
PHYSICAL REVIEW E 96, 022108 (2017)

Single-temperature quantum engine without feedback control
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A cyclically working quantum-mechanical engine that operates at a single temperature is proposed. Its energy
input is delivered by a quantum measurement. The functioning of the engine does not require any feedback control.
We analyze work, heat, and the efficiency of the engine for the case of a working substance that is governed by
the laws of quantum mechanics and that can be adiabatically compressed and expanded. The obtained general
expressions are exemplified for a spin in an adiabatically changing magnetic field and a particle moving in a
potential with slowly changing shape.
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I. INTRODUCTION

An engine converts some form of energy into mechanical
work in a cyclic process that can be repeated at whim.
An important example is a heat engine designed to utilize
the energy exchange between heat reservoirs at different
temperatures [1–3]. The research of heat engines has a long-
standing history, going back to the industrial revolution in
the 18th century. Recently, motivated by Feynman’s quote,
“There’s plenty of room at the bottom” [4], interest in the
working principles of engines functioning on mesoscopic and
also on molecular and atomic scales, as well as in their designs
and optimization, has grown substantially. A major challenge
for the understanding of small-scale engines is to cope with
the presence of unavoidable random noise in the form of
thermal fluctuations [5–7]. At sufficiently low temperatures,
quantum effects such as coherence and quantum noise may also
become relevant. Related questions that have been discussed
in the literature range from whether quantum effects are of
any influence on the performance of an engine at all, to
whether quantum effects deteriorate or might even improve
the performance of an engine [8–18].

According to the second law of thermodynamics, energy
conversion of heat into work cannot be perfectly efficient [2].
A finite amount of unconsumed energy must be dissipated into
a low-temperature heat reservoir in order to restore the initial
state and complete a cyclic process. Therefore, heat engines
operating at a single temperature do not exist. This is also
a significant consequence of the fluctuation theorem [19,20]
stating that for a cyclic process with only one temperature
involved, the average of work done on the system 〈W 〉 cannot
be negative (for a review, see [21]).

An engine operating at a single temperature does still exist
if one allows a Maxwell demon to help, or, in other words, if a
feedback control is active, as in a Szilard engine [22,23]. The
seeming contradiction to the second law can be resolved if the
feedback control mechanism is included in the dynamics of the
system constituting the engine [24]. On a more formal level,
it can be understood in terms of the information gain I > 0 as
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the result of a measurement that is part of the feedback control
[25]. The information gain leads to a modified, negative lower
bound of the average work done by the system as 〈W 〉 �
−kBT I [26,27]. This idea has been applied to classical [28–30]
and quantum systems [31–33].

In this paper, we propose a cyclically working quantum
engine at a single temperature without feedback control. An
essential ingredient of the engine protocol is a quantum mea-
surement performed on the working substance of the engine.
The result of this measurement is ignored and therefore cannot
trigger any control. This measurement would be ineffective for
an engine working according to the laws of classical physics. In
a quantum system, however, a measurement imposes a change
of the state and consequently an increase of the energy of the
system, which is the working substance in the present context.

This paper is organized as follows: Section II is devoted to
specifying the relevant steps and processes that make up the
cycles of the proposed engine. In Sec. III, we analyze work
and heat generated by the engine cycle, and we discuss the
results. The findings of Sec. III are exemplified in Sec. IV, and
finally Sec. V concludes our paper.

II. ENGINE CYCLE

The working substance of the engine is described by
a Hamiltonian H (λ) depending on a parameter λ. At the
beginning of any cycle, the parameter assumes the value λi , and
the working substance is in a canonical equilibrium state at the
temperature T (kBT = β−1). Starting with this state 0, a cycle
consists of two adiabatic processes, AP I and AP II, interrupted
by the measurement, QM, and a final thermalization step, T.
This series of “strokes” is sketched as follows:

0 AP I==⇒ 1
QM==⇒ 2 AP II==⇒ 3 T=⇒ 0. (1)

The first stroke AP I is an adiabatic compression caused by
a sufficiently slow parameter change from λi to λf . Under the
assumption that the energy levels of the Hamiltonian H (λ) do
not cross anywhere as a function of the parameter λ, in this
stroke the occupation probabilities of the energy branches do
not change [36]. This stroke is required to lead to an increasing
level spacing. In this sense, it corresponds to a compression of
the working substance.
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While keeping the Hamiltonian H (λf ) fixed, a quantum
measurement (QM) of an observable that does not commute
with H (λf ) is performed on the working substance. The
measurement causes a state change that will be considered
as instantaneous. This state change implies a redistribution of
the occupation probabilities of the energy eigenstates.

