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Quantum systems driven by time-dependent Hamiltonians are considered here within the framework of
steepest-entropy-ascent quantum thermodynamics (SEAQT) and used to study the thermodynamic characteristics
of such systems. In doing so, a generalization of the SEAQT framework valid for all such systems is provided,
leading to the development of an ab initio physically relevant expression for the intrarelaxation time, an important
element of this framework and one that had as of yet not been uniquely determined as an integral part of the
theory. The resulting expression for the relaxation time is valid as well for time-independent Hamiltonians as
a special case and makes the description provided by the SEAQT framework more robust at the fundamental
level. In addition, the SEAQT framework is used to help resolve a fundamental issue of thermodynamics in the
quantum domain, namely, that concerning the unique definition of process-dependent work and heat functions.
The developments presented lead to the conclusion that this framework is not just an alternative approach to
thermodynamics in the quantum domain but instead one that uniquely sheds new light on various fundamental
but as of yet not completely resolved questions of thermodynamics.
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I. INTRODUCTION

The last three decades have seen experimental evidence
(e.g., [1–11]) emerge at atomistic scales, which suggests the
existence of irreversible changes even at these scales. Whether
or not these changes are related to the measurement axiom
of quantum mechanics (QM), the so-called “collapse of the
wave function”, i.e., an abrupt collapse leading to irreversible
change, or to something else entirely different is still a matter
of debate. What is clear is that the collapse of the wave function
postulate has drawn significant criticism [12–20] and has led to
an interpretation which replaces the abrupt collapse by a more
gentle differentiable dynamical evolution. The result has been
two theories, i.e., that of quantum open systems (QOS) [21–24]
and that of typicality [25–30] from which it is said that the
Second Law of thermodynamics emerges. The former, which
is a special case of the latter, relies on a partition between
the primary system and the environment (e.g., the measuring
device) and the total evolution in state is assumed to be unitary
(i.e., linear) and generated by the Hamiltonian of the system-
environment composite.

An alternative to an assumed collapse whether abrupt or
more gradual is a possibly meaningful, nonlinear dynamics,
which results when the postulates of QM are complemented
by the Second Law, which, instead of emerging from QM,
supplements it. In such an approach, the evolution of state can
occur nonunitarily consistent with both the postulates of QM
and thermodynamics. One such approach is that of intrinsic
quantum thermodynamics (IQT) [31–40] and its mathematical
framework steepest-entropy-ascent quantum thermodynamics
(SEAQT) [41–55]. It is this approach and the ones described
above that are representative of the contrasting views of the
origins of irreversible changes that form the basis of the field
of quantum thermodynamics [25,56,57], which has developed
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over the last four decades and has grown exponentially in the
last decade and a half. In fact, the term quantum thermody-
namics was first coined by Beretta et al. [35–39] in the early
1980s with the publication of the dynamical aspects of IQT.

It is the mathematical framework of this latter theory, i.e.,
SEAQT, which is the basis of the developments presented
here. Differing from other known approaches, the SEAQT
framework results from a unified treatment of quantum
mechanics and thermodynamics at a single level of description
based on a generalized scheme of quantal dynamics in which
the standard unitary dynamics governed by a given Hamil-
tonian is supplemented by an intradissipative (nonunitary)
dynamics obtained from the requirement of maximum entropy
production at every single instant of time. Remarkably enough,
this enables the Second Law of thermodynamics to appear
straightforwardly at a fundamental level of description (cf.
for a contrasting view based on a quantum Maxwell demon;
see [58–60]). As such, the SEAQT framework, which has
been shown to encompass all of the well-known classical and
quantum nonequilibrium frameworks [45] and is applicable
even far from equilibrium, provides a conceptually consistent
and mathematically and relatively compact framework for
systematically analyzing nonequilibrium processes at any spa-
tial and temporal scale. This first-principles, thermodynamic-
ensemble-based approach has recently been extended via the
concept of a hypoequilibrium state and a corresponding set of
intensive properties [46] to provide the global features of the
microscopic description as well as that of the nonequilibrium
evolution of state of a system when combined with a set of
nonequilibrium extensive properties. In contrast to the defi-
nitions of other nonequilibrium thermodynamic approaches,
the SEAQT intensive property definitions are fundamental as
opposed to phenomenological, are applicable to all nonequi-
librium states, and enable the generalization of the equilibrium
and near-equilibrium description (e.g., the Gibb’s relation, the
Clausius inequality, the Onsager relations, and the quadratic
dissipation potential) to the far-from-equilibrium realm. In
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addition, reduced computational burdens make the study of
physically complex nonequilibrium phenomena at microscales
possible where otherwise they may not be given the much
heavier computational burdens associated with conventional
approaches based purely on mechanics (i.e., quantum or clas-
sical) and/or stochastics (e.g., ensemble Monte Carlo). This
framework can also facilitate the development of microscale
analytical expressions, and its extension from the quantum
to the classical regime is accomplished without resort to
any extra (semi)classical approximations and manipulations,
which are normally nonuniquely made. As a consequence,
this approach provides a robust platform for exploring the
thermodynamics of the quantal-classical transition regime and
for affecting the scale-up of systems consisting of a few
qubits to those of much greater extent, doing so with a single
unified multiscale thermodynamic picture of the kinematics
and dynamics involved.

