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As is well known, solitons can be excited in nonlinear lattice systems; however, whether, and if so, how, this
kind of nonlinear excitation can affect the energy transport behavior is not yet fully understood. Here we study
both the scattering dynamics of solitons and heat transport properties in the Fermi-Pasta-Ulam-α-β model with
an asymmetric interparticle interaction. By varying the asymmetry degree of the interaction (characterized by
α), we find that (i) for each α there exists a momentum threshold for exciting solitons from which one may infer
an α-dependent feature of probability of presentation of solitons at a finite-temperature equilibrium state and
(ii) the scattering rate of solitons is sensitively dependent on α. Based on these findings, we conjecture that the
scattering between solitons will cause the nonmonotonic α-dependent feature of heat conduction. Fortunately,
such a conjecture is indeed verified by our detailed examination of the time decay behavior of the heat current
correlation function, but it is only valid for an early time stage. Thus, this result may suggest that solitons can
have only a relatively short survival time when exposed in a thermal environment, eventually affecting the heat
transport in a short time.
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I. INTRODUCTION

Since Debye’s pioneering work, it has been recognized
that the lattice heat conduction can be described by lat-
tice vibrations, which are rephrased as various collective
excitations. Among them, one of the well-known energy
carriers is the phonon [1]. Within this framework, the energy
transport behavior can be understood by the interplay of
these excitations, determined by a key factor, i.e., the focused
system’s type of interparticle interaction (IPIA), if other
effects, such as the external potential [2,3], defect [4], and
boundary [5], are ignored.

To use the above picture to model real systems’ heat
conduction, a nonlinear IPIA is crucial [6]. That is because, if
the IPIA is linear type, there is no interaction between phonons
and as a consequence the energy transport follows a ballistic
way, with the feature of heat conductivity proportional to
the system size [6]. Viewing this fact, Peierls [7] first took
the nonlinearity of the IPIA into account and suggested that
it can induce phonon-phonon interaction and thus the heat
transport in an anharmonic lattice can be understood by the
picture of gases of interacting phonons. Such a viewpoint
certainly signifies great progress; however, we should note
that, triggered by a later work of Fermi, Pasta, and Ulam [8],
it was further realized that in addition to phonons, other
nonlinear excitations, such as solitons [9], are ubiquitous
in the lattice system after including the nonlinear IPIA.
Therefore, a complete picture to understand heat transport
should also involve soliton-soliton interaction. At present,
however, few contributions have been presented on this issue.

In this respect, some earlier results conjectured that
solitons play a key role in anomalous heat conduction of
one-dimensional Fermi-Pasta-Ulam-β (FPU-β) lattice sys-
tems [10,11], while in the same systems, others found [12]
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that the energy carriers may be the effective phonons but
not the solitons and this argument remains valid for even
high-temperature regions. This disagreement may result from
the fact that both viewpoints are based on the particular
FPU-β model whose IPIA is of the symmetric type. Such
special collective dynamics of a nonlinear system at fi-
nite temperature can be understood through a renormalized
phonon theory [13], which implies that researchers did not
thoroughly take the role of solitons in heat conduction into
consideration.

Recently, there has been an increasing interest in the study
of heat transport in nonlinear lattices with asymmetric IPIA.
This is because the asymmetry feature of IPIA is also crucial
in modeling real systems. The relevant theoretical studies
revealed that, compared to the systems with symmetric IPIA,
the heat conductivity in a system with asymmetric IPIA will
diverge with system size in a quite different way [14–17].
This distinctive divergent behavior has been predicted by the
theory of nonlinear fluctuating hydrodynamics [15], which
proposed a relevant noisy Burgers equation [16] for the heat
modes and used the mode-coupling theory [17] to solve
it. Such a difference has also been carefully considered in
several numerical studies [18] (see also the detailed discussion
in Sec. 7 of Ref. [15]). Now in the context of collective
excitations, different properties of heat transport would suggest
that different excitations dynamics would be shown in the
system. Thus, it would be interesting to explore what roles
the nonlinear excitations, such as solitons, will play in heat
transport in this kind of system.

