊res)

dL
(D6)

is the excess contribution.
In the following, we focus on Neumann boundary con-

ditions because only in this case the CCF derived from
Eq. (D1) differs from the one obtained on the basis of
Eq. (144). For simplicity, we analyze the regularized (but not
yet renormalized) expressions of the free energy, as given in
Secs. III C and III D. Renormalization produces (via additive
counterterms) contributions to the bulk free energy [29], but
does not change the conclusions of this section regarding the
CCF. According to Eq. (106c) the bulk free energy density is
given by

f̊
b

= Lb(ϕ) − Ad

d
τ̂ d/2, (D7)

where Lb is defined in Eq. (49). Inserting f̊
b

[Eq. (D7)] into
Eq. (D2b) yields the bulk pressure

p̊b = −d(Lf̊
b
)

dL
= −

[
f̊
b
− ϕ

∂ f̊
b

∂ϕ

]
, (D8)

where we made use of Eq. (145). As a manifestation of
ensemble equivalence in the thermodynamic limit, the grand
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canonical bulk free energy density f
b

can be obtained from f̊
b

[Eq. (D7)] via a Legendre transform:

f
b
(τ,h,ρ,L) = f̊

b
(τ,ϕ(h)) − hϕ(h), (D9)

with ϕ = ϕ(h) determined from the implicit equation

h = ∂ f̊
b

∂ϕ
. (D10)

In the grand canonical case, h is an external field and Eq. (D10)
does not introduce any dependence on L. Therefore, by using
the above equations, the grand canonical film pressure follows
as

pb = −d(Lf
b
)

dL
= −f

b
= p̊b. (D11)

As expected, the canonical and the grand canonical bulk
pressures are identical.

From Eq. (106c) one infers the canonical surface free energy
per area for Neumann boundary conditions:

f̊
(N)

s
= −1

2

Ad−1

d − 1
τ̂ (d−1)/2. (D12)

Upon using Eq. (145), the “surface” pressure [Eq. (D5)]
follows as

p̊(N)
s = −∂ f̊

(N)

s

∂ϕ

dϕ

dL
= ∂ f̊

(N)

s

∂ϕ

ϕ

L
= − 1

2L
Ad−1τ̂

(d−3)/2uϕ2.

(D13)

Due to the OP constraint [Eq. (145)], the surface pressure
is nonzero in the canonical ensemble. This result can be
compared with the corresponding one in the grand canonical
ensemble, in which, according to Eq. (125), the surface free

energy f (N)
s

has the same formal expression as f̊
(N)

s
[Eq. (D12)],

except that ϕ = ϕb(τ,h) is a function of the external field h via
the bulk equation of state. Since the latter is independent of L,
we immediately infer, analogously to Eq. (D13), that

p(N)
s = −∂f (N)

s

∂ϕ

∣∣∣∣
ϕb

dϕb

dL
= 0, (D14)

as expected. As a direct consequence of Eq. (D13), the
canonical CCF K̊ defined by Eq. (D1) is in general different
from the CCF defined by Eq. (144) because the latter simply
coincides with p̊res. Following Sec. IV, Eq. (D13) can be cast
into scaling form

p̊s = L−d�̊s

⎛⎝( L

ξ
(0)
+

)1/ν

τ,

(
L

ξ
(0)
+

)β/ν

ϕ

⎞⎠, (D15)

with the scaling function

�̊s(x,m) = −Ad−1

2
ru∗m 2

[
x + 1

2
ru∗m 2

](d−3)/2

, (D16)

which is to be evaluated for d = 4. In Eq. (D15) p̊s is to be
understood as per kBTc, so that �̊s is dimensionless.

APPENDIX E: CRITICAL CASIMIR FORCE
FOR CONSTANT VOLUME

In Eq. (144) we have defined the CCF under the condition
of a fixed transverse area A, implying a change of the
volume of the film upon its action and thereby of the mean
OP [see Eq. (145)]. In the case of a binary liquid mixture,
the near-incompressibility of the liquid (close to demixing)
strongly opposes changes of volume and, therefore, of the
distance between the plates realizing the confinement. In the
grand canonical ensemble the change of volume of the film
occurs (easily) via exchange with the reservoir, but not due to
compression. Alternatively, one may thus consider the CCF
(per area) under the constraint of constant volume V = AL:

KV ≡ − 1

A

d(V fres)

dL

∣∣∣∣
V = const

. (E1)

An analogous definition applies to the corresponding canonical
CCF K̊V , where, as before, additionally to V also the total OP
� is held constant. We further note that, for constant volume,
Eq. (104) implies dρ/dL = ρLd/(d − 1) and

dϕ

dL

∣∣∣∣
V = const

= 0, (E2)

instead of Eq. (145). Using Eqs. (E1) and (132), the canonical
CCF K̊V can be shown to fulfill Eq. (146) with the scaling
function

�̊V (x,m,ρ) = d ˚̂�(x,m,ρ) − 1

ν
x∂x

˚̂�(x,m,ρ)

− β

ν
m∂m

˚̂�(x,m,ρ) − d

d − 1
ρ∂ρ

˚̂�(x,m,ρ)

+ δ�̊ns(ρ) (E3)

instead of �̊. The expression for δ�̊ns is the same as in
Eq. (148), and the expressions of the scaling functions

