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Ordered phases in coupled nonequilibrium systems: Static properties
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We study a coupled driven system in which two species of particles are advected by a fluctuating potential
energy landscape. While the particles follow the potential gradient, each species affects the local shape of the
landscape in different ways. As a result of this two-way coupling between the landscape and the particles, the
system shows interesting new phases, characterized by different sorts of long-ranged order in the particles and
in the landscape. In all these ordered phases, the two particle species phase separate completely from each other,
but the underlying landscape may either show complete ordering, with macroscopic regions with distinct average
slopes, or may show coexistence of ordered and disordered regions, depending on the differential nature of effect
produced by the particle species on the landscape. We discuss several aspects of static properties of these phases
in this paper, and we discuss the dynamics of these phases in the sequel.
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I. INTRODUCTION

In a wide variety of physical systems, the constituent
microscopic components are driven together to form clusters.
As clustering can strongly affect the functioning of the
constituents, it is important to understand the factors that
influence the nature and degree of clustering, including back-
action of the clustering species on the driving field.

Consider an example in a biological setting. Proteins and
lipids on the membrane of a living cell are found to cluster,
advected by fluctuations of the actin cytoskeleton [1,2]. A
recent model considers these membrane components to be
advected passively, in which case the clusters are not stable
and reorganize constantly [3]. However, there is experimental
evidence that the membrane components also act back on the
actin [4,5]. The resulting two-way coupling has the potential
to affect qualitatively the nature of clustering. This is true in
a generic sense: depending on the form and strength of the
two-way coupling, clusters may be stable, compact objects or
dynamical entities that keep forming and disintegrating on a
rapid time scale.

In this paper, we study a coupled nonequilibrium system and
investigate in detail the different regimes that emerge as the
two-way coupling is varied, with each regime corresponding
to a qualitatively different sort of organization. Our system
consists of two species of particles moving stochastically on
a fluctuating energy landscape [6]. One species is lighter (L)
while the other is heavier (H ). The particles tend to minimize
their energy by moving along the local potential gradient
and also by modifying the landscape around their position to
further lower the energy. Thus, the H particles preferentially
displace the L particles upward while sliding downward along
the landscape. Further, each species affects the local landscape
dynamics differently.

Particles satisfy a no overlap constraint, with the conse-
quence that the clusters spread out and are macroscopic; they
may constitute ordered phases that occupy a finite fraction
of the available space. Note that since we are dealing with
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a nonequilibrium system, the usual strictures of equilibrium
statistical mechanics do not apply, and phase transitions
between macroscopically different phases can arise, even in
one dimension. Indeed, it was found that there were several
different phases that arise in both one and two dimensions,
as the particle-landscape couplings are varied, and the phase
diagram was presented in an earlier shorter paper [6]. In the
current paper, we discuss the static properties of each phase,
while we discuss dynamic properties in the sequel [7]. We
present several new results based on analytical calculations
and numerical simulations, which help to better understand
the origin and properties of the phases reported in Ref. [6]. A
schematic depiction of typical configurations in each phase is
given in Fig. 1. Below we summarize the principal features of
each phase, and the new results obtained for each.

Strong phase separation (SPS) occurs when the H particles
impart a downward push to the surface, and the L particles
impart an upward push. This results in complete phase
separation between the H and L particles and between
the positive and negative height gradient regions of the
landscape as well [Fig. 1(a)]. This is the phase studied
in the Lahiri-Ramaswamy model of sedimenting colloidal
crystals [8,9]. The pure domains of positive and negative slope
form a macroscopically deep V -shaped valley holding the
H -cluster, while its mirror image /\ holds the L-cluster. In
Ref. [10] a similar phase was reported for the closely related
ABC model.

Earlier it was shown that with some conditions on the
rates, the steady-state measure is given by a Boltzmann factor
involving a long-ranged Hamiltonian, if the numbers of H

and L particles are equal [9]. In the current paper, this is
now generalized to the case of an arbitrary ratio of H ’s
to L’s, for which the form of the Hamiltonian is derived.
Further, by rescaling rates downward by a factor proportional
to the system size, a mean-field calculation points to a finite
temperature phase transition from a disordered phase to one
with long-range order. This result is supported by numerical
simulations of the model.

Infinitesimal current with phase separation (IPS) is obtained
when the H particles tend to push the landscape downward,
while the L particles do not impart any local bias to the
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FIG. 1. We show typical configurations of our system in each
of the phases. h(x) denotes height of the landscape at a position x.
The thick (red) lines represent the region occupied by the H particles,
while remaining parts (blue) are occupied by L particles. (a) A typical
configuration in the SPS phase. The clean V-shape of the valley
indicates complete phase separation between the up slopes and down
slopes in the landscape. (b) A representative configuration in the
IPS phase. The landscape occupied by the H particles shows pure
domains, while the rest has a linear profile with a gradient 1/N .
(c) A typical configuration in the FPS phase. Unlike SPS or IPS
phases, the landscape does not have a compact domain of up-slope
and down-slope bonds. Although there is a macroscopic valley, the
finite fraction of down slopes (up slopes) present in majority up slope
(down slope) domain makes it have a smaller slope. Also, the valley
bottom is often rough and more than one minimum can be present.
(d) In the FDPO phase, the order in the surface is completely lost.
However, the particles congregate into several macroscopic clusters.
(e) In the disordered phase, both the particles and the landscape are
devoid of any order.

landscape dynamics. In the steady state, the H and L species
undergo complete phase separation as in the SPS phase.
However, unlike SPS, the landscape is long-range ordered
only in the region that holds the H -cluster, where it forms
a deep valley consisting of macroscopic pure domains of
positive and negative slope regions. The remaining part of the
landscape beneath the L-cluster is not ordered and assumes
a rough, parabolic shape [Fig. 1(b)]. Further, in steady state,
there is a current of macroscopic tilt (slope) variables through
the system with periodic boundary conditions. Representing a
positive slope by a particle and a negative slope by a hole, this
movement is well described as a symmetric exclusion process
(SEP) with input and exit of particles at the two ends of the
L-region [11,12]. The value of this current scales inversely
with the system size N , implying that for large system size,
the entire system falls downward at an infinitesimal rate. This
accounts for the earlier nomenclature (infinitesimal fall with
phase separation) used for this phase [6].