Both reactive and nonreactive quantum and classical
systems have been investigated successfully using SEAQT
[46–55] and some validations with experiment have been
made [49,50]. It has furthermore been shown that not only
does the equation of motion of SEAQT predict the unique
thermodynamic path, which the system takes [37,38], but that
the kinetics of this path (i.e., movement along it) and its
dynamics (i.e., the time it takes for this movement) can be
treated separately [47]. Physically, this means that the system
follows the same trajectory in state space regardless of the
relaxation time τ chosen for the equation of motion. Whether
a constant or a functional of the density operator ρ̂ upon which
the equation of motion is based, the dynamics of the process
and, as a consequence a value for τ , is determined via exper-
iment [49,50,54] or, for example, kinetic theory [47,52,55].
What has been missing to date is τ as a functional of ρ̂.
Although Beretta [44] by analogy provides a lower limit for
the relaxation time relative to the time-energy Heisenberg
uncertainty principle, this limit does not in general, as has
been shown in [49–52,55], provide a practical value for τ . The
purpose of the present paper is to provide such a functional and
as a consequence a generalization of the SEAQT framework
both for time-independent and time-dependent Hamiltonians.
This development appears in Sec. IV. An added benefit of this
development is that since the SEAQT framework inherently
satisfies all the laws of mechanics and thermodynamics,
generalized concepts for process-dependent heat and work
transfers and process-independent internal energy changes in
the quantum domain are provided. This appears in Sec. III and
results in the First Law of thermodynamics and its resulting
energy balance being uniquely well defined in the quantum
domain, remarkably enough with the help of the Second Law,
which the SEAQT framework embodies. We begin in Sec. II
with an introduction to the SEAQT equation of motion and
the limits placed on the relaxation times associated with the
Hamiltonian and dissipation terms of this equation.

II. RELAXATION TIME LIMITS AND THE SEAQT
EQUATION OF MOTION

In the SEAQT framework for a single isolated system with a
time-independent Hamiltonian, the time evolution of a density

operator is given by [44]

∂ρ̂

∂t
= i

h̄
[ρ̂,Ĥ ] + D̂1(ρ̂,Ĥ ,{N̂j }), (1)

where Ĥ is the Hamiltonian, ρ̂ the density or state operator,
and N̂j the j th particle number operator (or magnetic moment
or other operator representing additional generators of the
motion if any). The first term on the right-hand side governs
the reversible dynamics conserving both the energy and
entropy (the so-called von-Neumann term), while the second
term describes the energy-conserving but internally entropy-
generating and, thus, irreversible dynamics and is given by

D̂1(ρ̂,Ĥ ,{N̂j }) = − 1

2τ
[
√

ρ̂ D̂ + D̂†√ρ̂], (1a)

D̂ =
√

ρ̂ B̂ ln(ρ̂)|⊥L{√ρ̂ 1,
√

ρ̂ Ĥ , [
√

ρ̂ N̂j ]}. (1b)

In standard quantum mechanics, which neglects the
entropy-generating term D̂1, Eq. (1) obviously reduces to the
well-known von-Neumann equation, giving rise to the unitary
time evolution ρ̂(t) = Û ρ̂(t0) Û † with Û (t,t0) = e−i(t−t0)Ĥ /h̄.
In (1a) and (1b) the intrarelaxation time τ = τ (ρ̂) is a positive
functional of ρ̂, but has not uniquely been determined as
of yet [44]. The idempotent operator B̂ is introduced which
assigns unity for each nonzero eigenvalue of ρ̂, while zero
for each vanishing eigenvalue of ρ̂, thus, ensuring that the
entropy operator Ŝ = −kBB̂ ln(ρ̂) is well defined even when
some eigenvalues of ρ̂ vanish. By construction, the operator
D̂ is the component of D̂1 perpendicular to the linear manifold
L spanned by a set of operators {√ρ̂ 1,

√
ρ̂ Ĥ , [

√
ρ̂ N̂j ]}. The

operator D̂1 is then interpreted as driving the density operator
ρ̂(t) at every instant of time in the direction of steepest entropy
ascent (ds/dt |max > 0 with the entropy s = −kB Tr{ρ̂ ln ρ̂})
relative to the manifold specified by the time invariants {U =
Tr(ρ̂Ĥ ),[Nj = Tr(ρ̂N̂j )]}. Here U is the internal energy of the
system and Nj the number of particles of the j th constituent.

Equation (1) can be rewritten in the alternative form [44],

∂ρ̂

∂t
=

√
ρ̂ Ê(t) + Ê†(t)

√
ρ̂, (2)

which will be used below. Here the decomposition Ê =
ÊH + ÊD is composed of the von-Neumann part ÊH =
(i/h̄)

√
ρ̂ {Ĥ + c(ρ̂)1} corresponding to standard quantum

mechanics with c(ρ̂) ∈ R being an arbitrary functional of
ρ̂ and the entropy-generating part ÊD = −D̂/(2τ ). As a
consequence, the total dynamics given in (1) is nonunitary as
long as the initial state ρ̂(t0) is in the form of a mixed state. For
any pure state ρ̂(t0) = |ψ(t0)〉〈ψ(t0)|, the dynamics becomes
unitary with Ê → ÊH . In this case, the operator D̂ identically
vanishes at every instant so that no entropy is generated during
the time evolution. It is also straightforward to show that since√

