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We study systems in which both long-ranged van der Waals and critical Casimir interactions are present.
The latter arise as an effective force between bodies when immersed in a near-critical medium, say a nonpolar
one-component fluid or a binary liquid mixture. They are due to the fact that the presence of the bodies modifies
the order parameter profile of the medium between them as well as the spectrum of its allowed fluctuations.
We study the interplay between these forces, as well as the fotal force (TF) between a spherical colloid particle
and a thick planar slab and between two spherical colloid particles. We do that using general scaling arguments
and mean-field-type calculations utilizing the Derjaguin and the surface integration approaches. They both are
based on data of the forces between two parallel slabs separated at a distance L from each other, confining
the fluctuating fluid medium characterized by its temperature 7 and chemical potential w. The surfaces of the
colloid particles and the slab are coated by thin layers exerting strong preference to the liquid phase of the fluid,
or one of the components of the mixture, modeled by strong adsorbing local surface potentials, ensuring the
so-called (4,4) boundary conditions. On the other hand, the core region of the slab and the particles influence
the fluid by long-ranged competing dispersion potentials. We demonstrate that for a suitable set of colloids-fluid,
slab-fluid, and fluid-fluid coupling parameters, the competition between the effects due to the coatings and the
core regions of the objects involved result, when one changes T, , or L, in sign change of the Casimir force
(CF) and the TF acting between the colloid and the slab, as well as between the colloids. This can be used
for governing the behavior of objects, say colloidal particles, at small distances, say in colloid suspensions for
preventing flocculation. It can also provide a strategy for solving problems with handling, feeding, trapping, and
fixing of microparts in nanotechnology. Data for specific substances in support of the experimental feasibility of

the theoretically predicted behavior of the CF and TF have been also presented.
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I. INTRODUCTION

In a recent article [1], we have demonstrated that the
critical Casimir force (CCF) between two plates, placed at a
distance L from each other and immersed in a critical nonpolar
fluid governed by dispersion van der Waals forces (vdWF)
can change sign below a given threshold thickness of the
system L. when one changes the temperature 7', the chemical
potential of the fluid u, or L. Because of the high relevance
to, say, physics of colloids, as well as nanotechnology, it is
important to clarify if one can change the sign of the rozal force
between two objects when one changes a parameter that can
be externally controlled, like 7 and L, i.e., if one can govern
this force to be attractive or repulsive. This, of course, will be
of especial interest, if at least one of the objects involved in the
interaction is small in size. The simplest nonplanar geometrical
shape that one can study is then, of course, the spherical one.

In the current article, we study the interplay between
the CCF and the dispersion vdWF, as well as the resultant
total force Fi, between a sphere and a plate and between
two spheres—see Figs. 1(b) and 1(c). To be more specific,
we consider a spherical colloidal particle with mesoscopic
radius R, or two such particles with, in general, different
mesoscopic radii R; and R, immersed in a medium that is
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either simple fluid or a binary liquid mixture. We envisage
the case in which the particle is placed at a distance L of
closest surface-to-surface approach from a planar boundary
wall (plate), or the situation in which the surfaces of the
two spheres are at such a distance. The above-mentioned
fluid-mediated forces between two surfaces or large particles
are usually referred to as solvation forces [2—4] in colloid
science. Here we are going to consider the special case
when the temperature of the medium is close to the critical
temperature 7, of either the liquid-vapor critical point of the
simple fluid or the critical demixing point of a binary liquid
mixture. In this case, the solvation force acquires, as pointed
out by Fisher and de Gennes [5], a contribution due to the
critical fluctuation of the medium. This contribution is of a
long-ranged character. It is characterized, to a great extent,
by the gross features of the medium [6-8], depending also
on the boundary conditions that the bodies immersed in the
medium impose on it at their surfaces. This fluctuation-induced
force, which is due to the critical fluctuations of the order
parameter of the medium is, thus, universal in nature. It has
a lot of similarities with the force between neutral bodies due
to the quantum and temperature fluctuations of the charge
distributions in them, i.e., of the electromagnetic field, which
force is known today under the general name of a Casimir
force [9-11], or, more specifically, quantum electrodynamic
(QED) CF. That is why the fluctuation part of the solvation
force Fcqs near T, is termed critical Casimir force [6-8].
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FIG. 1. Schematic depiction of the considered fluid systems: (a) pair of parallel plates, (b) sphere of radius R above a plate, and (c) pair of
spherical particles with radii R, and R, (dissimilar in the most general case). In all three cases the interacting objects are assumed immersed
in some fluid medium M—a nonpolar one-component fluid or a binary mixture composed out of the molecules of some nonpolar liquids A
and B, which is close to its critical/demixing point. The minimal separation between the interacting objects in every of the described systems
is denoted by L. The substances composing the objects are denoted by S; and S,, coated by thin layers of some other substances IL; and LL,,
respectively. The fluid medium is considered embedded on a lattice in which some nodes are occupied by a particle and others are not (for
a simple one-component fluid)—thus depicting the “liquid” and “gas” states, respectively, at some values of the temperature 7 and chemical
potential x of the fluid, or some of the nodes are occupied by a molecule from the substance A (the “liquid” state) and the rest are occupied by
the molecules belonging to the species B (““‘gas” state). The surfaces of the interacting objects impose on the fluid medium boundary conditions
of strong adsorption, the so-called (+,4) boundary conditions, i.e., the nearest to the coating substances layers are entirely occupied by the
particles of the one-component fluid or if the medium is a binary liquid mixture—by the particles of one of its components. The bulk phase
(core) of the objects, on the other hand, influences the fluid by long-range competing dispersion potentials.

The force Fi, separates into a regular background contri-

bution ng ¢ which depends on the parameters characterizing
the medium in an analytic way, and a singular contribution

FS™ which is due to the critical fluctuations of the medium,

EO[ — F(reg) + F(Sing)' (1)

tot tot

Obviously, the excess [12] grand canonical potential
Qex(T, L, ...), or the excess free energy, of the system
depends on the geometrical characteristics, such as L, R, Ry,
and R,. Then one has

d
Fiot = _a_LQeX(L|T’Ma co) ()

One normally defines
Fou(LIT, 1) = FS"™(LIT, ). 3)

Within the systems considered, we suppose that the colloid
particles, the solid wall, and the medium are all governed by
dispersion van der Waals interactions. Thus, one shall have

Fuaw = Fl®(LIT, ). (4)

It shall be stressed that both the CCF and vdWF are
fluctuation-induced ones but due to the fluctuations of different
entities—the first is due to massless excitations of the order
parameter, while the second of the electromagnetic field. In the
current article, we are going to consider how the interplay of
these two types of interactions govern the behavior of colloidal
particles. Currently there is no general theory available to
scope with the problem of quantitative description of the mu-
tual influence of the fluctuation of the electromagnetic field and

the order parameter fluctuations of a medium when it is close
to its critical point. The Lifshitz theory [13,14], which is the
basic one for studying the Casimir effect due to the fluctuations
of the electromagnetic field, has never been meant to nor can
deal with the problem of a critical medium between two other
substances. For practical application of this theory, the main
quantity, which has to be known for any material involved, is
the dielectric permittivity &(w,T'). Under the normal approach
it is usually tabulated at room temperature for specific values
of the angular frequency w of the electromagnetic field. Then,
to perform the specific calculations needed one supposes the
analytic validity of a given dependence on w, say, the validity
of the Drude or plasma models for the considered material. It
shall be emphasized, however, that in a critical fluid ¢(w,T)
is itself a singular function of the temperature [15,16]. We
are not aware of a theory that quantitatively predicts how
&(w,T) depends on the temperature and w near the critical
point of the medium for a specific material characterized by
some characteristic spectrum.