Subsequent to the measurement stroke QM, during AP II
the system undergoes an adiabatic expansion by means of a
slow parameter change from λf back to λi . During this stroke,
the occupation probabilities of the energy levels stay constant
at those values reached immediately after the measurement.

Finally, while the parameter is kept at λf , the system is
brought into weak contact with a thermal reservoir at the initial
temperature T . After a sufficiently long time has elapsed, the
system again reaches the initial equilibrium state, and the cycle
can be resumed with the adiabatic process I.

III. WORK AND HEAT

In any thermodynamic process, the energy change of a
system can be decomposed into work and heat. A change of
energy is considered as work if it is caused by the variation
of an externally controlled parameter (λ in our case), and
as heat if it results from contact of the system with its
environment. We adopt the convention to consider both heat
and work as positive if the energy of the working substance
increases. According to this definition, the energy changes
caused by the adiabatic processes AP I and AP II must be
classified as work, while in the other two strokes QM and
T heat is exchanged. For the measurement stroke and for
the thermalization, a measurement apparatus and a heat bath
represent the respective environments with which energy is
exchanged. We now demonstrate that work can be done within
a complete cycle, as described above.

During the stroke AP I the working substance is thermally
isolated and its dynamics is governed by a slowly changing
Hamiltonian H (λ) = ∑

n En(λ)|n; λ〉〈n; λ|, where En(λ) and
|n; λ〉 are the corresponding eigenvalues and eigenstates,
respectively. Here we assume that the eigenvalues En(λ)
are not degenerate for all considered values of λ. Further,
by assumption, the working substance initially resides in a
canonical equilibrium state. Hence, the population of its energy
levels is determined by

peq
n (λi) = e−βEn(λi )/Z, (2)

where Z = ∑
n e−βEn(λi ) is the canonical partition function. In

the course of the adiabatic stroke, the occupation probabilities
of the energy eigenstates remain unchanged at p

eq
n (λi) such

that the state of the working substance at the time when the
parameter λ is reached is given by the following density matrix:

ρI (λ) =
∑

n

peq
n (λi)|n; λ〉〈n; λ|. (3)

The work in this process is given by the differences of
the energies En(λf ) − En(λi) occurring with the probability
p

eq
n (λi). Consequently, the average work WI in the stroke AP

I becomes

WI =
∑

n

[En(λf ) − En(λi)]p
eq
n (λi). (4)

In passing we note that, in contrast to the specification of work
done in an arbitrary protocol requiring two energy measure-
ments [34,35], here, due to the adiabaticity of the stroke, a
single energy measurement, which could be performed at any
instant of time during the stroke, suffices.

In the next stroke, a measurement of an observable A

with the eigenvalues aα as possible results is performed.
We consider the class of minimally disturbing generalized
measurements, which can be characterized by Hermitian
measurement operators Mα = M†

α satisfying
∑

α M2
α = 1

[37,38]. In a nonselective measurement, the post-measurement
state assumes the form

ρPM =
∑

α

MαρI (λf )Mα. (5)

For Mα agreeing with the projection operators onto the
eigenspaces of the observable A, the standard result of
a projective measurement is recovered, but more general
measurement schemes can be described in this way. One may
wonder about any information change made by QM. If one
uses the von-Neumann negentropy to quantify information,
I = Trρ ln ρ, one obtains for the change of information
caused by the quantum measurement

�I = TrρPM ln ρPM − TrρI (λf ) ln ρI (λf ). (6)

However, in contrast to a Szilard engine, which uses the
information gain to control the engine, in the present setup
the information change is not further exploited. While the
negentropy stays constant during the subsequent stroke AP II,
it is reset to its initial value by the final thermalization stroke T.