ρ̂ is perpendicular to both components of Ê,

0 = Tr

(
∂ρ̂

∂t

)
= Tr{(Ê + Ê†)

√
ρ̂} = 2 (Ê|

√
ρ̂), (3)

where the inner product (F̂ |Ĝ) = {Tr(F̂ †Ĝ + Ĝ†F̂ )}/2 in
symmetrized form is defined in the space L(H) of linear
operators on the Hilbert space H.
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The operator ÊH can directly be related to the time-energy
uncertainty relation by first setting the real number c(ρ̂) = −U
such that h̄2(ÊH |ÊH ) = (

√
ρ̂ �Ĥ |√ρ̂ �Ĥ ) = σ 2

H
with �Ĥ =

Ĥ − U1 the deviation operator of Ĥ and σH the standard
deviation relative to Ĥ [44]. It then turns out that τ−2

H
:=

4 (ÊH |ÊH ) � τ−2
A

with the help of the uncertainty relation
σH τA � h̄/2 where the characteristic time τA for a given
observable Â (not explicitly time dependent) may be in-
terpreted as the amount of time it takes the expectation
value of Â to change by one standard deviation σA =
|d〈Â〉/dt | τA [61,62]. Accordingly, the time τH , which results
from the time-energy uncertainty relation with strict equality,
is simply chosen above as the minimum value of the charac-
teristic times, the τA’s, for all possible observables, i.e., Â’s.
Analogously, in [44], it is assumed that the entropy-generating
part ÊD also satisfies the uncertainty relation, which renders
the corresponding characteristic time τD = τ (D̂|D̂)−1/2 for
which a value is found from the uncertainty equality [44].
This minimum value (τD)min provides the intrarelaxation time
τ in question with its minimum value τmin.

However, this value τmin has been shown to be significantly
too small for generic experimental values of the relaxation
time τ , and so the substitution of τmin into (1a) cannot be
supported by the experimental data. Also theoretically, it has
been verified that a minimum-uncertainty state must be a pure
state [63,64]. In other words, the intrarelaxation time τ (ρ̂) for
a mixed state ρ̂ is required to be fundamentally greater than
its minimum-uncertainty value. As a result, it is not physically
consistent to impose the value τmin upon the time evolution
given in (2) for a generic mixed state. To address this, we
introduce a different approach below for the determination of
the intrarelaxation time, which is more physically relevant.

III. GENERALIZATION OF THE SEAQT EQUATION OF
MOTION FOR A TIME-DEPENDENT HAMILTONIAN

Now to generalize Eq. (2) for the case of a time-dependent
Hamiltonian Ĥ (t), the corresponding von-Neumann part ÊH

is first determined. From the von-Neumann equation valid also
for this case, it easily follows that ÊH = (i/h̄)

√
ρ̂ �Ĥ (t), thus

leading to

(ÊH |
√

ρ̂ 1) = 0; (ÊH |
√

ρ̂ Ĥ ) = (ÊH |
√

ρ̂ �Ĥ ) = 0. (4)

Also note that (
√

ρ̂ 1|√ρ̂ �Ĥ ) = 0, i.e., these two operators
are perpendicular to each other. It is also true that the energy-
time uncertainty relation with the minimum-uncertainty equal-
ity holds true for this case (cf. [65]). For purposes of
comparison below, the unitary operator of time-evolution
Û (t) = T̂ e−i

∫ t

0 Ĥ (t)/h̄ of standard quantum mechanics obtained
from the von-Neumann equation is briefly discussed. Here, the
operator T̂ denotes the time ordering. In most cases, it is a
highly nontrivial exercise to derive a closed form expression
for this operator. Nonetheless, it is instructive to transform this
time-ordered form to an ordinary exponential form as in the
case of a time-independent Hamiltonian. Thus, the exponential
operator identity is applied such that [66]

T̂ exp

{∫ t

0
dτ B̂t (τ )

}
= exp

{ ∞∑
n=1

K̂n(t)

}
, (5)

where some of the lower-order terms are explicitly given by

K̂1(t) = Ĉ1(t); K̂2(t) = 1
2 Ĉ2(t),

K̂3(t) = 1
3 Ĉ3(t) + 1

12 [Ĉ2(t),Ĉ1(t)];

K̂4(t) = 1
4 Ĉ4(t) + 1

12 [Ĉ3(t),Ĉ1(t)]. (5a)

Here the commutators are written as

Ĉn(t) =
∫ t

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τn−1

0
dτn

× [B̂t (τ1),[B̂t (τ2),[· · · ,[B̂t (τn−1),B̂t (τn)] · · · ]]],

(5b)

where Ĉ1(t) = ∫ t

0 dτ B̂t (τ ) with B̂t (τ ) = −(i/h̄)Ĥ (τ ). In fact,
the operators K̂n(t) for all n can be evaluated exactly. As an
example of the time evolution in closed form, consider the two-
level system given by Ĥ0(t) = (h̄ω/2){σ̂z + a(t) σ̂x} where the
σ̂j ’s denote Pauli matrices and a dimensionless quantity a(t) ∈
R is periodic in time t . The system’s time evolution is then
explicitly given by Û0(t) = Ûy Û˜(t) Û