Due to the hypothesis of universality and scaling when
studying critical phenomena one normally is interested only in
the gross features of the system and utilizes some effective
Hamiltonian where only few basic features of the critical
medium are reflected. Therefore, one observes that both basic
theories in the field approach the problem very differently—the
Lifshitz theory that is based on the detailed knowledge of
&(w,T), which is material specific, while the approach to
critical phenomena is based on universality, i.e., on few basic
features of the system.

In Refs. [1,17-19], an approach has been suggested for
such a situation in the case of a film geometry, based on the
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equation of state of the critical medium, which provides a
uniform treatment of the contributions due to the vdWF and
the CCF. The specifics of the materials are reflected by the
long-ranged tails of the potentials but, otherwise, the theory
uses the standard approach to criticality. It utilizes general
renormalization group arguments and makes use of field-
theoretical methods within, in its simplest realization, a mean-
field approximation. This relatively simple approach allows
all the calculations for the forces involved to be performed on
equal footing. Let us note that the expression derived within
the suggested [1,17-19] approach for the Hamaker term is
in full agreement with the Dzyaloshinskii-Lifshitz-Pitaevskii
theory [13,14]. Let us also remind that the mean-field theory
is considered as a reliable theoretical horse for the qualitative
description of critical phenomena.

The interest in the fluctuation-induced phenomena in recent
years blossomed due to their importance in the rapidly de-
veloping field of nanotechnology where, below a micrometer
distances, the vdWF and QED CF play a dominant role be-
tween neutral nonmagnetic objects. The last implies that these
forces play a key role in micro- and nanoelectromechanical
systems (MEMS/NEMS) [20-22] operating at such distances.
In vacuum, or gas medium, they lead to irreversible, usually
undesirable phenomena, such as stiction (i.e., irreversible
adhesion) or pull-in due to mechanical instabilities [23-25].
Closely related to that is another troubling effect: when a
particle’s characteristic size is scaled down below a micrometer
the role of its weight becomes negligible. As a result, when one
tries to release such a neutral particle from, say, the surface of
whatever handling device in air or vacuum, the particle will not
drop down under the gravity but, instead, will stick to the sur-
face due to the effect of the omnipresent vdWF. If, in an attempt
to release the particle, one charges the particle, forces vibration
of the surface in question, etc., the released particle might
move in an uncontrollable way leaving the observation field
of the apparatus controlling the performance of the operation.
That is the main reason why the handling, feeding, trapping,
and fixing of micro- and/or nanoparticles is still the main
bottleneck in micromanufacturing and is far from being solved
in a satisfactory fashion [26]. Thus, formalizing the above, one
of the main problems in the micro- and nanoassembly is the
precise and reliable manipulation of a micro- or nanoparticles
that includes moving it from a given starting point, where it is
to be taken from, to some end point, when it is to be placed on.
In that respect it seems ideal, if one can modify the net force
between the manipulated particle and the operating device,
sometimes called gripper, in such a way that it is repulsive at
short distances between the handling surfaces and the particle
and attractive at larger ones. It is clear that the ability to modify
the Casimir interaction can strongly influence the development
of MEMS/NEMS. Several theorems, however, seriously limit
the possible search of repulsive QED CF [27-29]. Currently,
apart from some suggestions for achieving QED Casimir re-
pulsion in systems out of equilibrium the only experimentally
well verified way to obtain such repulsive force is to have
interaction between two different materials characterized by
dielectric permittivities ¢, and &, such that [13,14,30]

g1 <&y < &2, 5
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along the imaginary frequency axis, with &, being the
dielectric permittivity of the medium between them. In
Refs. [31-36], QED Casimir repulsion has indeed been
observed experimentally for the sphere-plate geometry.
To minimize the potential negative effects of all possible
circuitry at such small distances and the complications with
the isolation, as well as possible problems involving chemical
reactions it seems that one promising strategy for overcoming
the obstacles mentioned above, is to choose such a fluid as a
medium that possesses no free changes dissolved in it and that
is inert and do not interact chemically with the materials. That
leads us to choose as a fluid a nonpolar liquefied noble gas that
has critical parameters as close as possible to the normal ones.

Due to both scientific and technological reasons, the
Casimir effect is currently the subject of intense studies.
The last is true both for the QED Casimir effect, as well
as in its thermodynamic manifestation via the CCF. Let us
stress that the CCF has already been measured [37], utilizing
light-scattering technique, in the interaction between a single
colloidal sphere and a flat silica surface immersed in a binary
mixture near its critical point. The theoretical background
of the obtained results is discussed in detail in Ref. [38].
In Ref. [39], using a system of three optically trapped [40]
spherical colloidal particles, immersed in a critical binary mix-
ture, the authors demonstrated experimentally the theoretically
predicted nonadditivity of the fluctuation-induced interactions.
Other experimental setups that exploit sphere-plate or sphere-
sphere configurations immersed in a critical fluid include the
interaction of spherical colloids with chemically patterned
substrates [41,42], which theoretical description is discussed in
Refs. [43,44], formation of critical colloid aggregates [45—47],
phase behavior studies [48-50], and various techniques for
fine-tuning of the CCF [51,52]. As far as the theoretical
side is concerned, it was de Gennes who first obtained the
CCF between spherical particles [53] considering a local free-
energy functional. Among the other techniques used to study
the CCF in sphere-plate and sphere-sphere geometries are the
Ornstein-Zernike theory [54], conformal invariance methods
[55-57], Monte Carlo calculations [58-67], fluid-particle
dynamics simulations [68,69], mean-field type [70-74], and
density-functional [75] theory calculations combined with the
Derjaguin approximation [44,76-78]. Several review articles
and works [8,79-82] summarize both the experimental and
theoretical results presented there.