Of vital importance in our setting, however, is the energy
change caused by the measurement. From the form (5) of the
post-measurement state, one obtains the expression p(m,n) =
Tm,np

eq
n (λi) for the joint probability p(m,n) of finding the

eigenstate with label n before and the one with label m after
the measurement. Here the transition probability Tm,n is given
by

Tm,n ≡
∑

α

|〈n; λf |Mα|m; λf 〉|2. (7)

Hence, the average energy change QM of the working
substance caused by the measurement becomes

QM =
∑

m,n

[Em(λf ) − En(λf )]Tm,np
eq
n (λi)

= 1

2

∑

m,n

[Em(λf )−En(λf )]Tm,n

[
peq

n (λi)−peq
m (λi)

]
� 0,

(8)

where the second equality is implied by the following
properties of the transition matrix [39]:

∑

m

Tn,m = 1, Tn,m = Tm,n. (9)

Here, the first property follows from the normalization of the
measurement operators Mα; the second one is a consequence
of the fact that the measurement operators are supposed to be
Hermitian. It is evident from the expression of the second line
in Eq. (8) that QM cannot become negative because Tn,m � 0,
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and the probabilities p
eq
n (λi) decrease with increasing energies

En(λf ). Therefore, the amount of heat transferred from the
measurement apparatus to the working substance is always
positive. In a way, it acts as the hot reservoir of a heat engine.
Using the expression (7) for the transition probability, one can
write the measurement heat QM as

QM =
∑

n

〈n; λf |HM (λf ) − H (λf )|n; λf 〉peq
n (λi), (10)

where HM (λf ) = ∑
α MαH (λf )Mα . For measurement opera-

tors Mα commuting with H (λf ), one finds HM (λf ) = H (λf ),
and consequently the energy supplied by the measurement is
only different from zero if the measurement operators Mα do
not commute with the Hamiltonian.

The second adiabatic stroke AP II reverts the first one in
changing the parameter from λf back to the initial value λi .
Analogously to the argument leading to Eq. (4), the work WII

done by the working substance is given by

WII =
∑

n

[En(λi) − En(λf )]pPM
n , (11)

where pPM
n denotes the probability of finding the nth eigenstate

in the post-measurement state (5). It is given by

pPM
n ≡ 〈n; λ|ρPM|n; λ〉 =

∑

m

peq
m (λi)Tm,n. (12)

The energy change of the working substance in the final
stroke T is caused by contact with a heat bath at temperature
T . Its average, therefore, is a heat, which we denote by QT . It
can be expressed as

QT =
∑

n

En(λi)
[
peq

n (λi) − pPM
n

]
� 0. (13)

Along the same lines of arguments leading to the positive sign
of QM , one finds that QT is negative and hence energy is
flowing from the working substance into the heat bath.

Finally, we determine the total average work W done by the
system as the sum of WI and WII, which are given by Eqs. (4)
and (11), respectively. This sum can be expressed as

W = 1

2

∑

n,m

(
�f

m,n − �i
m,n

)
Tm,n

[
peq

m (λi) − peq
n (λi)

]
, (14)

where �α
m,n denotes the level distance between the mth and the

nth energy eigenvalues of the Hamiltonian H (λα) for α = i,f

as given by

�α
m,n ≡ Em(λα) − En(λα), α = i,f. (15)

To determine the sign of the total work, we consider separately
pairs of indices n and m leading to different signs of �i

n,m.
If n and m are such that �i

m,n > 0, then the level distance
grows because of the compression in going from λi to λf ,
and hence �

f
m,n � �i

m,n. Because of the monotonic decrease
of the canonical probability p

eq
k (λi) with increasing energy

Ek(λi), the difference p
eq
m (λi) − p

eq
n (λi) is negative; taking into

account the positivity of the transition probabilities Tm,n, all
contributions to the right-hand side of Eq. (14) with �i

m,n > 0

are negative. Similarly, �i
m,n � 0 implies �

f
m,n � �i

m,n and
p

eq
m (λi) − p

eq
n (λi) � 0, also leading with Tm,n � 0 to a non-

positive contribution to the total work.

