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Fluctuating, Lorentz-force-like coupling of Langevin equations and heat flux rectification
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In a description of physical systems with Langevin equations, interacting degrees of freedom are usually
coupled through symmetric parameter matrices. This coupling symmetry is a consequence of time-reversal
symmetry of the involved conservative forces. If coupling parameters fluctuate randomly, the resulting noise is
called multiplicative. For example, mechanical oscillators can be coupled through a fluctuating, symmetric
matrix of spring “constants.” Such systems exhibit well-studied instabilities. In this article, we study the
complementary case of antisymmetric, time-reversal symmetry-breaking coupling that can be realized with
Lorentz forces or various gyrators. We consider the case in which these antisymmetric couplings fluctuate. This
type of multiplicative noise does not lead to instabilities in the stationary state but renormalizes the effective
nonequilibrium friction. Fluctuating Lorentz-force-like couplings also allow one to control and rectify heat
transfer. A noteworthy property of this mechanism of producing asymmetric heat flux is that the controlling
couplings do not exchange energy with the system.
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I. INTRODUCTION

Continuous stochastic processes can be modeled through
differential equations with added noise processes. If a noise
process appears in a product with a function of the system
variables, noise is referred to as multiplicative. The study
of multiplicative noise has a long history since it can cause
rather dramatic phenomena [1]. For example, even arbitrarily
weak stochastic fluctuations of the eigenfrequency in harmonic
oscillator models lead to instabilities in higher moments of sys-
tem variables [2,3]. Similarly, fluctuating friction parameters
can prohibit stable stationary solutions [4–8]. Such “energetic
instabilities”[2] occur since forces resulting from fluctuating
potentials or friction parameters pump energy in and out of
the system. So far, multiplicative noise processes have been
studied either for one-dimensional systems or for forces that
couple different degrees of freedom symmetrically. In this
article, we consider couplings that are antisymmetric under
time reversal and thus lead to antisymmetric coupling matrices.
Stochastic changes of these “Lorentz-Force-like” couplings
produces multiplicative noise.

Lorentz forces cannot perform work or change the internal
energy since they always act normal to velocities. Therefore,
fluctuating Lorentz-force-like couplings yield a special type
of multiplicative noise that is energetically neutral. Below, we
derive generic differential equations governing the first and
second moments of linear systems with fluctuating Lorentz-
force-like couplings. It is shown that this type of multiplicative
noise does not lead to instabilities but increases the effective
friction that damps the first moment when external forces are
applied. Fluctuations in Lorentz-force-like couplings do not
affect equilibrium correlations between different degrees of
freedom but modify the nonequilibrium correlations.

Next, the energetics of our systems are studied within
the framework of stochastic thermodynamics [9,10]. On the
level of Langevin equations, the first law of thermodynam-
ics naturally leads to a definition of heat. Assuming that
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different degrees of freedom are exposed to separate thermal
environments with different temperature, we can calculate
heat transfer through the system. This heat transfer can be
controlled by fluctuating Lorentz-force-like couplings because
they modify the nonequilibrium correlations. As an example
we analyze heat transfer in a two-component system. Both
components are in contact with their own heat bath, which
fixes the additive noise strengths to different values. Random
motion of one component is transmitted via Lorentz-force-like
coupling to the other, thus, heat is transmitted. Finally, the
model is augmented by the assumption that the fluctuation
strength of the multiplicative noise in the coupling is also
determined by one of the baths. For this system, heat transfer
is no longer symmetric under reversal of the temperature
difference and the system acts as a rectifier for heat. This
mechanism of rectifying heat transfer is notable for the fact that
the Lorentz-force-like couplings producing the heat transfer
asymmetry do not exchange any energy with the system.