Some analytic results are obtained for this phase in this
paper. First, the Kolmogorov condition [13] for equilibrium is
used to demonstrate the breakdown of detailed balance in this

case. Further, it is shown that a single H particle in a system
of (N − 1) particles of type L leads to a nontrivial landscape
profile and a current of order 1/N . Next, the tendency of
particles to cluster is demonstrated by considering a system
of two H particles and calculating the energy as a function of
separation, in the adiabatic limit of vanishingly small rates for
particle movement.

Finally, detailed numerical evidence is gathered in support
of the description of the landscape in the L region as a SEP
with boundary injection.

Finite current with phase separation (FPS) sets in when
both H and L particles push the landscape downwards, but the
latter at a lower rate than the former. As in the IPS phase, the H

and L species segregate into pure phases and the landscape
forms a macroscopic valley holding the H cluster while the
part beneath the L cluster is disordered [Fig. 1(c)]. However,
unlike the IPS phase, the two arms of the macroscopic valley
now have a slope of magnitude less than unity, corresponding
to a finite fraction of both tilt species being present in both
the arms. The entire system carries a finite current of tilts
in the steady state, resulting in a net downward motion with
finite velocity. This accounts for the earlier name (fast fall
with phase separation) given to this phase [6]. The movement
of microscopic tilts in the L-region resembles the movement
of particles and holes in the well-known ASEP (asymmetric
simple exclusion process), with boundary injection [14].

The fact that the steady state tilt current must be uniform
across regions, allows us, at the level of mean field theory,
to relate the slopes of the arms in the H region to the tilt
current in the L region. This value of the slope is shown to be
close to that obtained by numerical simulations. Further, the
argued-for correspondence of the surface in the L region and
the ASEP is tested by numerical simulations. Results conform
surprisingly well with the maximal current phase of the ASEP,
including for instance the power laws which characterize the
density profiles near the edges.

Fluctuation-dominated phase-ordering (FDPO) occurs
when both H and L particles push the surface down equally
[Fig. 1(d)]. Then the surface has a uniform downward drift
and evolves as per Kardar-Parisi-Zhang (KPZ) dynamics [15],
independent of the particle configuration. The movement of
H particles is exactly that of passive sliders, which move
down the surface slope while the surface evolves autonomously
[16]. The passive slider problem has been well studied in the
past, so we do not pursue it here. Particles form macroscopic
clusters, with long-range order but macroscopic clusters
undergo constant reorganization on the disordered landscape
[16]. The spatial correlation function for the particles shows
a cusp singularity for small values of the separation scaled by
system size N .

In the disordered phase, depicted in Fig. 1(e), both the H

and L particles push the surface down, but the latter at a larger
rate than the former. In this case, H particles slide toward
local valleys, but then such valleys do not remain stable as
L-rich regions fall faster. With rapid reconfiguring, neither the
particles nor the landscape show long-range order, and the
phase is disordered.

Similar phases also occur in two dimensions. In the ordered
phases, the landscape organizes itself to form a valley with a
diamond-shaped cross section, which supports the H -cluster.
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However, there is an interesting finite-size effect, which gives
rise to a different topology of the landscape for smaller
systems. Instead of a deep valley with a single minimum, the
landscape develops a line of minima and assumes the shape
of a trench. Using a scaling argument, we show that in the
thermodynamic limit, such configurations are energetically un-
favorable in comparison to the diamond-shaped single valley.

We limit ourselves to discussion of static properties in this
paper and present results on dynamics in a sequel [7]. The
rest of the paper is organized as follows. In the next section,
we describe our model. In Sec. III we first present the phase
diagram and then describe the static properties of the SPS, IPS,
and FPS ordered phases. In Sec. IV we present the results for
two dimensions. Our conclusions are presented in the Sec. V.

II. THE L H MODEL

Our model describes two sets of hard-core particles sliding
under gravity on a fluctuating landscape. The local dynamics
of the particles and the landscape are coupled such that the
particles (a) tend to minimize their energies by moving along
the local height gradient of the landscape and (b) modify the
landscape around their positions so as to minimize the energy
further.

It is useful to think of the set-up as a system of lighter (L)
and heavier (H ) particles moving under gravity on a fluctuating
surface. In a more generic language, the model consists of two
coupled conserved fields—the particle density and the height
gradient of the landscape, evolving under a mutual interaction
that aids minimization of energy of the whole system.

In one dimension, the LH model consists of a periodic chain
lattice of length N where the particles reside on the sites,
while the bonds, representing discrete surface elements, can
have two possible orientations with slopes τi+1/2 = ±1. The H

and L particles at neighboring sites may interchange locations
preferentially if the local tilt of the surface favors a downward
move for H . The particles interact via hard-core exclusion and
hence a site can be occupied by at most one H or L particle. The
parts of the landscape rich in H particles get pushed down at a
higher rate than the parts occupied by L particles. The symbols
“/” and “\” indicate up-slope (τi+1/2 = 1) and down-slope
(τi+1/2 = −1) bonds, respectively. The update rules for the
particles are

W (H\L → L\H ) = D + a,

W (L\H → H\L) = D − a,

W (H/L → L/H ) = D − a,

W (L/H → H/L) = D + a, (1)

where W denotes the probability per unit time for each event
to occur. The above dynamics conserves the total number of
H and L particles on the lattice. Similarly, the total number of
up and down slopes are also conserved in the dynamics of the
landscape:

W (/H\ → \H/) = E + b,

W (\H/ → /H\) = E − b,

W (/L\ → \L/) = E − b′,

W (\L/ → /L\) = E + b′. (2)

We consider an untilted surface such that
∑

i τi+1/2 = 0. Note
that interchanging b and b′ is equivalent to interchange of the
H and L particles.

This model was defined in Ref. [9] in the context of sed-
imenting colloidal crystals with the two species representing
gradients of the longitudinal and shear strains, but only the
case b = b′ > 0 was studied there.