Summarizing, we note that within a cycle as sketched in (1),
part of the energy QM injected by a nonselective, minimally
disturbing measurement can be extracted as work W by means
of adiabatic processes. The remaining energy QT is dumped
as heat into a reservoir at the temperature T . The efficiency of
the engine is given by

η = −W

QM

= 1 −
∑

m,n �i
m,nTm,np

eq
n (λi)

∑
m,n �

f
m,nTm,np

eq
n (λi)

. (16)

Hence, for an adiabatic compression and expansion in the
strokes AP I and APII, respectively, the efficiency is positive
and less than 1, in agreement with the first and second
law of thermodynamics. In the particular case of uniform
compression described by �i

m,n = γ�
f
m,n, with γ being less

than 1 and independent of m and n, the efficiency depends
solely on the compression factor γ as

η = 1 − γ. (17)

We expect that such an engine will be characterized by smaller
but still positive efficiency if the parameter λ is varied at a finite
speed rather than adiabatically. A detailed discussion of this
issue will be presented elsewhere.

IV. EXAMPLES

We illustrate our findings by two specific examples.

A. Spin 1/2 as a working substance

In the first example, we choose a spin 1/2 in an external
magnetic field as the working substance, which hence is
governed by the Hamiltonian

H (B) = −μBBσz, (18)

where μB is the Bohr magneton, and σz is the z component
of the Pauli spin matrices. The magnetic field B, which is
supposed to point in the z direction, plays the role of the
external parameter λ changing in the AP I stroke from B0 > 0
to B1 > B0 and later in the AP II stroke back again to B0.
The energy eigenvalues of H (B) are E±(B) = ∓μBB in the
spin-up (+) and the spin-down (−) state, respectively. The
initial populations of these states are specified by the canon-
ical probabilities p

eq
± (B0) = e±βμBB0/Z, where the partition

function is given by Z = 2 cosh(βμBB0). The measurement
stroke QM is done as a projective measurement of the spin-
component σx . It is hence characterized by the measurement
operators M± = (1 ± σx)/2 yielding the transition probability
T±,± = 1/2 between all pairs of states as well as uniform post-
measurement probabilities pPM

± = 1/2. Due to the uniform
population of the energy eigenstates after the σx measurement,
the work done in the AP II stroke vanishes, and the total work
is given by that of AP I, which, with Eq. (4), yields

W = WI = μB(B0 − B1) tanh(βμBB0) < 0. (19)

The amount of heat supplied to the system in the measurement
stroke follows from Eq. (8) to read

QM = μBB1 tanh(βμBB0). (20)
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From Eq. (13), the heat dumped to the thermal reservoir results
as

QT = −μBB0 tanh(βμBB0). (21)

Finally, the efficiency is given by

η = 1 − B0

B1
. (22)

This result is in accordance with Eq. (17) because the ratio of
the initial and final magnetic field determines the compression
factor, i.e., γ = B0/B1.

B. Single particle as a working substance

In the second example, the working substance consists of
a particle of mass m moving in a one-dimensional confining
potential V (x̂,λ). Its Hamiltonian hence is given by

H (λ) = p̂2

2m
+ V (x̂; λ), (23)

where p̂ and x̂ are the momentum and the position operator,
respectively. The form of the potential V (x,λ) (with x being
an eigenvalue of x̂) can be controlled by the parameter λ.