In the current article, we will demonstrate that by proper
choice of the materials (cores) of the colloid particles and
the handling surface of a gripper it is indeed possible to
achieve control over the net interaction (TF) as well as the
CCF between the surface and the particle by simply changing
T, i, and L. We also present results for the forces between
two colloidal particles. Let us stress that due to its unique
temperature dependence, the CCF allows in situ control of
reversible assembly in soft matter and nanoscience. A further
advantage of the force is that both its magnitude and range
of action depends on the separation between the objects and
the thermodynamic parameters of the fluctuating medium. The
last facts can potentially be used in controlling the properties
of colloidal suspensions and for governing the behavior of
objects at small, below micrometer, distances.
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The content of the article is arranged as follows. In Sec. II,
we present some general predictions of the finite-size scaling
theory for the interaction between sphere and a plate and
between two spheres. In Sec. II B, we recall and comment
on the finite-size behavior of systems with dispersion forces
extending the known facts to the expected behavior of the CCF,
vdWF, and TF when they act between a pair of parallel plates,
sphere and a plate, and a couple of spherical particles. By doing
so, we introduce and compare the two general techniques,
namely the Derjaguin approximation (DA) (Sec. II C 1) and the
surface integration approach (SIA) (Sec. I1 C 2), within which
we study the commented spectrum of forces. Section III briefly
presents the corresponding lattice-gas model suitable for the
investigation of fluid media with account of the long-ranged
van der Waals interactions. Here we present the equation for the
equilibrium profile of the finite-size order parameter, identify
the main coupling parameters characterizing the interactions in
the systems, which enter in it, and give the general expressions
used to calculate the CCF and TF. Last but not least, in Sec. IV
we present the exact equations (Sec. IV A) used to obtain the
numerical results for the behavior of the investigated forces,
and comment on them in detail in Sec. IV B. Finally, we
provide arguments in support of the experimental feasibility
of the predicted effects in Sec. IV C. The article ends with a
summary and discussion in Sec. V. Important technical details
concerning the derivation of the expressions for the interaction
forces between spherical particles within the STA are presented
in the Appendix.

II. THEORETICAL BACKGROUND

A. Some general predictions of the finite-size scaling theory

Since the CCF depends on the properties of the solvent
near the bulk critical point, it is governed by universality and
scaling [6,7]. The last implies that, in first approximation, this
force depends only on the gross features of the system—its
dimensionality d and the symmetry of the ordered state (both
defining the so-called bulk universality class of the system)
and on the boundary conditions (determined by the sur-
face universality classes) imposed on the fluid by the bodies
immersed in it. Therefore, to a great extent the CCF is
universal. The quantitative effects of the presence of surfaces
of the bodies on the thermodynamic behavior of the system
depends on the penetration depth of their symmetry-breaking
effect into the volume. Obviously, the range to which these
effects are felt within the system depends on two phenomena:
on how long-ranged the interactions are and on how long-
ranged the fluid correlations, which mediate the interactions
between the bodies, are. The long-ranginess of the correlations
is set by the correlation length £ of the order parameter of the
solvent; & becomes large, and theoretically diverges, in the
vicinity of the bulk critical point (T.,u.): §(T — T.F,u =
He) = E(;Lt"’, where t =(T —T,)/T., and &(T = T.,u —
we) = Eoul A/ (kpT,)|™"/%, where Ap = p — .. Here v
and A are the usual critical exponents that, for classical fluids,
are those of the three-dimensional Ising model, and E(;L and
&, are the corresponding nonuniversal amplitudes of the
correlation length along the ¢ and @ axes. When & becomes
comparable to the characteristic dimension of the system, say
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the separation L between the objects, the size dependence of
the thermodynamic functions enters into the thermodynamic
potentials through the ratio L /& and takes a scaling form given
by the finite-size scaling theory [7,83,84]. Then

(i) for the Casimir force between a spherical colloidal
particle of radius R and a plate in the case of a system governed
only by short-ranged interactions, the theory [6,7,76,77,83—86]
predicts

BFEEILIT, w) = L' XE (B x0,x,), )
where

x, = t(L/EDY, x, = BARL/E )" (7)

are the temperature and field relevant in renormalization group
sense scaling variables, E = R/L and 8 = 1/(kpT). Note that
this prediction for the L~' dependence in front of the scaling
function of Eq. (6) shall be valid for any dimensionality, since it
simply takes into account that the dimension of a hypersphere
in a d-dimensional space is one dimension less than that of
the space itself. With respect to the scaling, Eq. (6) shall
be valid when the hyperscaling holds, i.e., for 2 <d < 4
in systems with short-ranged and subleading long-ranged
interactions, with the scaling function ng’l‘s being universal.
Within the mean-field theory, one formally sets there the
critical exponents pertinent to the d = 4 case but shall keep
in mind that a nonuniversal system-dependent prefactor is
expected to be present in the scaling function X g‘,’l‘s that shall be
taken into account. When d > 4, the hyperscaling is violated
and the scaling variables in Eq. (6) change. This question has
been discussed in Ref. [7], see Section 6.3, Ref. [87], etc. Here
we will not be going in any details in it.

(i1) for the interaction mediated by the critical fluid [76,77]
in the case of two spherical colloidal particles with radii R,
and R,, one has

BFER (LT, ) = L7 xR (81, B0 xx,), (8)

with §; = R;/L,i = 1,2.

In the remainder we are going to study F&S'(L|T, w) and
Féeals’ R(L|T, ) in a system governed not by short-ranged, but
by long-ranged dispersion interactions. That will require some
modifications of Eqgs. (6) and (8). Furthermore, we will obtain
FCRZ;S‘(L|T,M) and FCRalS'RZ(L|T,/,L) utilizing the Derjaguin [88]
and the recently introduced surface integration approach [89].
For this purpose we will need the corresponding results for
a system with a film geometry that is governed by the same
dispersion interactions as those occurring in the sphere-plate
and sphere-sphere systems. That is why we are next going to
concisely recall these topics. We start with the behavior of the
thermodynamic Casimir force in nonpolar fluid systems with
dispersion forces.

B. The thermodynamic Casimir force in nonpolar
fluid systems with dispersion forces

The specifics of the scaling theory for systems with
dispersion forces are described in detail in Refs. [1,17-19,90—
92]. That is why we will just briefly remind here some very
basic facts that will also serve us for introducing notations
needed further in the main text.
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We consider a fluid system consisting of a nonpolar medium
M comprising two thick parallel plates of materials S; and S,
which are coated by thin solid films of substances IL; and L,
respectively—see Fig. 1(a). If the fluid medium is in contact
with a particle reservoir with a chemical potential y, the grand
canonical potential Qcx(L|7, 1) per unitarea <7 of this medium
in excess to its bulk value o7 Lwyyk (T, ) depends on the film
thickness L and, thus, one can define the total effective force
Fioo(L|T, 1) [in a full accord with Eq. (2)], which is due to
fluctuations of the medium and dispersion interactions in it.
Here wpuk(T,1) is the density of the bulk grand canonical
potential, and <7 is the surface area of the plates.

We suppose that the dispersion forces governing all the
parts of the considered system depend on the distance r
between the constituents of the bodies in the system o —d-o
where d is the dimensionality of the space and o is a
parameter that controls the decay of the dispersion interactions.
The last implies interactions between the fluid particles
ocJ!r=4=° and substrate potentials ocJ%'z~7, i = 1,2 acting
on the fluid particles at a distance z from the surface of the
colloid particles. When o > 2, such long-range interactions
are termed subleading long-ranged interactions [1,17,90-92].
The systems governed by them do also belong to the Ising
universality class characterized by short-ranged forces [93],
i.e., the critical exponents, e.g., do not depend on o for
such type of interactions. For d = 3 and o = 3, one has the
usual van der Waals interactions, while d =3 and 0 =4
corresponds to the retarded Casimir-Polder one. These two
interactions are two prominent representative of the class of
subleading long-ranged interactions.