†
y with Ûy = e(iπ/4) σ̂y

and the (2 × 2) matrix Û˜(t) by [67–69]

Û˜(t) =
(

R(t) {1 + i g0 S(t)} −i ε R(t) S(t)
−i ε R̄(t) S̄(t) R̄(t) {1 − i ḡ0 S̄(t)}

)
, (6)

where ε = h̄ω/2, and R̄, S̄, and ḡ0 denote the complex
conjugates of R, S, and g0, respectively. Here R(t) =
exp[−i

∫ t

0 {f (t ′) + g(t ′)} dt ′], and S(t) = ∫ t

0 {R(t ′)}−2 dt ′
where f (t) = −(h̄ω/2) a(t) and g(t), with g0 = g(0), is a
particular solution to the generalized Riccati equation ∂t g(t) −
ig2(t) − 2if (t) g(t) + iε2 = 0 [70].

Next, the corresponding entropy-generating part ÊD of
Eq. (2) is determined. To begin with, the energy balance of
the First Law of thermodynamics is written as (see, e.g., [71])

dU =
∑

n

En dpn +
∑

n

pn dEn, (7)

where the En’s are the eigenenergies and the pn’s their
respective probabilities. This balance provides a condition
required for determining the direction of ÊD . The first term
on the right is interpreted as the heat input δQin from the
environment and the second as the work δWin performed
on the system (cf. see [72–74] for a discussion of the work
for classical systems). Now, consider the case of a time-
independent Hamiltonian. Accordingly, with no work input
(δWin = 0), the balance reduces to dU = δQin, and it is easily
be shown with the help of (2) that

dU/dt = Tr{Ĥ (dρ̂/dt)} = 2(Ê|
√

ρ̂Ĥ ). (8)

Therefore, for an isolated system with no heat exchange
(δQin = 0), (Ê|√ρ̂Ĥ ) = 0, which means that the two opera-
tors Ê and

√
ρ̂Ĥ are perpendicular to each other. Subsequently,

it is also straightforward to show that (ÊH |√ρ̂Ĥ ) = 0 so that it
follows that (ÊD|√ρ̂Ĥ ) = 0 as well. Therefore, the invariance
ofU may simply be seen as resulting from the energy balance in
a system with no heat nor work input. Likewise, for additional
non-Hamiltonian invariants (if any),

dNj /dt = Tr{N̂j (dρ̂/dt)} = 2(Ê|
√

ρ̂N̂j ), (9)
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and dNj /dt also vanishes. With (ÊH |√ρ̂N̂j ) = 0, this results
in (ÊD|√ρ̂N̂j ) = 0. Thus, it is seen that all invariants {U ,[Nj ]}
uniquely determine the direction of Ê.

Next, a similar scenario is developed for a system with
no heat input but nonzero work input. For this case, the
internal energy is no longer a time invariant. In fact, it is
assumed that there is no invariant available to the Hamiltonian
system given by Ĥ (t). The quantity Tr(Ĥdρ̂), as given in (8),
can then no longer be interpreted as δQin. To illustrate
this, the aforementioned system Ĥ0(t) is now considered.
Its instantaneous eigenvalues and eigenvectors are explicitly
given by

E1(t) = (h̄ω/2)
√

1 + a2(t);

|1(t)〉 = N+[a(t)|+〉 + {
√

1 + a2(t) − 1}|−〉], (10a)

E2(t) = −(h̄ω/2)
√

1 + a2(t);

|2(t)〉 = N−[a(t)|+〉 − {
√

1 + a2(t) + 1}|−〉]. (10b)

Here the (time-dependent) normalizing numbers are given
by N± = [2 {1 + a2(t) ∓

√
1 + a2(t)}]−1/2 with the signs

+/− in accordance with their order on both sides. The
internal energy is then shown to be U0(t) = Tr(Ĥ0ρ̂) =
h̄ω [ρ11 + a(t) {Re(ρ12)} − 1/2] where the symbol ρjk de-
notes the (j,k)th component of a (2 × 2)-Hermitian matrix
ρ̂ and Re(ρ12) is the real part of ρ12. This easily yields
Tr(Ĥ0dρ̂) = h̄ω [dρ11 + a(t) d{Re(ρ12)}], while Tr(ρ̂ dĤ0) =
h̄ω{Re(ρ12)}da. In contrast, by expressing ρ̂ within the
instantaneous eigenbasis {|1(t)〉,|2(t)〉} of Ĥ0(t), its diagonal
elements p1 = 1/2 + [ρ11 + a{Re(ρ12)} − 1/2] (1 + a2)−1/2

and p2 = 1 − p1 can straightforwardly be obtained. This gives

δQin =
∑

n

En dpn = h̄ω

[
dρ11 + d{a Re(ρ12)}

− a {ρ11 + a Re(ρ12) − 1/2} da

1 + a2

]
, (11a)

δWin =
∑

n

pn dEn = h̄ω

[
a {ρ11 + a Re(ρ12) − 1/2} da

1 + a2

]
.

(11b)

In this case, it is seen that δQin �= Tr(Ĥ0dρ̂) and δWin �=
Tr(ρ̂ dĤ0). Thus, the association of δQin with Tr(Ĥ0dρ̂) and
δWin with Tr(ρ̂ dĤ0) as is routinely done in the literature
(cf. [25,57]) is not warranted for the case of a time-dependent
Hamiltonian.