II. FLUCTUATING, ANTISYMMETRIC COUPLING OF
LANGEVIN EQUATIONS

A. Langevin equations

In the following, all quantities are assumed to be nondi-
mensional and the Boltzmann constant kb is set to unity.
The Einstein summation convention is not employed. We
study a system of coupled, time-dependent, real variables
xj (t) that could, e.g., represent the positions of microscopic
particles or the charge of electric oscillators. In such systems,
the time derivatives ẋj , i.e., the velocities or currents, can
be coupled through Lorentz forces or Coriolis forces that
break time-reversal symmetry. A general form of the Langevin
equations governing the xj is

ẍj = −
∑

l

[κjl xl + (bjl + ζ̃j l) ẋl + γjl ẋl] + ξj + fj . (1)

The symmetric matrix κ = κT represents, e.g., spring con-
stants in a mechanical system or capacitance in an electric
network. κ is to be positive definite for stability [11].
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We thereby also exclude the marginally stable case where
one eigenvalue of κ is zero. The antisymmetric matrix
b = −bT represents Lorentz-force-like couplings which are,
e.g., realizable through a magnetic field. Fluctuations in the
antisymmetric couplings are modeled by the noise matrix
ζ̃ = −ζ̃

T . The multiplicative noise ∼ ζ̃j l ẋl is interpreted in the
Stratonovich sense. Finally, we also have a positive-definite,
symmetric “friction matrix” γ = γ T . The two last quantities
on the right side of Eq. (1) are the thermal noise ξj and a
time-dependent force fj .

The statistical average is written as 〈· · · 〉. Both types of
fluctuations have zero average as 〈ξj (t)〉 = 0 and 〈ζ̃j l(t)〉 = 0.
Different types of fluctuations are to be independent, thus,
〈ζ̃j l(t) ξk(t ′)〉 = 0 for all t and t ′. For many physical systems,
the fluctuation autocorrelations decay exponentially. Such
Ornstein-Uhlenbeck-type correlations with inverse relaxation
times λ and λ̃ read for t � 0

〈ξj (0)ξj ′(t)〉 = λ

2
e−λtKj,j ′ , (2a)

〈ζ̃j l(0)ζ̃j ′l′(t)〉 = λ̃

2
e−λ̃tBjl(δj,j ′δl,l′ − δj,l′δl,j ′ ). (2b)

The symmetric, positive matrix K in Eq. (2a) determines
the strength of the additive noise. Analogously, B in Eq. (2b)
determines the strength of the multiplicative noise. This matrix
is symmetric B = BT , has only positive entries Bij � 0, and
zeros on the diagonal Bii = 0. For simplicity, we will focus
in the following on the white noise limit of Eqs. (2a) and (2b)
where

λ → ∞, λ̃ → ∞. (3)

In this limit we have limλ→∞(λ e−λt/2) =
limλ̃→∞(λ̃ e−λ̃t /2) = δ(t). For Gaussian noise, cumulants with
order higher than two vanish and we can express higher order
noise correlations through products of pairwise correlations.

B. General solution for the first moment

Taking the average 〈· · · 〉 of Eq. (1) yields

〈ẍj 〉 = −
∑

l

[κjl〈xl〉 + (bjl + γjl)〈ẋl〉] −
∑

l

〈ζ̃j l ẋl〉 + fj ,

(4)

which leaves us with the problem of calculating the expectation
value of correlations with the system variables of form 〈ζ̃j l ẋl〉.
For the case of exponentially decaying, Gaussian noise-noise
correlations, solutions exist in the form of a systematic
expansion for short correlation times [2,12,13]. Here, we
consider the white noise limit λ̃ → ∞ and the procedures
detailed in Ref. [13] yield 〈ζ̃j l ẋl〉 = Bjl〈ẋj 〉/2 (see Appendix).
Thus, the first moments obey

〈ẍj 〉 = −
∑

l

[κjl〈xl〉 + (bjl + γjl)〈ẋl〉] −
∑
m

Bjm

2
〈ẋj 〉 + fj .

(5)

Here, the term −∑
m Bjm〈ẋj 〉/2 increases the “friction” on

the average trajectories because B is positive [14]. The renor-
malization of the friction constants can possibly be interpreted

as a geometric effect since a Lorentz force produces “curved
trajectories.” Positivity of the effective friction in Eq. (5) is a
consequence of the antisymmetry of the Lorentz-force-like
couplings b = −bT , which appears in the Kronecker-delta
expression in Eq. (2b) as antisymmetry under index exchange
j ↔ l. Note that fluctuations in the friction parameters γ

produce the opposite effect, namely, a reduced effective
friction [6], which can lead to unstable stationary solutions
when the effective friction becomes negative.