Clearly, by varying the ratio between the strengths of the
long-ranged, J ! and the short-ranged, Jslr, contributions in the
fluid interaction, one can quantitatively probe the importance
of the long-ranged parts of the interactions within the fluid
medium. One can also in this way study potential experiments
in colloidal systems that allow for a dedicated tailoring of the
form of the effective interactions between colloidal particles.

The contribution of the dispersion forces to the total
effective force Eq. (2) can be distinguished from that of the
CCF by their temperature dependence, because the leading
such as that of the former does not exhibit a singularity. Thus,
one can perform the decompositions and identifications given
in Egs. (1), (3), and (4).

If the system is away from its bulk critical point for the
occurring force ftll)t(L |T, ) per cross section area o7 and kg T
is customary to write the following expression:

AT, ) ~ (0 = DBHAT, L™ 97, (9)

where, for dimensional reasons, the microscopic length scale
¥ is introduced. Let us note that one normally considers the
case d = o and, thus, omits the apparent dependence of this
length, which can be taken to be, e.g., the so-called retardation
length [89,94] &.t. In Eq. (9), Hy4 is the Hamaker term, whose
dependence from the temperature and chemical potential is
given by the so-called Hamaker constant [95,96] (for details,
see the Appendix in Ref. [1]).

As already explained above, upon approaching the bulk
critical point of the system the fluctuations of the order param-
eter of the confined fluid medium exhibit strong correlations,
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which gives rise to new contribution to the TF and the CCF (see
below). In the vicinity of this point (critical region), Eq. (9) is
no longer valid. Following Ref. [1], Eq. (9) becomes

S(LIT o) =~ L7OX N [xx 0, {0 = 1,2),x]
+ (0 = DBHA(T, W)L ™97~ (10)

Here X, ﬂm is dimensionless, universal scaling function, x;,
X5, 1 = 1,2, and x, are the irrelevant in renormalization group
sense scaling variables associated with the interactions in the
system. Explicitly, these variables are defined in the text below
Eq. (2.6) in Ref. [1].

According to the scaling hypothesis of the CCF, one expects
that near the bulk critical point

LT, ) = LX) (%, ., (11)

where Xgas is a scaling function, that for large enough L
with fixed x; = (1) and x,, = (1) it approaches the scaling

function of the short-ranged system X Scra! (x;,x,,) (for details see

Egs. (2.12) and (4.10) in Ref. [1]). From Egs. (1), (3), and (4),
together with Eq. (10), it follows that the scaling function of the
CCF X gas is proportional to the sum of X !m and the singular

part of the Hamaker term H/(:mg)(T,,u). The last implies that
to determine the CF in systems with dispersion interaction,
one has to decompose the contribution captured through the
Hamaker term in a singular and a regular parts, i.e.,

Ha(T, ) = H{®(T, ) + HS"(T, ). (12)
Thus, with d = o, one has
L= LX)+ @ — DBHS™)], (13)

while Eq. (4), normalized per unit area, in the general case
coincides with Eq. (9), where Hy = H/(;eg).

We will often compare the behavior of the system with
subleading long-ranged dispersion interactions present with
this one of a system with purely short-ranged interactions,
which will serve as a reference system. In such a purely short-
range system one has H, = 0. Then, at the bulk critical point
(T =T,, n = u.), the leading term of the CCF f L,Cas per unit
area between the plates bounding the fluid has the form

kgT,
Fh colLITend) = (d = DA (14)

where X231 (0) = (d — 1)A(d). Here A(d) = (1) is an uni-
versal dimensionless quantity, called Casimir amplitude,
which depends on the bulk and surface universality classes
(and the geometry). Since the CCF is proportional to kg T, the
interaction between the plates can become rather strong in a
system with high critical temperature such as, e.g., in classical
binary liquid mixtures. Note that the sign of the force depends
on the sign of the Casimir amplitude A(d), which, on its turn,
depends on the boundary conditions imposed by the bounding
surfaces on the fluid. According to the usual convention
negative sign corresponds to attraction, while positive sign
means repulsion of the surfaces bounding the system.

In what follows, we are going to present results for the CCF,
vdWEF, and TF in the cases of sphere-sphere and sphere-plate
systems, utilizing the knowledge gained from studies of the
corresponding interactions between parallel plates.
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C. Sphere-plate and sphere-sphere geometries
1. The studied forces within the DA

When it comes to calculating some geometry-dependent
interaction energy or force in systems where at least one
of the objects has a nonplanar geometry, the most common
approach used is the one first proposed by B. Derjaguin [88].
It is known as Derjaguin approximation in colloidal science
(see, e.g., Ref. [77] and p. 34 in Ref. [97]), and proximity force
approximation in studies of QED Casimir effect (see, e.g., p. 97
in Ref. [98]). The main idea behind the DA is that one can relate
the knowledge for the interaction force and potential between
two parallel plates with the one between two gently curved
colloidal particles, when the separation between them is much
smaller than the geometrical characteristics of the particles in
question. More specifically, the DA states that in d = 3 the in-
teraction force F®1-®2(L) between two spherical particles with
radii R; and R, placed at a distance L < Ry, R is given by

For ™ (L) = 27TReff/ 11 (2ydz, (15)
L

where R/ = R + R; ' is an effective radius, and f lef is the
force per unit area between parallel plates. When the sphere
with radius R; = R interacts with a plate, one has R, = 0o
and then Eq. (15) is still valid with R.ir = R.

Now, if one takes the integrand in Eq. (15) in the form given
by Eq. (9) [see also the text below Eq. (13)], with d = 3, and
performs the integration there, the result is

o0 (reg) 903
f Fraw(@dz = ———. (16)
L Lo—1
Here we recall that the Hamaker term H, depends both on
the dimensionality d of the system and the decay parameter o
characterizing the strength of the van der Waals interactions
[see Egs. (44) and (45) below]. As far as the CCF is concerned,
the DA for d = 3, after substituting the force per unit area in
the form Eq. (11), the integration of Eq. (15) delivers

/ fl@dz = /
L L

= XCas.DA(xux/u . ‘)7 (17)

where, due to the rapid decay of the interaction, the upper limit
of integration has been set to infinity. Of course, this can be
justified only if L is much smaller than the characteristic sizes
of the interacting objects involved.

z_3Xgas[x,(z),x,L(z), ...]dz

2. The studied forces within the SIA

An improvement and generalization of the DA, called
“surface integration approach,” has been proposed in Ref. [89].
It has been used there to study van der Waals interactions
between objects of arbitrary shape and a plate of arbitrary
thickness. It delivers exact results if the interactions involved
can be described by pair potentials. The main advantage of
this approach over the DA is that one is no longer bound
by the restriction that the interacting objects must be much
closer to each other than their characteristic sizes. The main
result is that for the force acting between a 3D object (say a
colloid particle) B = {(x,y,z),(x,y,z) € B} of general shape
S(x,y) = z and a flat surface bounded by the (x,y) plane of a
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Cartesian coordinate system, one has