IV. FORMAL DEVELOPMENT OF THE RELAXATION
TIME FUNCTIONAL

The previous generalization is now discussed more system-
atically. To do so, consider

δλ(t) := Tr{Ĥ (t) dρ̂} =
∑

n

En 〈n|(dρ̂)|n〉, (12)

expressed in terms of the instantaneous eigenvectors {|n〉}
of Ĥ (t). From the identity that 〈n|(dρ̂)|n〉 = d(〈n|ρ̂|n〉) −
(d〈n|)ρ̂|n〉 − 〈n|ρ̂(d|n〉) with d(〈n|ρ̂|n〉) = dpn, it is easily
seen that δλ �= δQin = ∑

n Endpn for Ĥ (t) whereas δλ = δQin

for its time-independent counterpart. Thus, for the case of
δQin = 0 and a time-dependent Hamiltonian, δλ �= 0 always.
Based on Eq. (8), this leads to the conclusion that Ê is not
perpendicular to

√
ρ̂ Ĥ (t), which means that the procedure

following Eq. (8) above for determining the direction of
Ê cannot be employed. However, as seen from (4), the
von-Neumann part ÊH remains perpendicular to

√
ρ̂ Ĥ (t);

and as a consequence, without the intraentropy generation
provided by the SEAQT framework (i.e., with Ê → ÊH ),
one must conclude that Tr{Ĥ (t) (dρ̂/dt)} = 2 (ÊH |√ρ̂ Ĥ ) =
0 [cf. (12)], which necessarily contradicts δλ �= 0 or δQin = 0.
This is a fundamental conceptual problem within the thermo-
dynamics embedded in the scheme of standard quantum me-
chanics. Furthermore, the entropy-generating part ÊD cannot
be perpendicular to

√
ρ̂ Ĥ (t) for the case of a time-dependent

Hamiltonian or else δλ = 0, resulting in δQin �= 0 which again
is a contradiction.

To resolve this conceptual inconsistency and as a result
develop a consistent thermodynamics of the quantum domain,
the intraentropy generation available in SEAQT is used to
uniquely determine the direction of ÊD and as a consequence
that of Ê. To that end, it is again assumed that δQin = 0, i.e.,∑

n

(
d

dt
〈n|ρ̂|n〉

)
En

!= 0, (13)

so that from the energy balance, dU = δWin. Equation (13) is
subsequently rewritten as∑

n

〈n|(dρ̂/dt)|n〉 En = −2
∑

n

Re{〈n|ρ̂ (d/dt)|n〉} En.

(13a)

The left-hand side is nothing else than Tr{Ĥ (t) (dρ̂/dt)} =
2 (Ê|√ρ̂ Ĥ ) as discussed above. With the help of
(ÊH |√ρ̂ Ĥ ) = 0, Eq. (13a) reduces to

(ÊD|
√

ρ̂ Ĥ ) = −Re
∑

n

〈n|ρ̂ (d/dt)|n〉 En, (13b)

where the right-hand side is nonvanishing in contrast to its
counterpart for the time-independent Hamiltonian, which van-
ishes. Substituting the identity of completeness

∑
m |m〉〈m| =

1 into the right-hand side of (13b), recognizing that 〈n|∂t |n〉
is purely imaginary as a result of 〈n|∂t |n〉 + 〈∂tn|n〉 = 0, and
then applying the relation of instantaneous eigenstates given
by [75]

〈m|∂t |n〉 = 〈m|{∂t Ĥ (t)}|n〉/(En − Em), (14)

which is valid for m �= n, one finally obtains the exact
expression,as

(ÊD|
√

ρ̂ Ĥ )

= −Re
∑

n

∑
m (�=n)

ρnm 〈m|{∂t Ĥ (t)}|n〉/(1 − Em/En).

(13c)
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For simplicity, it is assumed here that the system is nondegen-
erate (En �= Em if n �= m). Equation (13c) can then be rewritten
in terms of the commutator [ , ]− as

(ÊD|
√

ρ̂ Ĥ ) =
∑

n

∑
m (�=n)

ρnm

2 (En − Em)
〈m|[Ĥ ,{∂t Ĥ (t)}]−|n〉.

(13d)

It should be noted that Eq. (13d) can straightforwardly be gen-
eralized to a system with a continuous energy spectrum [76].
Furthermore, the validity of (13d) can easily be verified from
the previous example for Ĥ0(t) in such a way that the left-hand
side of (13d) is explicitly given by

(ÊD|
√

ρ̂ Ĥ ) = 1

2

∑
n

〈n|(dρ̂/dt)|n〉 En

= h̄ω

2
{∂t ρ11 + a(t) Re(∂t ρ12)}, (15a)

and the right-hand side becomes

1/2

E1 − E2
{ρ12 〈2|[Ĥ ,{∂t Ĥ (t)}]−|1〉

− ρ21 〈1|[Ĥ ,{∂t Ĥ (t)}]−|2〉}, (15b)

which can immediately be reduced to h̄ωȧ {4 (1 +
a2)}−1 {2a ρ11 − a + 2a2 Re(ρ12)} where ρ12 = 〈1|ρ̂|2〉 with
|1〉 and |2〉 explicitly given by (10a) and (10b). The equality
of this last expression with the right-hand side of Eq. (15a)
confirms that δQin = 0 in (11a), which is consistent with the
assumption of no heat transfer for this system.