The model may be generalized straightforwardly to de-
scribe H and L particles on a two-dimensional surface. This
is described in Sec. IV below.

III. RESULTS: PHASE DIAGRAM AND DIFFERENT
ORDERED PHASES IN THE SYSTEM

As we vary the transition rates in Eqs. (1) and (2), we
encounter different phases. We restrict this variation to the
regime in which the parameters a and b in these equations
remain positive. In other words, the H particles always show a
tendency to slide downhill and push the landscape downward.
The ratio

R = E − b

E + b
(3)

then always remains bounded between 0 and 1. The constant
b′, on the other hand, can be positive, negative, or zero and the
ratio

R′ = E + b′

E − b′ (4)

can take any value between 0 and ∞. The resulting differences
in the action of the L particles have macroscopic consequences,
and result in different phases.

For b′ > 0, or 1 < R′ < ∞, the part of the surface contain-
ing L particles has a bias to move upward; the macroscopic
consequence is that an SPS phase is obtained. For b′ = 0, or
R′ = 1, the landscape beneath the L particles has unbiased
local fluctuations, and on the macroscopic scale an IPS phase
results. For −b < b′ < 0, or R′ < R, the L particles push
the landscape downward, but with a rate smaller than the H

particles do, and we have an FPS phase. The limit b′ = −b,
or R = R′, corresponds to the case when H and L particles
behave identically and we have an FDPO state, characterized
by weak phase ordering among the particles and a disordered
landscape. For −b > b′ the L particles push the surface
downward at a larger rate than H particles and in this case
neither the landscape nor the particles show any ordering and
the system is in a homogeneous or disordered phase. Figure 2
shows the phase diagram of the system in the R-R′ plane. A
brief description of the different phases is given in Table I.

As seen from the discussion in the previous paragraph,
the b′ = −b or R = R′ line acts as the boundary between
ordered and disordered phases. This can also be seen directly
from a linear stability analysis of the corresponding continuum
theory, describing the system as a coupled time evolution of
two conserved fields, the density field of the particles, and the
tilt field (or height gradient) of the landscape. One can write
down the continuity equations in terms of the particle current
and the tilt current. Denoting the coarse-grained particle
density as ρ(x,t) and landscape height gradient as m(x,t),
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FIG. 2. Phase diagram in the R − R′ plane, where R = E−b

E+b
and

R′ = E+b′
E−b′ with model parameters E, b, and b′ defined in Eq. (2)

as part of model description. Here, R > 1 (R′ < 1) indicates a
downward bias imparted by H (L) particles on the landscape, and
R′ > 1 indicates that L particles push the landscape upward. For
1 < R′ < ∞, one has the SPS phase. In this regime, detailed balance
in satisfied in the system on the straight line R = q2R′, where
q = (D − a)/(D + a). The LR model is shown by a solid circle
on this line. The dashed lines shown in the diagram correspond
to the IPS phase. The dotted region corresponds to the FPS phase
(R′ < R < 1), while the white region corresponds to the disordered
phase (R < R′ < 1). Disordered phase is also seen when R′ < 1 and
R = 1. For R = R′ < 1 FDPO phase is observed.

the corresponding currents within mean-field approximation
are given by

Jρ = 2aρ(x,t)[1 − ρ(x,t)][1 − 2m(x,t)], (5)

Jm = m(x,t)[1 − m(x,t)][2ρ(x,t)(b + b′) − 2b′]. (6)

In the disordered phase, we can use hydrodynamic expansion
of ρ(x,t) and m(x,t) about the homogeneous state and retain
only linear terms in δρ(x,t) = ρ(x,t) − ρ0 and δm(x,t) =
m(x,t) − m0 in the expression for Jρ and Jm. Here, ρ0 is the
average density of the H particles and m0 is the average value
of the slope. Then the continuity equations for the density and
slope lead to

∂t

(
δρ

δm

)
= ∂x

(
0 −4aρ0(1 − ρ0)

(b + b′)/2 0

)(
δρ

δm

)
. (7)

We have used the fact that the overall tilt of the surface
is zero. The eigenvalues of the Jacobian matrix are λ± =

±√−2aρ0(1 − ρ0)(b + b′). For b < −b′ these eigenvalues
are real and the system remains homogeneous. But for
b > −b′, these eigenvalues are imaginary, which means linear
instability grows with time and takes the system away from
the homogeneous state and ordered structures are formed. This
shows that the line b = −b′ indeed is the boundary between
ordered and disordered phases in the phase diagram. In the
remaining part of this section, we discuss several aspects of
the different ordered phases in detail.

A. SPS phase (b′ > 0)

In the striped part of the phase diagram (R′ > 1), the model
is identical to that considered by Lahiri and Ramaswamy [8,9]
in the context of sedimenting colloidal crystals. In this regime,
the system exhibits SPS. While the H ’s push the landscape
down, the L’s tend to push it upwards. Both particle species
and the up-slope and down-slope bonds of the landscape
undergo complete phase separation into a macroscopic valley
and a hill that holds the H and the L cluster, respectively, as
shown in Fig. 1(a).

1. Detailed balance in SPS

In Ref. [9] it was shown that if the surface is untilted
and the density ρ of the H particles is 1/2, the condition of
detailed balance holds with respect to a Hamiltonian H with
long-ranged interactions, provided that the rates obey a certain
condition. We show below that detailed balance can be recov-
ered with a generalized form of H for an arbitrary density ρ,
with a ρ-dependent condition on the rates. In this case, detailed
balance holds and the steady-state measure of the system is
given by ∼ exp(−βH) with the following Hamiltonian:

H =
L∑

i=1

(ni − λ)hi. (8)

Here hi is the height of the ith site defined as hi = ∑i−1
j=1 τj+1/2

and ni is the occupancy of the ith site, which takes the value
1 or 0, depending on whether the site is occupied by an H

or an L particle, respectively. The parameter λ lies in the
range between 0 and 1; the deviation of its value from 1/2
characterizes the degree to which L-H interchange symmetry
is broken. It is sufficient to consider the range 0 < λ � 1/2
since H remains invariant under λ → 1 − λ and ni → 1 − ni .