Faa(L) = f [ FY8G ydxdy

- [, [ shiseopdxay.as)
AT

where Ajg is the projection of the surface S of the particle over
the (x,y) plane, As = AP |J AS"™. Equation (18) has a very
simple intuitive meaning: to determine the force acting on the
particle, one has to subtract from the contributions stemming
from surface regions AY that “face toward” the projection
plane those from regions Aiway that “face away” from it, where
A and AS™ are the projections of the corresponding parts of
the surface of the body on the (x, y) plane. It is clear that if one
takes into account only the contributions over A‘S", then one
obtains an expression very similar to the DA. Both expressions
in that case will differ only by the fact that while Eq. (18) takes
into account that the force on a given point of the S is along
the normal to the surface at that point, the standard DA does
not take this into account. Let us recall that Eq. (18) provides
exact results for the interaction under the assumption that the
constituents of the body interact via pair potentials. This is, of
course, not the case of CCF. It is, however, clear that under me-
chanical equilibrium of the colloid in the fluid, the CCF is again
along the normal to the surface at the point of the surface where
it acts. Thus, one can get a reasonably good approximation to
the effect of that force by keeping just the integration over part
of the surface of the body that faces the plane. This leads to

pritanw = [ [ liseoaxdy.  a9)
AY
In the simplest case of interaction between a spherical particle

and a thick plate [see Fig. 2(a)], induced by point-like sources,
Eq. (18) takes the form

L+2R _L
Fol(L)y=27R / [l—z = ]fﬂmmz. (20)

L

The term [- - -] in the integrand of Eq. (20) reflects how the
projection to the normal to the surface of the sphere changes
as a function of z. Substituting Eq. (9) [see also the text
below Eq. (13)] in the above expression for the van der Waals
sphere-plate interaction, we can write

R
FVdW,SIA(L)

_2nH{®9 3 [R(o —2)— L
o o—2 Lo—1

L+ Ro
(L +2R) !

] Q1)

The corresponding expression for the CCF arising between a
sphere and a plate, following Eq. (19), can then be written as

R,
BFGL sia(L)

L+R z—L
=27 R 11—
. R

L+R1 Z—L
L Z R

]. 1 )z

:|X(|'Ijas[-xt(Z)v-x;/,(Z), . ]dZ

(22)
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FIG. 2. Geometry of the surface integration approach for the interaction between (a) a spherical particle of radius R with a planar substrate
(plate) as well as between (b) pair of spherical particles of radii R; and R, (dissimilar in the most general case). On both figures the minimal
distance at which the objects are situated is denoted by L. In (a) we consider the plate infinite in —z direction. Here n, is the unit vector, normal
to the sphere’s surface, with e, being its z component, taken with a minus sign in the lower half of the sphere, which faces toward the plate.
The red (full line) circle situated at a distance z from the plate indicates the border of the cross section formed from the intersection between
the sphere and a plane parallel to the (x,y) plane. Then the infinitesimal projection area d.S results from the cross section area difference at
separations z and z + dz. In (b) the cross section of the sphere with radius R, with a plane parallel to the (x,y) plane is situated at a distance
2, from the surface of the second sphere, as the cross sections in both spheres are spaced apart z; from one another. The infinitesimal areas dS;
results from the cross section area difference at separations z; and z; + dz;, withi = 1,2.

When one is interested in the interaction between two or
more objects with nonplanar geometry, a general expression
like Eq. (18) is, as far as we are aware of, not known. An
attempt in this direction was reported in Ref. [101], but the
equation offered there leads to energy of interaction between
two spheres, which differs from the classical one reported by
Hamaker (see Fig. 3 in Ref. [101]). In the current article, we
will show that in the special case of pair of spherical particles
[see Fig. 2(b)] with radii R, and R;, one can write the force in
the form (for details see the Appendix)

L+2R,
F™(L) = —R, / L) + £z + 2RDIC (z2)d 22
L

L+2R, 22+2R,;
[ e [ hendada, @)
L 22
where the function ¢(z;) is

_d | 7[R —(L+ R — )]
;(ZZ)—d—L: (L+ R +Ry) ’ 9

From Eq. (23) with ¢ = 3 and o = 4, one obtains
(1) wheno =3

FifaL13)

B 128H ¥R} R} (L4 Ry + Ry)
" L2(L 4+ 2R)*(L +2R2)? (L + 2R, +2R»)?’

(25)

This result can be easily verified by simple differentiation with
respect to the separation distance, of the potential obtained in
Ref. [102].

(2) wheno =4
FR.E (L|4) = Hy™® 2R Pu(L)
VAW, SIA T (L4 R+ Ry)? | L3(L + 2R}
2R Pa(L)

" (L4 2R L + 2R, +2R,)?
o [(L + 2R))(L + 2R2)i| } 6)

L(L +2R; +2R,)

where the two polynomials which enter the above expression
are

Pi(L) = L+ 5L*R; + 10L*R? + 2L*RI(SR; — 4R»)

+4LR} (R} —4R\R, — 2R}) — 8R{Ry(R| + R»),
(27a)

and

Po(L) = L> + 5L*(R, 4+ 2R,) + 10L3 (R, + 2R»)?
+2L*(5R} + 34R}R, + 60R| R3 + 40R;)
+4L(R} + 14R{ R, + 36 R{ R> + 40R R; + 20R5)

+ 16Ry(R; + Ro)(R) + 2Ry) (R} + R R, + R3).
(27b)

For the CCF between spherical objects after the substitution
of Eq. (11) in Eq. (23) and properly taking the limits of
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integration leads to

BFCssia(L)
L+R, (Z )
= _Rl/ sz X&S[xf(Zz),xu(Zz),--.]de
L 2

L+R, 22+R; 1 I
+/ C(Zz)/ =5 Xulxi(z1),x,(21), - . Jdz1d 2.
L &) Zl
(28)

Since both DA and SIA utilize the knowledge of the
behavior of the force per unit area arising between a pair
of parallel plates, in the following section we present the
corresponding model within which we describe such a system.
Because the included expressions have already been presented
in detail in Ref. [1], here only key results, as well some
notations, are going to be given, which will be needed in the
remainder of the article.

III. THE MODEL

As explained in Ref. [1], we consider a lattice-gas model
of a fluid confined between two planar plates, separated at a
distance L from each other, with grand canonical potential
Q[p(r)] given by

QUp(r)]
=ksT »_{p(®)In[p(®)] + [1 — p(®)]In[1 — p(r)]}
reM
1 1 / /
+5 ZM pw! (r — r)p(r)
+ Y VO ) — ulp), (29)
reM

where M is a simple cubic lattice in the region occupied
by the fluid medium—oo?~! x [0,L] and V¢15)(z) is an
external potential that reflects the interactions between the
confining plates and the constituents of the fluid. In Eq. (29),
w!(r —r') = —4J'(r —r') is the nonlocal coupling (inter-
action potential) between the constituents of the confined
medium and y is the chemical potential. All length scales here
and in the remainder are taken in units of the lattice constant
ay, so that the particle number density p(r) becomes a number
that varies in the range [0, 1]. We recall that in the framework
of a mean-field treatment with respect to the critical behavior
the effective spatial dimension is d = 4, irrespective of the
actual dimension of the model under consideration.
In Eq. (29),

() VOIs(z)y = —pg J38(2) — pg, JE2IS(L — 2)

S|

+u,E+ D7 +v,(L+1-277, (30)
where v, = —G(d,0)p;, J5*!, i = 1,2, with

F(H-_U
G(d,0) = 4n<d-1>/2—2+0), (31
2

UF(—

QU
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and &(x) is the discrete § function;

Jo(r| -1

.. ! _ gl _
(i) J'(r) = Jg{8(|r[) + 8(|r[ — 1)} + e

(32)
is a proper lattice version of —w'(r)/4 as the interaction energy
between the fluid particles, and

J5o(r) — 1)

Gif) )= I3 80| = D+ =5

, 1=1,2

(33)

is the one between a fluid particle and a substrate particle,
and O(x) is the Heaviside step function with the convention
0(0) = 0.