For purposes of the development below, Eq. (13c) is
now rewritten by first noting that Eq. (3) is also valid
for a generic time-dependent Hamiltonian. With the help
of (4), this immediately yields that (ÊD|√ρ̂) = 0. There-
fore, a real functional c(ρ̂) can be introduced such that
(ÊD|√ρ̂ Ĥ ) = (ÊD|√ρ̂ {Ĥ + c(ρ̂) 1}). Consistent with the
case for a time-independent Hamiltonian, the real functional
c(ρ̂) is set equal to −U(t). Two normalized operators
are introduced next such that ẑ := ÊD/{(ÊD|ÊD)}1/2 with
(ẑ|ẑ) = 1 and ĥ := √

ρ̂ (�Ĥ )/σH with (ĥ|ĥ) = 1 where the
standard deviation σH (t) = {(√ρ̂ �Ĥ |√ρ̂ �Ĥ )}1/2 as in the
time-independent Hamiltonian case. Then, (ÊD|√ρ̂ �Ĥ ) =
{(ÊD|ÊD)}1/2 σH cos(θzh) where cos θzh = (ẑ|ĥ). This enables
Eq. (13c) to be transformed into

cos θzh = �(t)

{(ÊD|ÊD)}1/2 σH

, (16)

where �(t) = Re
∑

n

∑
m (�=n) ρnm 〈m|{∂t Ĥ (t)}|n〉 (Em/En −

1)−1. This last equation can be used to determine the direction
of ÊD as long as the magnitude {(ÊD|ÊD)}1/2 is known. In
fact, it is seen from this generalization to the case of a time-
dependent Hamiltonian that the time-independent Hamiltonian
case exactly corresponds as required to the special case
of θzh = π/2. Note also that for the system Ĥ0(t) given
in (10a) and (10b), Eq. (3) holds true, and (

√
ρ̂ Ĥ0|

√
ρ̂ Ĥ0) =

Tr[ρ̂(t) {Ĥ0(t)}2] = {E1(t)}2 explicitly so that the variance is
given by

{σH (t)}2 = (h̄ω/2)2 [{a(t)}2 − 4 {υ0(t)}2 + 4 υ0(t)], (17)

FIG. 1. The three-dimensional space of linear operators whose
basis consists of the three orthonormal operators {x̂ = √

ρ̂ 1; ŷ =√
ρ̂ �ϒ̂˜; ẑ = Ê˜D} [cf. after Eq. (18)]. Here the normalized operator

ĥ = (sin θ ) ŷ + (cos θ ) ẑ = √
ρ̂ �Ĥ (t)/σH lying on the (yz) plane,

expressed in terms of the polar angle θ of the spherical coordinate
system (r,θ,ϕ), where 0 � θ � π , and sin θ = (ĥ|ŷ) and cos θ =
(ĥ|ẑ).

where the dimensionless quantity υ0(t) = ρ11(t) +
a(t) Re{ρ12(t)} = 1/2 + U0(t)/h̄ω.

Now, before exploring an explicit evaluation for (ÊD|ÊD),
the quantity (D̂|D̂) = 4 τ 2 (ÊD|ÊD), which is more straight-
forward to evaluate, is first considered. Then with the help
of (1b),

D̂ =
√

ρ̂ B̂ ln(ρ̂)|⊥L{√ρ̂ 1,
√

ρ̂ ϒ̂}

=
√

ρ̂ B̂ ln(ρ̂) − {(
√

ρ̂ B̂ ln ρ̂|
√

ρ̂)
√

ρ̂ 1

+ (
√

ρ̂ B̂ ln ρ̂|
√

ρ̂ �ϒ̂˜)
√

ρ̂ �ϒ̂˜}, (18)

where the operator
√

ρ̂ ϒ̂(t) is described in what fol-
lows. Thus, using �ϒ̂˜(t) = ϒ̂(t) − (

√
ρ̂ ϒ̂ |√ρ̂) 1 with

(
√

ρ̂ �ϒ̂˜|√ρ̂ �ϒ̂˜) = 1 guarantees that the two opera-
tors

√
ρ̂ 1 and

√
ρ̂ �ϒ̂˜(t) are orthonormal to each

other so that (
√

ρ̂ �ϒ̂˜|√ρ̂ 1) = 0 at every instant of
time. To visualize the behavior of

√
ρ̂ ϒ̂(t), a three-

dimensional space of linear operators spanned by the or-
thonormal basis {x̂ → √

ρ̂ 1; ŷ → √
ρ̂ �ϒ̂˜; ẑ → Ê˜D} with

Ê˜D = ÊD/{(ÊD|ÊD)}1/2 = −D̂/{(D̂|D̂)}1/2 is introduced
as illustrated in Fig. 1. This means that the opera-
tor

√
ρ̂ �ϒ̂˜(t) is chosen so that (

√
ρ̂ �ϒ̂˜|Ê˜D) = 0. This

three-dimensional space enables a linear operator to
be specified by its components (x,y,z). For example,
for