C. General solution for the second moment

The equations governing the second moments result from
multiplying Eq. (1) with derivatives of xk and subsequent
averaging. A lengthy calculation yields

d

dt
〈xmxk〉 = 〈ẋkxm〉 + 〈xkẋm〉, (6a)

d

dt
〈xmẋk〉 = 〈ẋmẋk〉 −

∑
j

Bkj

2
〈xmẋk〉

−
∑

j

(κkj 〈xmxj 〉+[bkj+γkj ]〈xmẋj 〉) + 〈xm〉fk,

(6b)

d

dt
〈ẋmẋk〉 = Kmk +

∑
j

δmkBkj

〈
ẋ2

j

〉

−
∑

j

(
Bkj

2
+ Bmj

2

)
〈ẋmẋk〉 − Bkm〈ẋmẋk〉

−
∑

j

(κkj 〈ẋmxj 〉 + [bkj+γkj ]〈ẋmẋj 〉) + 〈ẋm〉fk

−
∑

i

(κmi〈ẋkxi〉 + [bmi+γmi]〈ẋkẋi〉) + 〈ẋk〉fm.

(6c)

Equations (5) and (6a)–(6c) for the first and second
moments form a closed system that can readily be solved.
The following provides an example involving the calculation
of heat exchange.

III. HEAT EXCHANGE

From now on the friction matrix in Eq. (1) is assumed to be
diagonal γjl = δjlγj . Furthermore, we assume that the noise
processes ξj in the Langevin equations result from thermal
equilibrium fluctuations of large baths that surround the in-
dividual degrees of freedom xj . The coupling between the
xj and the baths should not depend on the system state and
the bath fluctuations are independent of the system. Each xj

is connected to its own bath with temperature Tj . Therefore,
correlations of the noise variables obey [9,15]

Kjl = δjl 2 γjTj . (7)

A. Definition of heat

The Langevin dynamics can be endowed straight-forwardly
with a thermodynamical interpretation as follows. We multiply
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Eq. (1) by ẋj and subsequently sum over j . The antisymmetric
coupling matrices do not appear in this balance equation since∑

j l ẋj (bjl + ζ̃j l) ẋl = 0. Therefore, these coupling forces do
not affect the energetics. After averaging, we obtain the
following energy balance:

∑
j l

d

dt

[
δjl

〈
ẋ2

j

2

〉
+

〈
xjκjlxl

2

〉]
=

∑
j

〈fj ẋj 〉−
(

γj

〈
ẋ2

j

〉−Kjj

2

)
,

(8)

where the expression on the left-hand side is the change of
internal energy. The first term on the right-hand side is the
work done by the forces f. The second term on the right-hand
side is the average momentum exchange with the temperature
baths. Accordingly, the heat exchange of each element j with
its thermal environment is defined as [9,16]

Q̇j ≡ γj

〈
ẋ2

j

〉 − 1
2Kjj . (9)

Note that this definition leads to heat fluxes that are linear
combinations of the temperatures Q̇j = α1 T1 + α2 T2 + . . .

where the coefficients satisfy
∑

k αk = 0. The latter constraint
reduces the number of variables by one, such that Q̇j

can always be written as a function of the temperature
differences.

To describe an equilibrium situation we set fj = 0 and
require that all fluctuations are determined by a single
temperature Teq such that the noise correlations for all j,l

are given by

K
eq
j l = δjl 2 γjTeq. (10)

For long times, stationary correlation functions result from
Eq. (6b) and (6c) as 〈ẋkxm〉eq = 〈xkẋm〉eq = 0 and 〈ẋmẋk〉eq =
δmkTeq. Thus, the multiplicative noise strength B becomes
irrelevant in equilibrium. Although fluctuations in the antisym-
metric coupling matrices do not change the internal energy or
produce work, they do affect the transfer of energy between
different degrees of freedom in nonequilibrium.

B. A toy model for heat flux control

We next consider an example for how the multiplicative
noise ζ̃ can allow one to control heat transfer. The general
Langevin equation (1) is specialized to the case of two
elements. Furthermore, the system is simplified by assuming a
stationary state with fj = 0 and by assuming that the magnetic
coupling is on average zero (b = 0). The governing equations
are(

ẍ1

ẍ2

)
= 2

(−2κ κ

κ −2κ

)(
x1

x2

)
−

(
γ ζ̃

−ζ̃ γ

)(
ẋ1

ẋ2

)
+

(
ξ1

ξ2

)
.