TABLE I.

Phase Condition Particles Landscape Downward velocity

(a) SPS b′ > 0 Single, compact, macroscopic H

and L clusters
Complete phase separation of up-slope

and down-slope bonds
∼ exp(−αN )

(b) IPS b′ = 0 Deep valley beneath H cluster and
disordered slopes with gradient ∼1/N

below L cluster

∼1/N

(c) FPS −b < b′ < 0 Partial phase separation of slopes
beneath H cluster and disordered

beneath L cluster

Finite

(d) FDPO b′ = −b Several compact macroscopic
clusters of fluctuating lengths

Disordered Finite

(e) Disordered −b > b′ No macroscopic clusters Disordered Finite
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FIG. 3. Schematic representation of different transitions that are allowed to occur in the system. 	E′s denote the energy costs involved in
the transitions, as per the Hamiltonian in Eq. (8). Solid (empty) circles represent H (L) particles.

Figure 3 shows the rates of the allowed microscopic moves
along with the change of energy they entail. It is easy to
see from this figure that the condition of detailed balance is
satisfied for the following choice of rates:

D − a

D + a
= q,

E − b

E + b
= q2−2λ,

E − b′

E + b′ = q2λ, (9)

where q = e−β . Note that the system is defined on a ring and
hence it is translationally invariant.

The height hi , as defined above, is measured from the first
site. If the sites are relabelled such that the site k with height
hk = δ is the new origin, then the height of all the sites are
changed as h′

i = hi − δ. To ensure that the total energy of the
configuration does not change as a result of this relabelling, one
must have λ = ρ, where ρ is the total density of H particles.
Thus, in the λ-ρ plane, it is only along the locus λ = ρ that
detailed balance holds with H given by Eq. (8). Note that
λ = ρ = 1/2 corresponds to the case considered in Ref. [9]
for the Lahiri-Ramaswamy model.

2. Rescaled temperature and phase transitions in SPS

Although the Hamiltonian in Eq. (8) is defined in terms of
local height and local occupancy, the definition of the height

field generates long-ranged interactions between ni and τj+1/2

in the Hamiltonian. This gives rise to a super-extensive energy
that scales as N2, which at any finite temperature always wins
over the extensive entropy term. In other words, as follows
from Eq. (9), for any nonzero β, or equivalently, any q < 1,
the H -rich phase has a vanishing fraction of L particles,
and vice versa. We refer to such phases as “compact,” as
they exclude islands of the other species. The name “strong
phase separation” actually refers to this particular aspect of
this phase [8,9]. However, if the parameter β is rescaled by
system size N , i.e., β → β/N , then the energy and entropy
terms become comparable. Earlier this was demonstrated in
the closely related ABC model [10] for which a similar
reduction of rates results in an order-disorder transition at
a critical βc [17]. In this section, we present a calculation
based on mean-field theory to estimate this critical point in our
LH model.

Let ρi denote the probability to find an H particle at
site i and mi+1/2 denote the probability to find an up-slope
bond between sites i and (i + 1). Using the dynamical rules
described in Sec. II, we can write down the time-evolution
equations for these probabilities, within mean-field theory,
neglecting all correlations:

dρi

dt
= ρi−1(1 − mi−1/2)(1 − ρi) − ρi(1 − mi+1/2)(1 − ρi+1) + qρi−1mi−1/2(1 − ρi) − qρimi+1/2(1 − ρi+1), (10)

dmi+1/2

dt
= mi−1/2ρi(1 − mi+1/2) + q2−2λ(1 − mi+1/2)ρi+1mi+3/2 + (1 − mi+1/2)(1 − ρi+1)mi+3/2

+ q2λmi−1/2(1 − ρi)(1 − mi+1/2) − mi+1/2ρi+1(1 − mi+3/2) − q2−2λ(1 − mi−1/2)ρimi+1/2

− (1 − mi−1/2)(1 − ρi)mi+1/2 − q2λmi+1/2(1 − ρi+1)(1 − mi+3/2). (11)

Assuming slow spatial variation of ρ and m fields, we can
take the continuum limit and write ρi = ρ(x) and obtain the
following expansion:

ρi±1 = ρ(x) ± 1

N

∂ρ(x)

∂x
+ 1

2N2

∂2ρ(x)

∂x2
+ · · · (12)

Similarly,

mi+3/2 = m(x) + 1

N

∂m(x)

∂x
+ 1

2N2

∂2m(x)

∂x2
+ · · ·

mi−1/2 = m(x) − 1

N

∂m(x)

∂x
+ 1

2N2

∂2m(x)

∂x2
+ · · · (13)

Next, we write q = e−β/N = 1 − β

N
+ β2

2N2 + · · · , in which the
parameter β has been explicitly scaled by the system size. The
time-evolution Eqs. (10) then become

∂ρ

∂t ′
= ∂2ρ

∂x2
+ 2βρ(1 − ρ)

∂m

∂x
+ β(2m − 1)(1 − 2ρ)

∂ρ

∂x
,

(14)

∂m

∂t ′
= ∂2m

∂x2
− 2β

∂

∂x
[ρm(1 − m)] + 2βλ

∂

∂x
[m(1 − m)],

(15)

where t ′ = t/N2 is the rescaled time.
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In the stationary state, the time-derivatives on the left-hand
sides of the Eqs. (14) and (15) vanish. Recalling that the overall
density of up-slope bonds in the system is 1/2 and periodic
boundary condition requires the density of H particles to be
equal to λ, we linearize m(x) = 1/2 + δm(x) and ρ(x) = λ +
δρ(x), in the stationary state to obtain

∂2

δx2
δm − β

2

∂

∂x
δρ = 0, (16)

∂2

δx2
δρ + 2βλ(1 − λ)

∂

∂x
δm = 0. (17)

Making the Fourier expansions δm(x) = ∑
n an exp

(2πinx/N ) and δρ(x) = ∑
n bn exp(2πinx/N ), we find

from Eqs. (16) and (17) that

i2πnan = β

2
bn (18)

and

i2πnbn = −2βλ(1 − λ)an. (19)

To obtain nonzero solutions for an and bn, we must have

β = 2πn√
λ(1 − λ)

, (20)

which has the minimum value βc = 2π√
λ(1−λ)

for n = 1. For
any β smaller than this value, no nonzero an and bn can
be found and ρ(x) and m(x) only allow uniform solutions,
corresponding to a disordered state (a0 and b0 nonzero). Thus,
βc gives the critical point for the order-disorder transition in
the system.