√
ρ̂ B̂ ln ρ̂ given in (18), x = (

√
ρ̂ B̂ ln ρ̂|x̂) < 0, y =

(
√

ρ̂ B̂ ln ρ̂|ŷ), and z = (
√

ρ̂ B̂ ln ρ̂|ẑ) < 0. The decomposi-
tion

√
ρ̂ �Ĥ (t) = (

√
ρ̂ �Ĥ |ŷ) ŷ + (

√
ρ̂ �Ĥ |ẑ) ẑ then follows

where
√

ρ̂ �Ĥ (t)/σH is represented by ĥ in Fig. 1 and
(
√

ρ̂ �Ĥ |ẑ) = σH cos θ and (
√

ρ̂ �Ĥ |ŷ) = ±σH sin θ . There-
fore, the angle θzh(t) given in (16) is geometrically seen as the
polar angle θ (t) of this operator space. Furthermore, using the
decomposition for

√
ρ̂ �Ĥ (t) given above and the assignments

for (ĥ,ŷ,ẑ) depicted above and in Fig. 1,

ŷ = {ĥ − (cos θ ) ẑ}/(± sin θ ), (19)
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which can be interpreted as the projection of
√

ρ̂ ϒ̂(t) onto
the y axis. As a consequence, D̂ ∝ −ẑ, which accordingly
is perpendicular to the (xy) plane of this operator space as
required.

The magnitude of D̂, which is now explicitly evaluated,
easily with the help of (18) reduces to

{(D̂|D̂)}1/2 = {(σln ρ)
2 − (

√
ρ̂ [B̂ ln ρ̂ − η 1]|ŷ)}1/2, (20)

where η = (
√

ρ̂ B̂ ln ρ̂|√ρ̂) = −s/kB, s = −kB Tr(ρ̂ ln ρ̂),
and the variance (σln ρ)2 = Tr{ρ̂ (ln ρ̂)2} − η2 with σln ρ =
σs/kB. Equation (19) is next substituted into (20) and
the relations cos θ = −(D̂|ĥ)/{(D̂|D̂)}1/2 and (D̂|D̂) =
(
√

ρ̂ {B̂ ln ρ̂ − η 1}|D̂) applied. After some algebraic ma-
nipulations, the following quadratic equation in compact
form is found: χ2 + 2α (cos θ ) χ − {(sin θ ) σln ρ}2 + α2 = 0
where χ = (D̂|D̂)1/2 and α(θ ) = (

√
ρ̂ {B̂ ln ρ̂ − η 1}|ĥ) with

(σln ρ)2 � α2. This easily yields that

χ±(θ ) = −α (cos θ ) ± (sin θ ) {(σln ρ)
2 − α2}1/2, (21)

where the signs +/− are in accordance with their order
on both sides and χ+ � χ−. Substituting the two roots χ±
into (20), it is concluded that χ+ > 0 is the only allowed
solution consistent with the requirement that {(sin θ ) σln ρ}2 >

{α(θ )}2. For the case of θ = π/2 at a given instant of time,
χ+(π/2) = [(σln ρ)2 − {α(π/2)}2]1/2, which corresponds to the
case of the time-independent Hamiltonian. In contrast, if θ = 0
or π at a given instant of time, then α = 0 and χ+ = 0, which
corresponds to the case of no entropy generation.

The inner product (ÊD|ÊD) is now determined by first
considering the inequality given by {(ÊD|ÊD)}1/2 � (ÊD|ĥ) =
(cos θzh) {(ÊD|ÊD)}1/2. Recall that Eqs. (13a)–(13d) have been
obtained directly from Eq. (13), which is physically relevant
since it is required by thermodynamics and by the actual
dynamics of the density operator ρ̂ of (2). In fact, they
are the only available expressions, which implicitly contain
information on the magnitude of the dynamics of the operator
ÊD . Motivated by this fact, an approach can now be proposed
to determine (ÊD|ÊD) in such a way that without changing
the Hamiltonian Ĥ (t) and the internal energy U(t) at time
t, |(ÊD|ĥ)| is maximized by replacing ρ̂(t) with all possible
density matrices (�̂’s) that have the same entropy s(t) =
−kB Tr{ρ̂(t) ln ρ̂(t)} [or with the purity μ(t) = Tr{ρ̂2(t)} in a
weaker form]. The maximum value (ÊD|ĥ)max at time t is then
identified as {(ÊD|ÊD)}1/2, which is subsequently substituted
into (16) to determine the angle θzh(t). Here it is stressed
that, when the angle θ̃zh = 0 in this identification, it does not
represent the actual angle θzh = 0 between ÊD and ĥ which
simply corresponds to the case when ÊD = 0 (i.e., χ+ = 0) as
discussed in the previous paragraph.

The intrarelaxation time τ = {(D̂|D̂)}1/2/[2 {(ÊD|ÊD)}1/2]
determined by this approach is more physically relevant than
its minimum-uncertainty counterpart since the former reflects
the actual dynamics of the density operator ρ̂(t) in terms of
μ(t), especially for a mixed state ρ̂(t) with μ(t) < 1. The
detailed development for τ is given below. Therefore, this
value of the relaxation time is necessarily greater than the
minimum-uncertainty value corresponding to a pure state only
[more precisely, to the (instantaneous) ground state of the
system considered]. The latter time is completely irrelevant

to the actual dynamics. As a consequence, it is argued here
that the maximizing process proposed above for determining
the magnitude and direction of ÊD (and, thus, the magnitude
of τ ) must be regarded as an important addition to the SEAQT
framework, one not considered thus far even for the case of a
time-independent Hamiltonian.