In this paper we therefore attempt to study the effects
of the scattering dynamics of solitons on heat conduction
in the FPU-α-β model with an asymmetric IPIA. For this
purpose, we first examine the exciting threshold for solitons.
Then, with this information, the scattering rate of solitons is
carefully investigated. Finally, together with a conjecture of the
probability of solitons in thermalized states, we try to relate the
observed microscopic dynamics to the heat transport property.
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II. MODEL AND METHOD

The dimensionless Hamiltonian of the FPU-α-β model with
N particles can be represented by

H =
N∑

i=1

Hi, Hi = p2
i

2
+ V (ri), (1)

where pi and xi are the momentum and position of the ith
particle, respectively, and we set ri ≡ xi+1 − xi − 1. Both the
particle’s mass and lattice constant are set unity. The IPIA of
this system is usually described as

V (ri) = 1

2
r2
i + α

3
r3
i + β

4
r4
i . (2)

For the convenience of analysis, we set β = 1 and thus the
symmetry degree of the IPIA is controlled by α. To be specific,
with the increase of the absolute value of α, this kind of
symmetry degree will increase as well. In particular, for α = 0,
the IPIA is symmetric and the system reduces to the FPU-β
model, as mentioned above.

There are two types of solitons that can be excited in the
FPU-type systems. The first one is kink shaped, usually called
a kink for brevity, moving in the same direction as particles.
The other one is antikink shaped (called an antikink), moving,
however, in the opposite direction to the associated particles.
To study the soliton scattering dynamics, usually one can
produce a pair of solitons in the focused lattice, labeled a

and b, in the following way. Initially (at time t = 0), all the
particles are located at their equilibrium position and with
zero momentum and we apply a kick on the first particle with
a momentum pa . Then, at time t = δ, we apply another kick
on the last particle with momentum pb. Note that applying
the kick will excite a soliton followed by a wave packet if the
kicking momentum is strong enough, but with the evolution
of the system, the soliton will be separated from the wave
packet because of their different velocities. Our focus now will
be mainly limited to the solitons, when they are completely
separated. Finally, as t increases, the two solitons, a and b,
will collide with each other, which then enables us to study
their scattering dynamics.

To evolve the system, the Runge-Kutta-Nystrom algorithm
of order 8(6) is adopted, which has been verified to be sufficient
to obtain good accuracy [19]. With this algorithm, we then are
able to derive information on all the particles’ positions and
momenta. This information is used to measure the properties
of soliton and wave packets. In addition, we consider a relative
large system with long size, which is to ensure that the excited
solitons could be separated from the wave packets.

In practice, through controlling the sign of pa and pb, one
can obtain three different types of collisions, i.e., (i) positive
values for both pa and pb gives a kink-antikink collision; (ii)
one positive value (for example, pa) and the other negative
(pb) is called an antikink-antikink collision; and (iii) negative
values for both pa and pb produces a kink-kink collision. Such
results are well known from previous studies of the FPU-β
model [3,10,20].

FIG. 1. Snapshots of two solitons (a) and (b) before scattering
and (c) and (d) after scattering for (a) and (c) α = 0.0 and (b) and (d)
for α = −0.7. The red dotted line is the kink soliton moving to the
right and the blue solid line is the antikink soliton moving to the left.
The insets are used to further identify the wave packets.

III. SOLITON BEHAVIOR

With the above technique, we conclude the following two
qualitative points: (i) For a specific system, the soliton can be
excited only if the kicking momentum exceeds a certain value
pc, i.e., there is a threshold of momentum for exciting the
soliton, and (ii) the scattering of two pairs of solitons will result
in some extra wave packets. Motivated by this, in Fig. 1 we
show a typical snapshot of the kink- and antikink-type solitons,
before [see Figs. 1(a) and 1(b)] and after [see Figs. 1(c)
and 1(d)] collisions, in the FPU-α-β system with two different
α values. The kicking momenta are fixed at pa = 4 and pb = 8,
respectively. In order to identify the extra wave packets,
we also provide further details in the corresponding insets.
From Fig. 1 one may find the following unusual properties
compared to the traditional FPU-β system with α = 0. (i) For
the fixed kicking momentum, the maximum momentum of
the associated particle of the soliton is different for the two
focused values of α = 0 and α = −0.7. This may suggest that
for different α, the threshold for exciting the soliton is different.
(ii) There is an extra soliton emerging for α = −0.7, but this is
not the case for α = 0, which of course indicates the different
scattering dynamics for the system with different α.