Taking into account the translational symmetry of the
system along the bounding surfaces, the variation with respect
to p(r) leads to an equation of state for the equilibrium
density p*(r) = [1 + ¢*(1)]/2, where $(r) = p(r}.2) = $(2),
with r = {r|,z} is the local order parameter profile {¢(z), 0 <
z < L}. In terms of ¢(z), the equation of state can be written
in the following form:

arctanh[¢*(z)]

= g[AM —AV(@)]+ K{ a0 (M)g*(z)

+ ', (W[P*(z+ 1)+ ¢*(z — 1]

L
+2 ng,a(lz — DOz — 2| - 1)¢*(z/)}, (34)

/=0

where Ap=pu—p., K=pJ., a;,(0)=0Qd—-1)+
Mcao —d), and ay" (&) = 1.0 + A(cy", —0.5), with ¢}, =
8a.0(1) + gi" (£1). The functions ¢4, g4.0(|z—2'|) and
gi(lz — z’|) are determined in Egs. (C10), (C11), and (C12)
of Ref. [17], respectively.

The excess grand canonical potential per unit area, wex =

limg/, oo[R2/97] — Lwpyk, has the form

L1 . 1
Bwex = go {Eh‘“ —¢"@"1— 5 In[1-¢]
1, 1+¢%(x)] 1 1+ ¢
+ Z¢ (z)In [—1 — ¢*(Z)} - Z¢bln|:1 _¢b]
A
+ gAV(Z)(ﬁ*(Z) - IBTM[‘P*(Z) - ¢b]} + IBwrega

(35)

where
K 1 —o+1 90—d
Bo — Doy = | 2-(s1.c+520) = G0V KA L9770,

(36)

Here ¢, is the bulk value of the order parameter (see Eq. (4.2)
in Ref. [1]), K. = B.J. and s;., i = 1,2 are the values of
the plates-fluid coupling parameters evaluated at the bulk
critical point of the system {8 =p8.=1[), JIm1 =
He==2>" J!(r), with the sum running over the whole
lattice}.
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The effective surface potential BAV (z)/2 in Eqs. (34) and
(35) is given by

B S 52
_A —
AV =t

where 1 <z< L —1and
si = 1BG(d.,0)(ps, I = pJ'), =12 (38)

(37

are the (T- and p-independent) dimensionless plates-fluid
coupling parameters ocx,,. In Eq. (37), the restriction z > 1
holds because we consider the layers closest to the substrate
to be completely occupied by the liquid phase of the fluid,
ie., ¢(0) =¢(L) =1, thus ensuring the (4,+) boundary
conditions. Physically this can be accomplished by choosing
a proper coating of the surfaces of the plates. The coupling
parameter A < x; probes the importance of the long-ranged
parts of the interaction potential within the fluid medium,

r=JJL (39)

In Eq. (38), s; > 0, i.e., pj Jsil > ,oCJl corresponds to plates
“preferring” the liquid phase of the fluid, while s; < 0, or
ps, J5*t < p.J! mirrors the one with affinity to its gas phase.
If the interactions between the constituents of the fluid are
of Lennard-Jones type one has A =2, as commented in
Refs. [1,17]. The marginal case s; = 0 together with A =0
describes a pure short-range system (for details refer to
Egs. (4.10) and the text therein in Ref. [1]).

Equations (29)—(39) provide the basis of the properties of
the model that will be used to determine the sphere-plane and
sphere-sphere interactions in the remainder.

Using Eqgs. (35) and (2) for the fotal force ftlcl)t(L|T, ) (per
unit area .7 and kz T') acting between parallel plates bounding
the fluid medium the following expression can be written

flLIT ) = _g[wex(L + 1T, 1) — wex(L — 1|T, )}

4K 51,052,5

G(d,0)K2x
where the last term represents the direct interaction between
the plates (for details see the Appendix in Ref. [1]). On the

other hand, if one subtracts from the potential wey its regular
part wre, i.€., if we consider the quantity

Aw = g}lm [(2 - Qreg)/JZ{] — Lwpyi, (41)

Lo9o4, (40)

then, in accord with Eqgs. (1)—(3), the L dependence of Aw
via Eq. (2) provides the singular part of the total force, i.e.,
L (L|T, ). Explicitly, one has
B
L (LT, ) = —FlA0L + 1T, — Ao(L = 1T, W],
(42)
Thus, near T, the TF and the CCF are related via the expression
FALIT ) = fLLIT. ) + (0 — DBHSF L7974,
43)

where the last term is the mathematical equivalent of Eq. (4)

per unit area 7 and kT for a film geometry with H'®
being the nonsingular (regular) part of the Hamaker term

PHYSICAL REVIEW E 96, 022107 (2017)

given by

4K 5| cS2.c

_DHBH"™® — _
(o= DAH, G(d,o)K2h

K lGd KA 44
+|:E(S1,c+szﬁc)—z (d,o) :|‘( )

For the singular part of H4 within the presented model the
following expression was derived (see Eq. (A6) in Ref. [1])

_ (sing) _ K 1 2
(c—DBH, = (T,n) = X (S1,c + 52,0)Pp 4G(d,0)K)»¢>b,
(45)

where the T and p dependence is carried by the bulk order
parameter ¢, (see Eq. (4.2) in Ref. [1]).

In the next section, based on the results reported in Secs. II B
and III, we present numerical results for the behavior of
the above discussed forces in sphere-plate and sphere-sphere
fluid systems for the cases d = o = 3. In Sec. IVC, we
also show that the values of the parameters used in the
numerical evaluations can be experimentally achieved for
specific materials.

IV. RESULTS AND THEIR EXPERIMENTAL FEASIBILITY

In the current section, using the results ford = ¢ = 4 from
the mean-field-type numerical study discussed in Secs. II B and
III, we will present some approximate results for the behavior
of the CCF, vdWF, and TF between two spherical particles
as well as between a spherical particle and a plate in d = 3,
using both the DA and SIA approximations. As it became
clear from the above shown equations, the key knowledge that
is required for the desired calculations to be performed, is the
force [scaling function(s)] per unit area between two parallel
semi-infinite spaces (plates), for many different separations
L, and at various values of T and p of the fluctuating fluid
medium.