(11)

The two oscillators are to be connected with different heat
baths at temperatures T1 and T2. Thus, the strength of the
additive noise ξ{1,2} is determined by

K11 = 2γ T1, K22 = 2γ T2, K12 = K21 = 0. (12)

The stationary heat exchange can now be calculated straight-
forwardly from Eqs. (6c), (9), and (7). The result is

Q̇1 = γ [2κ + B12(2γ + B12)](T2 − T1)

4κ + 2(γ + B12)(2γ + B12)
, Q̇2 = −Q̇1.

(13)

Clearly, heat is a nonlinear function of the multiplicative
noise strength B12. However, the multiplicative noise cannot
change the direction of heat transfer in Eq. (13) since per
definition B12 � 0. Thus, spontaneous currents from the colder
to the hotter heat bath cannot occur and thermodynamic
consistency is retained. This result is a consequence of the
usage of antisymmetric couplings as fluctuating quantity since
no energy is injected or removed during fluctuations.

The nonmonotonous dependence of Q̇ on the coupling
constants in Eq. (13) allows one to control heat transfer through
the strength of the multiplicative noise. The two extreme
limits of vanishing and very strong multiplicative noise yield
a heat transfer of Q̇1|B12=0 = γ κ(T2 − T1)/(2γ 2 + 2κ) and
Q̇1|B12→∞ ≈ γ (T2 − T1)/2. In between these limits, a mini-
mum occurs at the fluctuation strength B12 = √

2κ − 2γ � 0
with a heat transfer of

Q̇min
1 = γ (

√
2κ/γ − 1)

2
√

2κ/γ − 1
(T2 − T1) � γ

3
(T2 − T1). (14)

For large friction constants, when γ �
√

κ/2, the minimum
heat transfer occurs at B12 = 0 and Q̇1 increases monotonously
with multiplicative noise intensity.

C. Rectification of heat exchange

Instead of fixing B to some arbitrary value, we now
assume that the fluctuations ζ̃ in Eq. (11) are governed by
the temperature T1 of one of the heat baths. In this case, B12 is
proportional to the temperature as

B12 = B21 = ν T1, B11 = B22 = 0, (15)

where ν is a constant. With this definition of B, Eq. (13)
yields a nonlinear dependence of Q̇1,2 on T1. Moreover,
the magnitude of heat exchange depends asymmetrically on
the direction of heat transfer T1 ↔ T2. Figure 1(a) shows
plots of Eq. (13) for symmetric temperature difference T1,2 =
1 ± 
. As demonstrated in the figure, heat transfer becomes a
quadratic function Q̇1 ≈ −(
 + 
2)ν when γ � ν and also
γ � κ . Then, the magnitude of heat transfer in the direction
T1 → T2 (
 > 0) is stronger than in the reverse direction.

To quantify the asymmetry of heat transfer we consider
the quantity Q̇1(
)/Q̇1(−
) in Fig. 1(b). The asymmetry
becomes large when 
  1, i.e., when the temperature differ-
ence is comparable to the mean temperature (T1 + T2)/2. The
plot also demonstrates that increasing the coupling constant
κ generally leads to a less pronounced asymmetry in the heat
transfer.

IV. CONCLUDING REMARKS

Lorentz-force-like couplings can be physically realized in
different ways. Devices that couple fluxes in a nonreciprocal
way are known in electrical engineering as gyrators [17] and
early designs were based on a rectangular Hall element with
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FIG. 1. (a) Heat transfer vs temperature difference 
 = (T1 −
T2)/2 for κ = 1. (b) Asymmetry of heat transfer. Heat transfer in
Eq. (11) can become asymmetric when the multiplicative noise
strength B12 depends on temperature through Eq. (15). Here T1 =
(1 + 
), T2 = (1 − 
), and ν = 1.