To verify this in simulations, we define the order parameters
as

sρ = 1

N

N∑
i=1

nini+1 − λ2, (21)

sm = 1

4N

N∑
i=1

(1 + τi+1/2)(1 + τi+3/2) − 1

4
, (22)

which characterize the order in the particles and the landscape,
respectively. Our simulations show that for small values of
β, the average values 〈sρ〉 and 〈sm〉 are zero, indicating a
disordered phase. As β increases, the system goes into an
ordered phase with finite values of 〈sρ〉 and 〈sm〉. To calculate
the critical β, at which the transition takes place, we plot
the second-order Binder cumulant fα = 1 − 〈s2

α〉/〈sα〉2 as a
function of β (see Fig. 4), where α = ρ,m for different system
sizes. At the critical point βc, the value of fα is expected to
be universal, which means the curves for different N values
should coincide at βc [17,18]. In Fig. 4 we present data for
λ = 1/5 for which we expect βc = 5π 	 15.708. From our
simulation data we find βc 	 15.65 and 15.76 for α = ρ and
α = m, respectively. These values are close to the theoretical
prediction.

B. IPS phase (b′ = 0)

The IPS phase is obtained along the dashed lines of
the phase diagram in Fig. 2, where b′ vanishes. Along the
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FIG. 4. Temperature variation of sρ and sm for three different
values of N [plots (a) and (c)]. (b) and (d) show the cumulants fρ

and fm for three N values. We have used λ = 0.2 here. We obtain
the best linear fits to the data points for each value of N . From
the point of intersection of the straight lines, βc is estimated to be
15.65 ± 0.001 for fρ and 15.76 ± 0.005 for fm, which is close to
theoretical prediction 5π . The data shown here have been averaged
over at least 108 histories.

vertical dashed line, we have R′ = 1 and from Eq. (9) it
follows that λ = 0. In this case, the local fluctuations in
the surface occupied by L particles are of the symmetric
Edwards-Wilkinson type [19], while the H particles continue
to push the surface down. In our derivation of the detailed
balance condition in Sec. III A 1 above, we have shown that
λ = ρ has to be satisfied for a periodic system. In the IPS phase
this condition is violated for all finite ρ. As a result, detailed
balance breaks down. It is instructive to use the Kolmogorov
loop condition [13] to explicitly show the lack of detailed
balance, as illustrated below.

1. Breakdown of detailed balance in IPS

The Kolmogorov loop condition [13] states that the neces-
sary and sufficient condition for a system to satisfy detailed
balance is that for every closed loop in configuration space,
we must have

Q = W (1 → 2)W (2 → 3)...W (K → 1)

W (2 → 1)W (3 → 2)...W (1 → K)
= 1, (23)

where W (i → j ) denotes the transition rate from configuration
Ci to Cj . To show that detailed balance is violated, it suffices to
find a single loop in configuration space for which the above
condition is not satisfied. In Fig. 5 we explicitly show this
for a set of local configurations. Since each configuration is
specified by the particle occupancy at the lattice sites, and
slope of the lattice bonds, the first and the last configurations
in the sequence presented in Fig. 5 are identical and hence
this sequence forms a closed loop in the configuration space.
According to our dynamical rules, W (4 → 5) = E + b and
W (5 → 4) = E − b. All other rates W (i → i + 1) are the
same as the reverse rate W (i + 1 → i), since in the IPS phase

022127-6



ORDERED PHASES IN COUPLED NONEQUILIBRIUM . . . PHYSICAL REVIEW E 96, 022127 (2017)

FIG. 5. Breakdown of Kolmogorov loop condition in the IPS phase. Starting from the first configuration, the system passes through a
sequence of configurations and comes back to the starting configuration again, but the ratio Q = W (1→2)W (2→3)W (3→4)W (4→5)

W (2→1)W (3→2)W (4→3)W (5→4) 
= 1. This shows
that the system does not obey detailed balance.

b′ = 0. The ratio Q then becomes Q = D+a
D−a


= 1, which
proves violation of detailed balance.

2. A single H particle in IPS: height profile of the landscape

In order to understand the nature of the IPS phase, first let
us consider the case of a single H particle with (N − 1) lattice
sites occupied by L particles. According to the dynamical
rules, the local height fluctuations at these (N − 1) sites
are symmetric, of Edwards-Wilkinson type [19], and only
at the site containing the H particle the height fluctuation
is asymmetric, of Kardar-Parisi-Zhang type [15]. Obviously,
this asymmetry drives the system out of equilibrium and there
is a nonzero current in steady state, which gives rise to a
downward velocity of the surface. Since the local fluctuations
are symmetric almost everywhere in the system, to support
this downward drift, a gradient is generated in the density of
up-slope and down-slope bonds of the surface. We calculate
this gradient within mean-field theory below.

Let us consider a site at a distance k from the position
of the single H particle in the system, and let S+(k,N ) be
the probability to find an up-slope bond between this site
and its right neighbor. Similarly, let S+(k − 1,N ) be the
probability to find an up-slope bond between the site and
its left neighbor. Within mean-field theory, the site under
consideration will be at the top of a local hill with probability
S+(k − 1,N )[1 − S+(k,N )]. From this local configuration, the
height of the site can decrease with rate E, when the local
hill flips to a valley [see Eq. (2)]. Likewise, the probability
that the site is at the bottom of a local valley is given
by [1 − S+(k − 1,N )]S+(k,N ) and from here its height can
increase with the same rate E. The downward velocity
of the surface at this position is then E[S+(k − 1,N ){1 −
S+(k,N )} − {1 − S+(k − 1,N )}S+(k,N )].