�̊(x̂(x,m),ρ) = ˚̂�(x,m,ρ) are reported in Eqs. (108), (113),
and (117) for the various boundary conditions. Using, anal-
ogously, Eqs. (E1) and (135), the grand canonical CCF KV

fulfills Eq. (149) with the scaling function

�̃V (x,h,ρ) = d�̃(x,h,ρ) − 1

ν
x∂x�̃(x,h,ρ) − βδ

ν
h∂h�̃(x,h,ρ)

− d

d − 1
ρ∂ρ�̃(x,h,ρ) (E4)

instead of �̃. Analogously to Eq. (152), expressing �̃(x,h,ρ)
in terms of �̂(x,m (x,h,ρ),ρ) and using the scaling form of the
equation of state in Eq. (142) [which is valid in the bulk limit
as well as at O(ε0)], yields

�V (x,m,ρ) = d�̂(x,m,ρ) − 1

ν
x∂x�̂(x,m,ρ)

− β

ν
m∂m�̂(x,m,ρ)

− d

d − 1
ρ

(
∂m
∂ρ

∂m + ∂ρ

)
�̂(x,m,ρ). (E5)

Since, at O(ε0), ∂m/∂ρ = 0 for the considered boundary
conditions, the scaling functions �̊V and �V in Eqs. (E3)
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and (E5) have formally identical expressions in terms of the

corresponding scaling functions ˚̂� and �̂.
In order to assess the actual difference between the two

ensembles, we must take into account that, in the canonical en-
semble, the constraint-induced term δF [Eq. (111)] contributes

to ˚̂� with a term which is given in Eq. (113). According to
Eq. (E1), the total constraint-induced contribution to the CCF
K̊V [including the term δ�̊ns in Eq. (148)] is given by

δK̊V (t,A,L) = − 1

A

d δF

dL

∣∣∣∣
V =const

= L−dδ�̊V

⎛⎝x =
(

L

ξ
(0)
+

)1/ν

t,ρ

⎞⎠ (E6)

with

δ�̊V (x,ρ)

=
{

0, periodic and Neumann
1
2ρd−1

√
x−sinh

√
x

cosh2(
√

x/2)[
√

x−2 tanh(
√

x/2)]
, Dirichlet.

(E7)

These expressions can be contrasted to the corresponding ones
for δ�̊ reported in Eq. (155). Notably, the constraint-induced
contribution to the CCF defined with fixed volume V vanishes
for periodic and Neumann boundary conditions. At O(ε0),
upon using Eq. (134) and β = 1

2 , we can express Eq. (E5) in
terms of the scaling function �(x̂(x,m),ρ) = �̂(x,m,ρ) as

�V (x,m,ρ) = d�(x̂,ρ) − 1

ν
x̂∂x̂�(x̂,ρ)

− d

d − 1
ρ∂ρ�(x̂,ρ) + O(ε). (E8)

Since Eq. (E7) contains the contributions to the CCF from
both the scaling and nonscaling terms in the residual finite-size
free energy, Eq. (E3) can, owing to Eqs. (117) and (129), be
expressed analogously in terms of �(x̂,ρ) as

�̊V (x,m,ρ) = d�̂(x̂,ρ) − 1

ν
x̂∂x̂�̂(x̂,ρ) − d

d − 1
ρ∂ρ�̂(x̂,ρ)

+ δ�̊V (x,ρ) + O(ε). (E9)

Accordingly, at O(ε0), the canonical and the grand-canonical
CCFs are identical for periodic and Neumann boundary
conditions:

�̊
(p,N)
V (x,m,ρ) = �

(p,N)
V (x,m,ρ). (E10)

For Dirichlet boundary conditions with m = 0 we have,
instead,

�̊
(D)
V (x,ρ) = �

(D)
V (x,ρ) + δ�̊

(D)
V (x,ρ), (E11)

where δ�̊V is negative for all x and vanishes in the limit
x → ∞. We finally note that, for a fully isotropic cube, the
CCF for conserved volume is expected to vanish by symmetry.
Indeed, using Eqs. (134), (E8), and (C4), for periodic boundary
conditions with ρ = 1 and d = 4 one finds

�̊
(p)
V (x,m,ρ = 1) = �

(p)
V (x,m,ρ = 1)

=
∫ ∞

0
dy ∂y

{
exp

(
− x̂y

4π2

)[
ϑd (y) −

(
π

y

)d/2
]}

= 0,

(E12)

where the last step follows from the asymptotic behavior
of the theta function ϑ(y) [see Eq. (C5) and the associated
comments].

Figure 11 shows the numerically evaluated scaling func-
tions �̊

(p,D,N)
V of the canonical CCF for conserved volume.

Note that, according to Eqs. (E7), (E8), and (E9), �V and
�̊V can be considered as functions of the combined scaling
variable x̂ [Eq. (134)]. For periodic boundary conditions
[Fig. 11(a)], the CCF at constant volume is identical in the two
ensembles and its absolute strength decreases upon increasing
the aspect ratio ρ. This trend is opposite to the behavior of
the CCF at constant transverse area displayed in Figs. 4 and
5. For Dirichlet boundary conditions, the CCF at constant
volume [Fig. 11(b)] is qualitatively similar to that at constant
transverse area (Fig. 7), except that, in the latter case, �̊(D)

attains a nonzero value for x → ∞, whereas �̊
(D)
V vanishes

in that limit. In the case of Neumann boundary conditions
[Fig. 11(c)], the scaling function �̊

(N)
V = �

(N)
V of the CCF

at constant volume shows a behavior distinct from that of
�̊(N) (see Figs. 9 and 10), as it depends nonmonotonically on
the effective scaled temperature x̂ and exhibits a pronounced
minimum at intermediate values of x̂.
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