separate ports at all four sides [18]. Recent developments
include gyrators based on magnetoelectric materials [19]
and Hall effect gyrators with significantly reduced electrical
resistance [20,21]. It is also possible to build nonreciprocal
microwave waveguides by exploiting the Faraday effect [22].
While these devices rely on time-reversal symmetry-breaking
properties of magnetic fields, one can in principle imagine
replacing the Lorentz forces by Coriolis forces in a rotating
inertial frame. Fluctuations in the resulting antisymmetric
couplings could then be caused, e.g., by noise in the magnetic
field or in the angular velocity. While a detailed study of
the resulting phenomena would require solving Maxwell’s
equations or mechanical force balance equations, we focus
in this note on generic second order stochastic differential
equations with fluctuating, antisymmetric coupling of the
velocity variables. For these systems, we derive general
equations governing the first and second moments under
the assumption of Gaussian white noise. It is demonstrated
that the new type of multiplicative noise only affects the
out-of-equilibrium correlations and does not lead to energetic
instabilities. As an application of our formulas we discuss heat
transport through a system with fluctuating Lorentz-force-like
couplings.

Any heat transport process must satisfy the second law of
thermodynamics, i.e., heat does not flow spontaneously from a

cooler reservoir to a hotter reservoir [23]. Fourier’s law of heat
conduction is linear in temperature differences and therefore
satisfies the requirement naturally. However, nonlinear and
asymmetric heat conduction laws are also possible. Using
our framework for multiplicative noise in Lorentz-force-like
couplings, we study heat transfer between two reservoirs.
Noise processes in the Langevin equations can be interpreted
as thermal equilibrium fluctuations in a temperature bath. This
assumption leads to a natural microscopic identification of heat
and work in the stochastic system, whereby the nonequilibrium
heat exchanged between the bath and the system is related
to the velocity autocorrelations. Consequently, heat flow can
be controlled through fluctuations of the Lorentz-force-like
coupling. This way of controlling heat flow automatically
conserves the energy balance due to energetic neutrality of
antisymmetric coupling matrices. Therefore, such systems can
be studied consistently without explicitly modeling the origin
of the multiplicative noise by additional equations, which
presents an advantage for theoretical work.

Concepts for rectification of heat flow have received con-
siderable scientific attention during recent years. In particular,
studies of low-dimensional nanoscale systems yielded various
principles that allow one to control heat flux and produce
asymmetry under exchange of the heat flow direction [24–35].
Studying different instances of heat flux rectification is not
only important for an understanding of general principles,
but may also have immediate applications, for example in
nanotechnology.
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APPENDIX

In the following, we demonstrate the use of standard
procedures to calculate the noise correlators employed above.
For a system with N space coordinates we define u ≡
{x1 . . . xN ,ẋ1 . . . ẋN } to write Eq. (1) as a system of first order
differential equations

duj

dt
=

∑
l

[Ajl ul + Zjl ul] + �j + Fj . (A1)

Here, the constant parameters κ , b, and γ in Eq. (1) are
absorbed in Ajl . The additive noise is �j = 0 for j � N and
�j = ξj−N for j > N . External forces acting on the system
are contained in Fj . The matrix Zjl contains the multiplicative
noise and its entries are

Zjl = −ζ̃(j−N),(l−N) for j > N and l > N

Zjl = 0 otherwise.

Next, we consider an arbitrary function h(t) that depends on the
zero-mean stationary Gaussian noises Zjl . We seek to calculate
equal time correlations of the form 〈Z..(t)h(t)〉. Following
Ref. [13], we expand h(t) in time-ordered products of the
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noise variables through a functional Taylor series. As a slight
generalization of results given in Ref. [13] we find

d

dt
〈Zjlh〉 = −λ̃〈Zjlh〉 +

〈
ζ̃j l

dh

dt

〉
, (A2a)

d

dt
〈ZmnZjlh〉 = −2λ̃〈ZmnZjlh〉 +

〈
ZmnZjl

dh

dt

〉

+ 2λ̃〈ZmnZjl〉〈h〉, (A2b)

d

dt
〈ZrsZmnZjlh〉 = −3λ̃〈ZrsZmnZjlh〉 +

〈
ZrsZmnZjl

dh

dt

〉

+ 2λ̃[〈ZrsZmn〉〈Zjlh〉 + 〈ZrsZjl〉〈Znmh〉
+ 〈ZmnZjl〉〈Zrsh〉], (A2c)

These formulas hold for both of our noise sources with
exchanged variables Zkl → �j , λ̃ → λ. We can now set h =
uj in Eqs. (A2a)–(A2c) and use the Langevin equation (A1)
to obtain a hierarchy of equations where every correlation
is connected to correlations of the next higher order in Z...
Integration of Eqs. (A2a) and (A2b) yields