With the above evidence in mind, in the following we
propose a numerical method to estimate the threshold of the
kicking momentum for the excitation of the kink and antikink
for different α values. This method is actually based on the
following fact. The soliton in lattices is a type of topological
soliton, for which the associated particles have two equilibrium
positions [21], whereas for the wave packet in lattices, its
associated particles only have a single equilibrium position.
This difference results in the following: If a soliton travels
through two particles, e.g., the ith and (i + l)th ones, these
particles change from one of the equilibrium positions to the
other, without losing energy. As a consequence, one may
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FIG. 2. (a) Minimum loss of momentum �min versus the kicking
momentum p for, from right to left, α = 0.0, −0.2, −0.4, −0.6,
−0.8, −1.0, −1.2, and −1.4. (b) Measured threshold of momentum
for kink pk

c (α) (red open circles) and antikink pa
c (α) (blue closed

circles) versus α. These results are obtained from the system size
N = 8192 and the parameter l is l = 1024.

expect that the maximum momenta between these particles,
denoted by pmax

i and pmax
i+l , are almost the same. However,

since all particles are around their equilibrium positions, when
a wave packet travels through two particles, it will dissipate
energy and finally one should find that pmax

i is much larger than
pmax

i+l . Based on this difference, we then proceed to measure
the minimum loss �min of momentum of the particles with
maximum momentum when a certain kick is applied, i.e.,

�min = min

{∣∣pmax
i − pmax

i+l

∣∣∣∣pmax
i

∣∣ ; i = N

2
, . . . ,N − l

}
. (3)

Obviously, under this definition, a vanished �min corresponds
to the fact that a soliton is excited.

The result of �min versus the different kicking momentum
p is shown in Fig. 2(a). Several α values from α = 0.0 to
α = −1.4 are compared. As can be seen, for each α, with
the increase of p, a sharp crossover from a nonvanishing to
vanishing value of �min can be clearly identified. Interestingly,
the crossover point pc indicates that the exciting threshold is
different for different α. In particular, a larger absolute value
of α suggests a smaller pc.

Figure 2(b) plots the result of pc versus α for two different
kinds of solitons, i.e., kink and antikink. We denote them by pk

c

and pa
c , respectively. Now from Fig. 2(b) one may understand

that there is a big difference between the properties of the
kink and antikink, i.e., with the increase of α, pk

c increases,
whereas pa

c decreases. However, regardless of this difference,
all the curves of Fig. 2(b) show the property of symmetry for
α < 0 and α > 0. Thus, in our following analysis, we only
need to study the case of α � 0.

Next we study the scattering dynamics of solitons. To do
this, one can usually measure the scattering rate for the colli-
sion of two solitons. This scattering rate is usually defined by

�̃ = |E − E′|
E

, (4)

which characterizes the rate of energy change of solitons
before and after scattering. Here E = ∑

{i} Hi and E′ =∑′
{i} Hi are the energies for the same soliton before and after

scattering;
∑

{i} means that the summation is performed only
over those associated particles having significant momenta
(|pi | > 10−10) [10]. We have verified that the numerically
measured �̃ not only is dependent on the kicking momentum

FIG. 3. Averaged scattering rate � ≡ 〈�̃〉δ for kink-antikink (blue
dashed line), kink-kink (green solid line), and antikink-antikink (red
dotted line) collisions vs the ratio of the kicking momentum R ≡ | pa

pb
|.

Here α = 0.0 (squares), α = −0.7 (circles), and α = −1.4 (stars).

of the focused two solitons, but also depends on the time delay
δ to excite them. Considering this fact, for energy transport,
we need statistical properties. In the following we will
investigate the averaged scattering rate over δ, i.e., � ≡ 〈�̃〉δ .

Figure 3 shows the result of � as a function of the ratio
R ≡ |pa

pb
|. Here, for convenience, we set |pb| = 8 to explore

different types of two-soliton scattering. It is easy to find that
for both antikink-antikink and kink-kink collisions, there are
no changes of � for different R, but this is not the case for the
kink-antikink collision; here, with the increase of the absolute
value of α, � increases remarkably. Since it has always been
believed that the scattering behavior of energy carriers or, in
other words, the nonlinear excitations will certainly change
the heat conduction, the result here seems to suggest that if
the collisions of solitons do play roles in heat conduction, only
kink-antikink-type scattering plays a major role.

All of the above results are from simulations performed
at zero temperature. To further figure out the effects of
the kink-antikink collision on heat conduction, we need to
estimate the soliton-soliton scattering probability rate at the
nonzero finite-temperature equilibrium state, which is still a
very challenging issue. Viewing this situation, based on the
above results, it is reasonable to assume that a kink (antikink)
could be excited at position xi only when |pi | � |pk

c | (|pa
c |).

Then, for the finite-temperature equilibrium state, using the
assumption of a Maxwell distribution, one can infer that the
probability to present a kink (antikink) soliton is proportional
to 2√

2πκBT

∫ ∞
pk

c
e−(pk )2/2κBT dpk ( 2√

2πκBT

∫ ∞
pa

c
e−(pa )2/2κBT dpa).