We mention as particular cases a free particle in a box of
linear size λ, which is described by Vbox(x,λ) = 0 for x ∈
(0,λ) and Vbox(x,λ) = ∞ for x /∈ (0,λ), and a particle in a
harmonic potential Vh(x,λ) = λx2/2 with curvature λ. In both
cases, a change of λ from λi to λf as performed in AP I
corresponds to a uniform compression with the compression
factor γbox = (λf /λi)2 for the particle in a box and γh = λi/λf

for the harmonic potential, provided γ < 1.
For engines with single-particle working substances, we

specify the QM stroke as a Gaussian position measurement that
is characterized by the Hermitian measurement operator Mα =
(2πσ 2)−1/4e−(x̂−α)2/(4σ 2), where α is the measured position and
σ 2 is the variance of the measurement apparatus characterizing
its precision. Note that the measurement operators are properly
normalized according to

∫ ∞
−∞ dαM2

α = 1 and that in the limit
σ 2 → 0 a projective position measurement is approached.
Because α is a continuous variable, the summation in the
normalization of Mα becomes an integral. To determine the
energy input QM caused by the measurement, we consider
the difference HM (λf ) − H (λf ), which enters the expression
(10) for QM . Using the normalization of the measurement
operators, this difference can be written as HM (λf ) − H (λ) =∫

dα Mα[H (λf ),Mα], where [·,·] denotes the commutator.
Because Mα is a function of the position operator x̂ but not
of the momentum, only the kinetic part of the Hamiltonian
contributes. The resulting commutator can be evaluated for
the Gaussian Mα , and it is found, after some algebra,
to yield HM (λf ) − H (λf ) = h̄2/(8mσ 2)1. With Eq. (10),
we reach the expression for the energy delivered by the
measurement,

QM = h̄2

8mσ 2
. (24)

It is a remarkable fact that this result is independent of any
detail of the potential and also independent of the temperature
of the initial state of the working substance. The amount of
energy delivered by the measurement only depends on the

mass of the particle and the variance of the Gaussian position
measurement apparatus. It diverges in the limit of a projective
measurement. For a uniform compression, the total work W

results as

W = −(1 − γ )
h̄2

8mσ 2
, (25)

because then the efficiency is given by η = 1 − γ according
to Eq. (17).

V. CONCLUSIONS

We demonstrated that a nonselective, minimally disturbing
measurement of any observable that does not commute with the
Hamiltonian governing the dynamics of the system at the time
of the measurement increases the energy of a quantum system.
Because this energy gain is caused by contact with a measure-
ment apparatus, which itself is a quantum system, it can be
counted as heat. This is in accordance with earlier observations
for particular model systems that repeated measurements may
heat up the system to reach infinite temperature [40–43]. The
amount of energy QM delivered in a single measurement
depends on the so-called operation φ, characterizing the
post-measurement state ρPM = φM (ρ) = ∑

α MαρMα written
in terms of the normalized measurement operators Mα . It can
be expressed as the difference of the energy average in the
post-measurement state and the state ρ immediately before
the measurement yielding

QM = TrHφM (ρ) − TrHρ; (26)

see also Eq. (10). The positivity of the injected energy is a
consequence of the symmetry of the transition matrix imposed
by a minimally disturbing measurement and the decay of the
Boltzmann weights with increasing energy.

Here we analyzed a cyclic process that works similarly
to a heat engine, with the only difference being that the
hot heat bath is replaced by a measurement. For the work
strokes adiabatic compression and expansion processes are
considered. No feedback mechanism is implemented. We
found that the total work is negative, meaning that a part of
the heat delivered by the measurement can be extracted as
work. In general, the efficiency of such an engine as given
by Eq. (16) depends on the temperature of the heat bath and
the details of the eigenenergies in the initial expanded and
in the final compressed state. For a uniform compression, the
efficiency simplifies to a mere function of the compression
factor.

For the working substance, any quantum system can be
employed that can be compressed and expanded in terms of an
externally controllable parameter λ. As special examples, we
considered a spin 1/2 in an external magnetic field that works
as the controllable parameter and a particle in a deformable,
confining potential.

In the present paper, we considered only the averages of
work and heat. For a full understanding of the proposed
type of engines, the full statistics of heat and work caused
by the thermal fluctuations of the heat bath and by the
intrinsic quantum nature of the working substance will be
relevant.
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The use of a minimally disturbing measurement as an
energy input can be combined with traditional elements of
heat engines such as feedback-control [44,45], or it can be
used as a boost of a conventional nanoengine with two
or more temperature baths. This opens a wide variety of
future investigations and potential applications of quantum
measurements.
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