In the steady state, this velocity must be the same every-
where in the system and hence independent of k. In other
words, [S+(k − 1,N ) − S+(k,N )] = C, which is a constant.
Moreover, for an untilted surface,

∑
k S+(k,N ) = N/2. These

two relations together imply that S+(k,N ) decreases linearly
with k with a gradient ∼1/N , for large N . The results of
numerical simulations verify this (Fig. 6).

The average height of the landscape at a distance i

from the H particle is 〈hi〉 = ∑i
k=1[2S+(k,N ) − 1]. Thus,

in the presence of a single H particle the height profile
of the landscape has a parabolic shape with the H particle
at the minimum height. Our calculations remain valid even
when many H particles are present, since these particles
form a compact cluster in IPS phase and can be treated as a

single entity. 〈hi〉 in that case represents the average height
of the landscape at a distance i measured from the edge
of the H -cluster. Thus, our calculation explains the shape of
the landscape in the L-region of the IPS phase, shown in
Fig. 1(b).

3. Clustering tendency of H particles in the IPS phase
in the adiabatic limit

In this section, we present a simple calculation to explain
why the H particles tend to form a compact cluster in the
IPS phase.

First, let us consider a large system in the continuum limit
with a finite M number of H particles in it. Let x1,x2,...,xM be
the positions of these particles. Apart from these positions, the
local height fluctuations of the surface are symmetric and of
Edwards-Wilkinson type, while at the positions xi the height
fluctuations are biased. This is captured by the equation

∂th(x,t) = D∂2
xh(x,t) + η(x,t) + j0

M∑
n=1

δ(x − xn), (24)

where j0 represents the bias imparted by the H particles, η(x,t)
is the white noise, and D is the surface diffusivity. To find the

0 0.2 0.4 0.6 0.8 1
k/N

0

0.2

0.4

0.6

0.8

1

S+ (k
,N

)

N=256
N=512
N=1024

FIG. 6. We measure the density of up slopes S+(k,N ) as a
function of the scaled distance k/N , where k is the distance measured
from the position of the single H particle in a system of size N . The
profile decreases linearly with a gradient ∼1/N as predicted by our
mean field analysis. The data shown here have been averaged over at
least 104 initial histories.
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mean profile h(x,t), we average over the noise and obtain

∂th(x,t) = D∂2
xh(x,t) + j0

M∑
n=1

δ(x − xn). (25)

Let us first consider M = 1, when there is a single H particle
present in the system at the position x1. To solve the above
equation, we make an adiabatic assumption based on the
separation of time-scales. Suppose the H particle is so heavy
that it hardly moves during the time the height fluctuations
of the surface are taking place. In this limit, we can treat x1

as the position of a quenched defect and without any loss of
generality put x1 = 0. The above equation can then be solved
using Green’s function method [20]. Starting from a flat height
profile at t = 0, we can write the height profile at time t as

h(x,t) = j0

∫ t

0

1

(4πD)1/2

e−x2/4Ds

s1/2
ds

= j0

4Dπ1/2
|x|�

(
−1

2
,

x2

4Dt

)
, (26)

where � denotes the incomplete Gamma function. For large t ,
we have x2/4Dt � 1 and

h(x,t) ≈ j0√
π

[
2

√
t

D
−

√
π

2D

| x |
D

]
. (27)

Similarly, for M = 2, when there are two close-by quenched
defects in the system, at x1 and x2, each will generate a height
profile around its position. As the system is linear, the resulting
height profile is given by

h(x,t) ≈ j0√
π

[
2

√
t

D
−

√
π

2D
(|x − x1| + |x − x2 |)

]
. (28)

For particles of mass m moving under gravity, j0 is negative
and the mean gravitational energy Eg associated with the
system is

Eg = −mg|j0|√
π

[
4

√
t

D
−

√
π

D
|x1 − x2|

]
, (29)

which is minimum when |x1 − x2| is minimum. This explains
why the two H particles tend to cluster together. This argument
can be extended immediately to arbitrary M , providing insight
into the strong clustering tendency of H particles in the
IPS phase.

Indeed, for a finite density of H particles in the lattice
model, where the particles have a finite size, we find a complete
phase separation of H and L particles. The up-slope and
down-slope surface bonds lying under the H -particle cluster,
phase separate to form a deep valley. The domains of all
up-slope bonds and all down-slope bonds extend up to the
edges of the H -particle cluster. Beyond that, in the L phase, the
landscape has a parabolic shape with a mean curvature 1/N , as
shown in Sec. III B 2. The fluctuation properties of the surface
beneath the L cluster can be explained by mapping this part
of the system to an open-chain symmetric exclusion process
[11], with the up-slope (down-slope) bonds being identified
with particles (holes); the pure domains of these bonds in the
H -phase act as reservoirs for the respective species. We

elaborate more on this issue in Ref. [7], where we discuss
the steady-state dynamics.

Compact domains in the IPS phase are observed as long
as the H particles act as the heavier species, i.e., as long as
the ratio q = (D − a)/(D + a) < 1. As q approaches unity,
the domains do not remain as compact and their boundaries
become wider. However, this width remains finite and in
the thermodynamic limit, sufficiently far away from these
boundaries, a pure phase is always retrieved. For a finite system
size N , there exists a critical value qc, when the width of
the domain boundaries becomes of the order of the system
size and the system becomes disordered. On performing a
mean-field calculation similar to that in Sec. III A 2, we find
qc = exp(−4π/N ), which we have verified by simulation (data
not shown here).

C. FPS phase (−b < b′ < 0)

The FPS phase can be observed in the dotted region of
the phase diagram (Fig. 2), where 1 > R > R′, i.e., when
both the particle species push the landscape down, but the
H particles do so at a larger rate than the L’s. In this phase,
the H and L particles again show complete phase separation
and although the landscape forms a single macroscopic valley,
neither of the two arms of the valley comprises a compact
domain of / or \ bonds, unlike in the SPS or IPS phases. In
this section we present numerical and analytical results on the
static characterization of this phase.