Here T is the focused temperature and κB is the Boltzmann
constant. Thus, there is a joint probability to present both kink
and antikink solitons, i.e.,

Pka = 4

2πκBT

∫ ∞

pk
c

∫ ∞

pa
c

exp

(
− (pk)2 + (pa)2

2κBT

)
dpkdpa. (5)

Finally, the scattering probability of the kink-antikink collision
should certainly be proportional to Pka . Given this understand-
ing, and knowing from Fig. 2(b) that with the increase of
α, pk

c decreases and pa
c increases, one may expect that Pka

will decrease with α. We should note that although the Pka
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FIG. 4. Scattering rate �ka of the kink-antikink solitons collision
vs α for R = 0.5. The inset shows their scattering probability Pka(α)
for T = 0.3.

estimated in the above way will be quantitatively different
from reality, the qualitative conclusion should be the same,
i.e., the scattering probability decreases with the increase of α.

So far, we have clarified that for kink-antikink soliton
collisions, with the increase of α, the scattering rate �ka

increases and the scattering probability Pka decreases. To
further address this point, in Fig. 4 we show the results of both
�ka versus α for R = 0.5 and Pka versus α for T = 0.3. As
can be seen, this is indeed the case. In fact, we have carefully
checked that such properties are valid for any T and R. In the
following, we attempt to use these properties to understand
heat conduction. Our idea is that with the increase of α, the
increase of the scattering rate together with the decrease of the
scattering probability should naturally lead to a nonmonotonic
dependent behavior of heat conduction on α. Thus, in what
follows, we try to capture this idea.

IV. HEAT CONDUCTIVITY

To study the heat conduction behavior, one can usually
employ the heat current correlation function

C(t) = 〈J (0)J (t)〉. (6)

With this and applying the Green-Kubo formula
κ = limN→∞

∫ ∞
0 C(t)dt [22], one then obtains the heat

conductivity κ . Here J (t) = ∑N
i=1 j (t), with j (t) = dxi

dt

∂V (ri )
∂ri

the instantaneous heat current at time t . Angular brackets are
used to denote the equilibrium thermodynamic average. For
finite system size N , one can only derive the finite-time heat
conductivity, i.e.,

κτ =
∫ τ

0
C(t)dt, (7)

where the integration is cut off by a finite time τ . Therefore, for
a FPU-α-β system with finite system size, κτ is a function of
both α and τ . Thus, to verify the nonmonotonic heat conduc-
tion property caused by kink-antikink scattering, our strategy
is to calculate κτ by fixing τ and varying α. It would also be
worthwhile to note that κτ measured in this way only reveals
the finite-time decay behavior of the heat current correlation,
which is naturally related to the dynamics of energy carriers.

FIG. 5. Counterplot showing the result of κ∗
τ = κτ

κm
τ

versus both α

and τ . Here the temperature is fixed at T = 0.3 and the system size
is N = 4096.

In order to easily present the result of κτ (α,τ ), we first
rescale κτ as κ∗

τ = κτ

κm
τ

, with κm
τ the maximum value of κτ for

a certain α during the considered time τ . Figure 5 shows the
results of κ∗

τ for different τ and α. The results are obtained from
a system with a periodic boundary and using the formula (7).
The simulation details to obtain the heat current correlation
function can be found in many works; see, e.g., [6]. From Fig. 5
one can see that the expected nonmonotonic behavior of κ∗

τ

does appear, but only for small τ , and gradually disappears as τ

increases. This means that only the early stage of decay of the
heat current correlation follows the nonmonotonic behavior.
Since in the equilibrium state the early decay of the current is
obviously related to the local carrier propagation, this result
is consistent with our argument induced from the scattering
dynamics of solitons. This is because solitons in a thermalized
environment might frequently suffer many types of scattering
and eventually decay very rapidly.

V. SUMMARY AND DISCUSSION

In summary, our study here suggests that solitons in
the nonlinear FPU-α-β lattice can only have a relatively
short survival time and thus they can only affect the heat
conduction behavior in a short time. This argument has been
supported by the following evidence. There is a momentum
threshold to excite the soliton and this threshold strongly
depends on the symmetry degree of the interparticle interaction
(characterized by α). The scattering dynamics of solitons
here is mainly induced by the kink-antikink soliton collision
and the scattering rate of this type of collision increases
remarkably as α increases. From this property, we proposed
a method to qualitatively measure the scattering probability
of the kink-antikink soliton collision and thus suggested
a nonmonotonic α-dependent property of heat conduction
behavior. Fortunately, our simulation results of the heat current
correlation function nicely verify this nonmonotonic behavior
for a short time. Thus, we may conclude that if the scattering
of solitons does play a role in heat conduction in nonlinear
lattices, it can only do so at an early time stage.
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