The inner product (ÊD|ÊD) is now determined for the
example Ĥ0(t) previously used. With the help of (15a) and (17),
it is straightforward to obtain

(ÊD|ĥ) = ∂t υ0(t) − {Re(ρ12)} ∂t a(t)

[{a(t)}2 − 4 {υ0(t)}2 + 4 υ0(t)]1/2
. (22)

For a fixed purity μ0(t) = (ρ11)2 + (ρ22)2 + 2 |ρ12|2 at time t ,
the right-hand side of (22) is maximized by finding an optimal
value of Re(�12) to replace Re{ρ12(t)}. To do so, the maximum
value {Re(ρ12)}2

max, which minimizes (ρ11)2 + (ρ22)2 in the
purity measure, is found, resulting in ρ11 = ρ22 = 1/2. It then
follows that {Re(ρ12)}2

max = [2 μ0(t) − 1 − 4 {Im(ρ12)}2]/4.
The maximum of this maximum, {Re(ρ12)}2

max,max, occurs with
Im(ρ12) = 0. {Re(�12)}2 = {Re(ρ12)}2

max,max is then substituted
for Re(ρ12) in (22) and the inequality r1 + r2 � |r1| + |r2| used
for two real numbers r1 and r2 to arrive at

(ÊD|ÊD)1/2 = |∂t υ0(t)| + |{Re(�12)} ∂t a(t)|
[{a(t)}2 − 4 {υ0(t)}2 + 4 υ0(t)]1/2

, (23)

where the two constraints on υ0, i.e.,U0 with a(t), and μ0 hold.
By substituting (23) into (16), the direction of ÊD denoted by
(θzh)0 can be determined.

Based on the above analysis, the internal-relaxation time
can be uniquely determined. Using (16) in (21) results in

τ (ρ̂) = χ+
2 {(ÊD|ÊD)}1/2

= −α � + (χ+,0) {(ÊD|ÊD) σ 2
H

− �2}1/2

2 σH (ÊD|ÊD)
, (24)

where χ+,0(θzh) = [(σln ρ)2 − {α(θzh)}2]1/2 and (ÊD|ÊD) is
found from the maximization process described above. There-
fore, all quantities on the right-hand side of (21) can be
evaluated. Obviously, Eq. (24) is also valid for the special case
of a time-independent Hamiltonian for which θzh = π/2 and
� = 0, leading to τ → {χ+(π/2)} [2 {(ÊD|ÊD)}1/2]−1, which
is clearly different from its minimum-uncertainty counterpart
h̄ (2 σH )−1. As seen in (24) [cf. �(t)], the off-diagonal terms
of the density matrix play a critical role in determining
τ (ρ̂). In contrast, the minimum-uncertainty value results
from the ground (minimum-energy) pure state for which
the off-diagonal terms are identically zero. For the more
general case of θzh �= π/2 and � �= 0 (i.e., for the case of
the time-dependent Hamiltonian) and with the help of (16),
the expression for τ can be rewritten as

τ (ρ̂) = −(D̂|
√

ρ̂ �Ĥ ) {2 �(t)}−1, (25)

where (D̂|√ρ̂ �Ĥ ) = −{(D̂|D̂)}1/2 σH (cos θzh).

V. CONCLUSIONS

The preceding development, which is based on a formal
consideration of time-dependent Hamiltonians [Ĥ (t)’s], is
a generalization of the SEAQT framework that results in
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ab initio expressions for the intrarelaxation time. The latter
is an important element of this framework, one which had
not previously been uniquely determined as an integral part
of the theory. The approach proposed here to determine
τ (ρ̂) is a physically relevant one based on the additional
maximization process, i.e., one that supplements the steepest-
entropy-ascent maximization, which forms the basis of the
SEAQT framework. The expressions developed are valid for
both time-dependent and time-independent Hamiltonians and
transform the description provided by this framework into an
even more robust one at the fundamental level.

The other significant development provided here is that
of critically contributing to a resolution of a fundamental
issue of thermodynamics in the quantum domain concerning
the unique definition of process-dependent work and heat
functions. This is done with the aid of the SEAQT framework
and the energy balance resulting from the first law of thermo-
dynamics. As is well known, this conceptual problem has been
an open question within the thermodynamics embedded in the
standard quantum mechanics approach when both work, as
given by an explicitly time-dependent Hamiltonian, and heat
are simultaneously considered. It is this latter development,
which will be a particular focus of a future paper. An additional
focus will be the numerical application of our framework to

a number of driven quantum systems such as the two-level
system with Ĥ0(t) introduced in Sec. III and a linear oscillator
with a time-dependent frequency. These applications will take
advantage of the fact that the numerical implementation of the
SEAQT framework has thus far been very robust for the case
of time-independent Hamiltonians.

Finally, a consequence of the developments given here
is that SEAQT is not just an alternative approach to ther-
modynamics in the quantum domain but in fact sheds new
light on the various fundamental but not completely resolved
questions of thermodynamics. It is also expected that these
new developments will contribute to providing foundational
guidance for driven thermodynamic machines operating in the
quantum or nano-domain.
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