Within the mean-field theory the 7 and © dependence of
the corresponding forces near the bulk critical point (T =
T.,Ap = 0) is given by Eq. (7), with v =1/2 and A = 3/2.
In our numerical treatment we take these variables to range in
the intervals: x, € [—247;24°] and x,, € [—24%;24%]. For the
study of the scaling function of the CCF within the DA, the
separation L between the set of parallel plates is varied from
20 to 100 with step 10 and from 100 to 1000 with step 100.
In addition, within the STIA approximation, L was varied from
20 to 60 with a step of 2, from 60 to 100 with a step of 5,
and from 100 to 200 with a step of 10. To demonstrate the
general tendencies in the behavior of the scaling functions, we
consider one of the plates-fluid coupling parameters fixed (say,
s1,c), having a value either 1.0 or —1.0, while the other one,
$2.¢, 18 varied from 1.0 to —1.0 with step —0.2. The fluid-fluid
coupling parameter A is supposed to be either 1.0 or 2.0.

A. Calculation of the forces in sphere-plate and sphere-sphere
systems within the DA and SIA ind =3

From Egs. (15) and (16), considering only genuine van der
Waals interactions (d = o) in d = 3, one has that within the
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DA the forces are calculated via the following expression:

[l

Fiipa(L) = : (46)

Eeff

(reg)
amH™
L

where in the case of sphere-plate interaction (a =
R,b=|)E=R/Land E.r = (B Ey)/(E + By), with &; =
R;/L, i = 1,2 when the interaction is between spheres (a =
Ry, b = R,). Analogically for the CCF using Eqgs. (15) and
(17), one can write

]

IBng;}s),DA(L) = , 47)

Eef

27 X as, DA
N
L

where the scaling function X, pa is calculated as follows

Ay
Xcaspa = / 773X, (a1 (2)]ldz
1

jmax -1 A

+ ) / C23x) [ (2)dz

i=j+1Y 0

oo

+ / X [Omax (D12, (48)
where Aj =L;/L, j=1,jnx; Z=2z/L is dimensionless
variable; Ly, = L, 18 the largest system for which nu-
merical data are available and the arguments of the scaling
function are given by [a;(Z)] e [x: (L), xu (L)), .. .], with
L;,; = ZL;.Inthe calculations performed in the current article,
L max = 1000. In order that the scaling function X, !m calculated
within the mean-field theory contributes properly to the critical
Casimir and hence to the total force of interactionind < 4, one
must normalize it accordingly. The need of such normalization
is explained in detail in Ref. [17] (see there Secs. IVA 1 and
IV A 3). For boundary conditions t, one has

X0 = — 2A0E=3) [EJ (0)]4
T XOME G — Ap = 0)LE )

where Xéﬁi)t:ls\/rIF is the value of the scaling function for a

system within mean-field treatment governed by short-range
interactions at its corresponding bulk critical point, and
Xgi)[’MF(J is the scaling function of the CCEF, calculated for
d=o=4,with A #0, 51, #0, 55 # 0. Here A =3)
is the Casimir amplitude for the d = 3 Ising universality
class with boundary conditions t, while 50+ (0) and E&’ (A) are
the amplitudes of the bulk correlation length in mean-field
systems with, correspondingly, short-ranged (L =0) and
long-ranged (A # 0) fluid-fluid interactions, as EJ ) = v

J

x&GMG), 49)

jmax*l

Ay
X868 = fl IF R @G ADX [ G)ldz + )
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(see Egs. (4.15) and (4.17) in Ref. [17]). Therefore, for
A =0, 1, and 2, one has v, = 1/9, 0.1640, and 0.1998, and
hence, é(;’ = 1/3, 0.4050, and 0.4470, respectively. Taking
into account that the value of the Casimir amplitude for the
d = 3 Ising universality class with (4-,4-) boundary conditions
[103] is

AT = _0.410(8), (50)
and that X(r)’MF(t = Apu = 0) = —1.7315, for the normaliz-

Cas,sr

ing coefficients, one obtains 0.217 for A = 1 and 0.147 when
A=2.

Within the SIA the corresponding genuine vdWF in a
sphere-plate and sphere-sphere systems is estimated with the
use of Egs. (21) with o = 3,

8 H ™ 53

R
Flaw sia(L) = Ia 1287

(SD

and Eq. (29), respectively.
For the CCF in the sphere-plate case, using Eq. (22), one
has

21
R,| =y R
BFcyssia(L) = T EXas s1A (52)

where the scaling function Xg‘;L.SI  for the sphere-plate CCF
is calculated as follows:

Ay
X(I:eéls,mA 2/1 IR GEIADX [ (D)1dZ

jmax_l A,‘
+ Y [ M@ teou:
i—1

i=j+1 YA

1+8
+ f I Ama) X s laman (D1AZ,  (53)
A

max
where

z—1

I*@EA ) = i[l -

PE i|9(E —Aj), (54)

with 6 being the Heaviside step function with the convention
0(0) = 0.

In the case of sphere-sphere geometry the expression for
calculating the CCF within the SIA, using Eq. (28), is

R\, Ry

Cas,SIA
= 55
2 (55)

BFLSA(L) =

where

A;
]lR"R2(22|Ai)ijas[ai (z2)1dz,

i=j+17 i

1+ 8> R R I 1+8; Aj/z2 R R I
+ / IRR (23] A ) XL [aman 2172 + / / 1RR(z 2 A XD a,(3)dz
Amax 1 1

jmax_l A‘-/Z2
+ ) / 1@ 2l )X [Pz + /
A

i:j+1 i—l/zz

1+(81/72) R R Il
121., Z(Z,Zz|Amax)XCas[amaX(Z)]dZ dza, (56)
Amax/Z2
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FIG. 3. Behavior of the scaling function X pa Within the DA in a d = 3 dimensional sphere-plate/sphere-sphere fluid system [99]. In all
four subfigures, the parameters characterizing the interactions in the systems have values s; . = 1.0 and A = 1.0, with s, . = 0.0 in (a) and (b),
while in (c) and (d) one has s, . = 1.0 [100]. We observe that for s, . = 0.0 all scaling functions of systems with L > 20 are indistinguishable
from the one for the short-range system [see (a) and (b)]. When s, . = 1.0, the scaling functions do trace separate curves for different separations
L and with increase of L they approach the one for a purely short-ranged system. All shown scaling functions correspond to attractive force.

with Z = 71/Z2,

—~ ¢(22)

1% (2] A ) = -8 23 (82— A)), ©73)
2
L ¢z,
IZRI’RZ(Z,Z2|AJ') = —22;3 G(Dl—AJ‘)a (57b)
2

73428122 -2(1 + E2)(B1 + Ep) — 1]
A+Ei+ &8y

{(22) =

’

(57¢)

and the arguments of the scaling function defined via
[aj(zk)] £ [xt(sz;j)’xp,(sz;j)a .. ~]7 k= 1’2; J = 1vjmax-

After presenting the mathematical means to calculate the
CCF and vdWF, we now pass to the detailed discussion of
the results and argumentation of the experimental feasibility
of the parameters used in the model calculations utilizing DA
and SIA.