1. Static correlations in H region of the landscape in FPS

A typical configuration in the FPS phase is shown in
Fig. 1(c). Here, a large valley forms in the landscape that
holds the H -cluster, but unlike the IPS phase, this valley
consists of domains of up-slope and down-slope bonds which
are not compact. Let m be the density of down-slope (up-slope)
bonds in the up-slope-rich (down-slope-rich) domain. For
a perfectly ordered domain, m takes the value 0 while in
the disordered case m = 1/2, while 0 < m < 1/2 indicates
a phase separation with the minority species interspersed with
the majority species.

It is possible to analytically calculate the value of m in this
phase. Within mean-field theory, it follows from the dynamical
rules [Eq. (2)] that the average velocity of the surface in the
H region is 2bm(1 − m). In the steady state, this must be equal
to the velocity in the L region. Now, in the L region the surface
is disordered, and this part of the surface can be mapped onto
an open-chain asymmetric exclusion process in the maximal
current phase [6]. The velocity of the surface in this region is
then b′/2. Matching the two velocities in the H and L regions,
we find the following quadratic equation:

m2 − m − b′

4b
= 0, (30)

which can be solved for m for a given b and b′. To test Eq. (30),
we numerically measure the density of up-slope bonds in the
H region and find good agreement [see Fig. 7(a)]. Across
the valley minimum, the slope shows a transition from the
value m to (1 − m). The width of the boundary between the
up-slope-rich and down-slope-rich domains scales as

√
N , as

shown in Fig. 7(b). In Ref. [7] this width was related to the
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FIG. 7. (a) Away from the valley bottom, S+(r,N ) saturates at a
value m, which depends on b and b′. For b′ = −0.3, we vary b and
plot m, which matches well with the mean-field result. Discrete points
are from simulation data and the continuous line shows mean-field
solution of Eq. (30). We have used N = 1024 here. (b) S+(r,N )
changes from the value (1 − m) to m across the domain boundary of
width

√
N .

motion of the valley bottom within a region of size ∼√
N

around the center of mass of H cluster. It should be noted that
the system shows rather strong finite-size effects and we had
to go to relatively large N (∼104) to find the saturation value
m of S+ away from the domain boundary.

2. Disordered landscape in the L region in FPS

The behavior of the landscape in the L region is like that
of an open system. The ordered domains of the up-slope and
down-slope bonds in the H region act as the reservoirs, which
are connected to the two ends of the L region. Mapping the
up-slope (down-slope) bonds to particles (holes), we find that
the surface in the L region can be mapped onto an open-
chain asymmetric exclusion process, which was introduced
in Ref. [14] and different phases were obtained on changing
the reservoir couplings. In the FPS phase, the landscape
is disordered in the L region, with S+(r,N ) = 1/2. The
properties of the landscape in the L region are same as those
observed for a maximal current phase in the open system. Away
from the H -L domain boundary, S+(r,N ) decays algebraically
to the disordered value S+ = 1/2 with an exponent 1/2, as
shown in Fig. 8.

D. FDPO phase (b = −b′)

The FDPO phase can be observed along the R = R′ line in
the phase diagram in Fig. 2. In this case, H and L particles
push the surface down at exactly the same rate. The transition
rates to transform local hills to valleys are therefore identical
at every lattice site. In other words, the surface behaves just
like the single step model [15], which on large length and
time scales is described by the KPZ equation. With periodic
boundary conditions, the steady state satisfies product measure
[21]; i.e., the up-slope and down-slope bonds of the landscape
are independently and randomly distributed and the landscape
is disordered. This remains true even when both b and b′
are zero, and the landscape shows Edwards-Wilkinson-type
equilibrium fluctuations, since the same product measure holds
for a periodic Edwards-Wilkinson surface in one dimension.
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FIG. 8. We plot S+(r,N ) after subtracting the disordered phase
value 1/2 against (r − N/4) for two different system sizes with b =
0.3, b′ = −0.2. The decay to a disordered phase occurs algebraically
with an exponent 1/2 (inset). The data shown here have been averaged
over at least 106 initial configurations.

Note that in this phase, the coupling between the landscape
and the particles is one-way, i.e., while the particles continue
being affected by the local height gradient of the landscape,
with moves shown in Figs. 3(a) and 3(b), the local dynamics
of the landscape does not depend on whether there is an
H particle or L particle on it. This limit is tantamount to passive
scalar advection and was studied in detail in Ref. [16]. In this
phase, while the landscape remains completely disordered,
the H and L particles show clustering accompanied by
macroscopic fluctuations, as depicted in Fig. 1(d). Owing
to strong fluctuations present in the system, these clusters
undergo constant reorganization, even in the thermodynamic
limit. The two-point correlation function exhibits long-range
order, but the Porod law breaks down and the scaled correlation
function exhibits a cusp singularity at small argument [16].

E. Disordered phase (b′ < −b < 0)

The disordered phase is shown by the unshaded part of the
phase diagram in Fig. 2. In this phase neither the landscape nor
the particles show long-range order. Interesting results on the
dynamical correlation functions in this phase will be presented
elsewhere [22].

IV. TWO DIMENSIONS

The phase diagram shown in Fig. 2 remains valid even
in two dimensions. We consider an N×N square lattice and
denote the height at the site (i,j ) by h(i,j ), and we ensure
that the height difference between the nearest-neighbor sites
is always maintained at ±1. Particles still move from one site
to a neighboring one and if the height of the destination site is
lower, then H particles preferentially displace the L particles,
as in Eq. (1). The time-evolution of the two-dimensional
surface occurs due to transition between the local hills and
valleys [23]. A site (i,j ) is said to be a local hill (valley) if
all its four neighbors with coordinates (i ± 1,j ) and (i,j ± 1)
have height h(i,j ) − 1 (h(i,j ) + 1). The transition rates for
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FIG. 9. Representative plots for diamond- and wedge-type con-
figurations in the IPS phase in two dimensions on a 64×64 square
lattice. In (a) and (c), H (L) clusters are shown in red (blue) while (b)
and (d) show the equal-height contour plots.

hills and valleys occupied by H or L particles remain the
same as in Eq. (2).