〈Zjluk〉 =
∫ t

0
e−λ̃(t−t ′)

〈
Zjl

duk

dt

〉∣∣∣∣
t ′
dt ′, (A3a)

〈ZjlZmnuk〉 =
∫ t ′

0
e−2λ̃(t ′−t ′′)

[
2λ̃〈ZjlZmn〉〈uk〉

+
〈
ZjlZmn

duk

dt

〉]
t ′′
dt ′′, (A3b)

where we assumed that the contribution of initial values of
the correlations vanishes. Together, these equations yield

〈Zjluk〉 =
∑
m

∫ t

0
e−λ̃(t−t ′)

[
〈Zjl(Akmum + �k + Fk)〉|t ′

+
∫ t ′

0
e−2λ̃(t ′−t ′′)

(
2λ̃〈ZjlZkm〉〈um〉

+
〈
ZjlZkm

dum

dt

〉)
t ′′
dt ′′

]
dt ′, (A4)

We next consider the limit of very short noise correlations
λ̃ → ∞ where of course t > 0. Assuming that the sought-for
correlations are finite, the terms in Eq. (A4) in the first line on
the right side yield a contribution of vanishing measure since
the factor e−λ̃(t−t ′) is zero for (t − t ′) > 0 and only finite for the
point (t − t ′) = 0. For the first summand on the second line of
Eq. (A4), we can employ the correlation relations (2b), yielding
a contribution that can be at most ∼ λ̃2. This term survives the
limit of λ̃ → ∞ since then λ̃e−λ̃(t−t ′) → 2δ(t − t ′).

To evaluate the last term in Eq. (A4) we could again replace
duj

dt
by Eq. (A1) and use the integral of Eq. (A2c). However, the

last three summands on the right-hand side of Eq. (A2c) are
at most ∼ λ̃2 and are therefore suppressed by the exponential
integral factors in the limit of λ̃ → ∞. The second term on
the right side of Eq. (A2c) can only yield a nonzero, finite
contribution in the case that 〈Z..Z..Z..Z..ui〉 ∼ λ3. However,
this case is rejected on physical grounds since for Gaussian
noise 〈Z4

..〉 is at most ∼ λ̃2 and ui varies on a much longer time
scale than the noise variable. Thus, the only nonvanishing
contribution to the integral in Eq. (A4) comes from the first
summand in the second line. The result is

〈Zjluk〉 =
∑
m

∫ t

0
e−λ̃(t−t ′)

∫ t ′

0
e−2λ̃(t ′−t ′′)2λ̃〈ZjlZkm〉

× 〈um〉|t ′′dt ′′ dt ′. (A5)

Next, we revert back to our original variables. Since the
matrix elements {Z..} contain multiplicative noise components
{−ζ̃..}, we employ Eq. (2b) and take the limit of large λ̃ to
obtain

〈ζ̃j lxk〉 = 0, (A6a)

〈ζ̃j l ẋk〉 = Bjl

2
(δlk − δjk)〈ẋk〉. (A6b)

These are the correlations that were employed for derivation
of Eq. (5). Through an analogous calculation for the additive
noise ξ we obtain by simply exchanging the noise variables in
above derivation

〈ξjxk〉 = 0, (A7a)

〈ξj ẋk〉 = Kjk

2
. (A7b)

For calculation of the second moments of the system
variables we need the correlation between noise and two
system variables 〈Zjlukui〉. This expression can be evaluated
by setting h = ukui in Eqs. (A2a) and (A2b) and by then
following through with the same procedure as above. The final
result, in original variables after evaluation of the Kronecker-
delta expressions Eq. (2b), reads

〈ζ̃j lxkxi〉 = 0, (A8a)

〈ζ̃j l ẋkxi〉 = −Bjl

2
[δjk〈ẋlxi〉 − δlk〈ẋj xi〉], (A8b)

〈ζ̃j l ẋkẋi〉 = −Bjl

2
[δji〈ẋkẋl〉 − δli〈ẋkẋj 〉]

− Bjl

2
[δjk〈ẋl ẋi〉 − δlk〈ẋj ẋi〉]. (A8c)
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