The phases obtained in this case are similar to those in
one dimension. In the ordered phases, the H and L particles
undergo complete phase separation and the landscape beneath
the H cluster orders to form a deep valley. In the SPS
phase, the entire landscape is ordered to form a deep valley
accommodating the H cluster at the bottom of it. In the IPS
phase, the landscape beneath the L region shows a linear
variation of height along x or y direction, while in the FPS
phase it is disordered. Inside the valley, as the deepest point is
approached from both x or y directions, the height decreases
and this means that the equal height contours have diamondlike
shape. Using an analysis very similar to that discussed in
Sec. III B 3, one can explain the clustering of H particles in
the IPS phase. We show a typical configuration in Figs. 9(a)
and 9(b).

However, for IPS and FPS phases we have also encountered
another type of configuration, where instead of a single point
with minimum height, the surface develops a line of minima
and the shape of the surface looks like a “trench” or “wedge”
(see Figs. 9(c) and 9(d)). Through extensive numerical simula-
tions we have also verified that such configurations are finite-
size effects; for larger systems we only find diamond-shaped
contours. Below we estimate the potential energy of particles
in a gravitational field for these two difference geometries and
show that the diamond-shaped configurations are energetically
more favorable than the trench-shaped ones. Although the
static potential energy may not be the only deciding factor
for our nonequilibrium system, nevertheless it gives some
indication of the competition between different geometries.

When the equal height contours are diamond shaped,
then the number of sites with a given height z above the
minimum equals 4z. For a perfectly ordered configuration,
the H particles fill the landscape up to a certain height level z0

above the minimum. Thus, the total number of sites occupied

by H particles is 1 + 4
∑z0

z=1 z, which must be equal to ρN2,
where ρ is the density of H particles. It follows from this
relation that z2

0 ≈ ρN2/2. Now, the total gravitational energy
of the H particles is

∑
ij nijh(i,j ), where nij is the H -particle

occupancy at site (i,j ), and h(i,j ) is the height at that site
measured from the flat (or logarithmically rough) part of the
landscape, in the L-region. The number of H particles at a
height z1 below the maximum occupied level is 4(z0 − z1).
Hence, the total energy becomes

ED = −4
z0−1∑
z1=0

(z0 − z1)z1 − z0 = −2

3
z0(z0 + 1)(z0 − 1) − z0

≈ −2

3

(
ρ

2

)3/2

N3, (31)

to the leading order in N .
For a wedge-shaped surface, on the other hand, the equal-

height contours are horizontal or vertical lines, running parallel
to the line of height minima. The number of sites with a given
height z in this case is 2N and the highest occupied level z0 in
this case is ρN/2. This gives the total energy of H -particles
in a wedge-like arrangement as

EW = −2N

ρN/2∑
z=0

z = −ρ2N3

4
− ρN2

2
≈ −ρ2N3

4
, (32)

to leading order in N . For large N , it follows from Eqs. (31)
and (32) that ED < EW unless ρ is very high (ρ � 0.89). In
our simulations, we mainly consider ρ = 1/2 and for our case
diamond-like arrangements are energetically more favorable
for large systems. It will be interesting to study large ρ values to
see if wedge-shaped configurations survive even for large N .
Moreover, we have restricted our studies to a square lattice
N×N here. It may be of interest to see whether different types
of arrangements are obtained when a rectangular lattice N×M

or even a different lattice symmetry is considered.

V. CONCLUSION

In this paper, we have studied different ordered phases
present in a coupled nonequilibrium system and explicitly
demonstrated how the coupling affects the qualitative nature
of the ordering. In our model, a lighter and a heavier particle
species move on a potential energy landscape. The particles try
to lower the potential energy, and in occupying valleys in the
landscape, the heavier species always gets preference over the
lighter one. Crucially, the particles also affect the landscape
locally, so as to lower the energy further. Depending on how
each species interacts with the landscape, we find different
phases in the system. In the case when the heavier species
tends to push the landscape downward, and the lighter species
tends to push it upward, the system shows SPS phase, where
the ordering is strongest. When the heavier species pushes
the landscape downward, but the lighter one does not push the
surface in either direction, rather allows equilibrium local
fluctuations of the landscape, we obtain an IPS phase. Finally,
the FPS phase is obtained when the lighter species also pushes
the landscape downward, but at a smaller rate than the heavier
ones. In the limit when both the species affect the landscape in
an identical way, either by pushing in a direction with the same
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rate, or by allowing local equilibrium fluctuations, we obtain
FDPO. And in all other cases, we get a disordered phase.

The schematic configurations in Fig. 1 show that the main
difference between the SPS, IPS and FPS phases lies in the
shape of the landscape. In all these phases, the H and L parti-
cles completely phase separate from each other and form one
single H and L cluster. But due to the different nature of effects
produced by these particles on the landscape, we get these
different phases, where the landscape may be completely
ordered or may show coexistence of ordered and disordered
regions.

In our model, the coupling between the particles and the
landscape is such that the mobility of one species depends
on the local density of the other. Our linear stability analysis
in this case shows that the eigenvalues of the Jacobian matrix
that enters the continuity equations are real for b < −b′, which
implies a homogeneous or disordered state for both particles
and landscape. However, for b > −b′, the eigenvalues have
an imaginary part, which indicates growth of instability which
heralds the onset of ordering. It may be worth mentioning
here that the nature of cross-species coupling between the
mobility and density is crucial. If instead of depending on
the density, the mobility of one species depended on higher
derivatives of density of the other species, the results might

have been different. In Ref. [24] a coupled driven system was
studied where the mobility of one species depended upon the
second derivative of the density of the other species. In that
case, however, no ordered phase was found, and homogeneous
solutions were shown to remain valid for all parameter regimes.

Finally, it is useful to discuss the implications of our results
in the context of some biological systems, in which phase
ordering has actually been observed [25]. In a cell membrane,
certain species of membrane proteins were found to change
the local curvature of the membrane at their binding sites.
It has been observed that these proteins form clusters on the
membrane, and these clusters in turn generate instability in the
membrane shape which gives rise to membrane protrusions.
It would be of interest to study these systems within the
framework developed in this paper.
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