B. Discussion of the results

We start with the simplest case of systems (any of the
depicted in Fig. 1) governed by purely short-range interactions;
ie., s;c = A =0, i = 1,2. In this case, it is clear the CCF is

simply ocX, .. It results only from the correlated fluctuations
and the size-dependent spatial order parameter ¢(r). Following
Egs. (10), (44), and (45), we see that X . coincides with
ot Irrespective of the geometry of the interacting objects
X ¢, 18 negative, which corresponds to attractive force, at any
separation L and for any value of the scaling variables x;
and x, under (+,+) boundary conditions. For sphere-plate
and sphere-sphere systems, the study of X within the DA
showed that when L > 50 the curves fall on that obtained
via Eq. (48), using: (i) the exact analytical results based on
Egs. (4.10) reported in Ref. [1] when u = p.; (ii) the data
for the plate-plate interaction calculated within the presented
mean-field theory for T = T,. Note that the scaling function
of the CCF (and X, respectively), as well as the vdWF, is
one and the same for sphere-plate and sphere-sphere systems,
irrespective of the interaction type which takes place between
the constituents of a considered system, when the behavior
is studied within the DA [see Egs. (46)—(48)]. As it is clear
from these equations, the corresponding forces differ only by a
multiplication factor that depends on some basic geometrical
characteristics of the interacting objects.
Staying within the DA, we study the behavior of Xt pa
for a system with long-range interactions characterized by
s1,=1.0, 52, =0.0, and A = 1.0. We see that practically
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FIG. 4. Behavior of the scaling function X pa within the DA in a d = 3-dimensional sphere-plate/sphere-sphere fluid system [99]. In all
four subfigures the parameters characterizing the interactions in the systems have values s; . = 1.0 and A = 1.0, with s, . = —0.2 in (a) and
(b), while in (c) and (d) one has s, ., = —1.0 [100]. Due to the low absolute value of s, . with comparison to s; . in (a) and (b) the scaling
functions are not well dispersed and as it can be seen for L > 50 they practically coincide with that for pure short-range system [compare
with Figs. 3(a) and 3(b)]. When s, . = —1.0 the scaling functions do trace separate curves for different film thicknesses L. With increase of
L they slowly approach the one for a purely short-ranged system. For Ay = 0.0 [see (c)] one notices that for L < 100 the scaling functions
correspond to repulsive forces. For L = 200 the force changes sign twice. When L is further increased the force becomes entirely attractive
for L > 400. At T = T, [see (d)] some of the scaling functions change sign twice in the “gas” phase of the fluid medium (those for L < 100),
except the scaling function for L = 20, which corresponds to entirely repulsive force. Upon increasing the separation the change occurs only

once, and is not observed for L > 400.

all curves except that for L = 20 coincide with X p, as
depicted in Figs. 3(a) and 3(b). Upon increasing s, . the
curves disperse and all appear below X1, p4.Fors; . = 1.0, all
scaling functions are clearly distinguishaible from one another
[see Figs. 3(c) and 3(d)]. This is easy to understand, given
that the nonnegative values of the coupling parameters s
and A are associated with an additional enhancement of the
ordering in the system, both near the surfaces of the interacting
bodies and in the bulk of the system. Considering Eq. (2.12)
in Ref. [1], we see that at small distances the nonuniversal
behavior dominates and adds to the universal one (described
by X)) with a positive sign, resulting in net scaling functions
with minima deeper than that of a short-range system. As
expected, when the distance is increased, the influence of the
long-range interactions decreases in the bulk of the system,
and as a result all scaling functions tend to the universal one.

In this line of thinking for systems characterized by s; . >0
and —s; . < 52 <0, we expect Xqipa tOo remain again
negative for any separation L, x;, and x,, irrespective of the
value of A (which is always nonnegative). Indeed, this turns

out to be true and is depicted in Figs. 4(a) and 4(b). However,
when s, . ~ —s; . and the separation between the walls is
relatively small, a significant part of the system is disordered,
which results in nonnegative or sign-changing scaling function
[see Figs. 4(c) and 4(d)]. As the distance L is increased the
influence of AV (z) [see Eq. (37)] quickly decreases and only
the additional ordering effect of the fluid-fluid interactions
influences the behavior of the order parameter and hence of
X crit,DA -

When both wall-fluid coupling parameters are negative,
Xerit,pa 18 negative for any x, and x, only for very large
separations L where the effect of the long-ranged interactions
on the behavior of the system is negligible. Naturally, since
the short-ranged surface potentials do support (+,4) boundary
conditions, the role of the negative substrate potentials, which
oppose the order near the boundary, will be stronger than that
of the positive substrate potentials, which try to reinforce the
phase preferred near the boundary. For example, we observe
that the behavior of X pa in a system with s; . = 1.0, 52 =
—1.0, A=1.0 and in such with s;, = —1.0, s, =-0.2,
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FIG. 5. Behavior of the scaling function X pa Within the DA in a d = 3-dimensional sphere-plate/sphere-sphere fluid system [99]. In
all four subfigures the parameters characterizing the interactions in the systems have values s; . = —1.0 and A = 1.0, with s, . = —0.2 in (a)
and (b), while in (c) and (d) one has s, . = —1.0 [100]. Although the temperature-dependent scaling functions at x, = 0.0 resembles these
shown in Fig. 4(c), the changed sign of s; . here “pushes down” the curves toward the one for L = 400. This results in fewer systems in which
repulsion can occur. In contrast, the behavior of the field-dependent scaling functions depicted on (b) is qualitatively and nearly quantitatively
identical to these shown on Fig. 4(d). For s, . = —1.0 at A = 0.0 [see (c)] one observes that for L = 20 (—e—) the scaling function changes
sign twice, having two minima and a maximum. When the separation L is increased the values of the minima decrease rapidly towards zero,
while that of the maximum increases, being highest for L = 50 (-l-). When L = 100 () the scaling function corresponds to repulsive force,
now having two maxima and a single minimum. Reaching L = 200 (&) the scaling function changes sign twice, and corresponds to attractive
force for L > 400 (-¥-). At T = T, [see (d)] for L = 20 and 50 the scaling functions change sign once for x,, > 0. Then for L € [100,400] one
observes double sign change, with an increasing minimum occurring in the region x,, < 0. The scaling function evaluated for L = 50 exhibits
a pronounced maximum which value is the highest in comparison to the other scaling functions calculated for various separations L. Upon
increasing the separation sign change of the scaling function occurs only once, and is not observed for L > 800. Note that for L = 800 the

scaling function still changes sign in the region x,, < 0.

A = 1.0 is almost identical for any L as a function of x,
[compare Figs. 4(d) and 5(b)]. Thus, for a fixed A, the behavior
of the scaling function is mainly determined by the interplay
between the short-ranged surface fields and the strong negative
wall-fluid coupling sy .. If 51, =52, =—1.0 and A < 2.0,
then the scaling function X pa exhibits an unexpected
behavior as a function of L: for moderate values of L in
the range 20 to 100, the maximum of the repulsive part of
the force increases with increasing L both as a function of x,
and x,, [see Figs. 5(c) and 5(d)]; for larger values of L, the
maximum decreases, as expected, and the overall behavior of
the scaling function approaches that one of the system with
completely short-ranged interactions.

So far, the discussion was focused on the behavior of
Xt within the DA, i.e., for separations L much smaller

than the characteristic geometrical extent of the interacting
objects [in the context of the current article, the sphere(s)
radius(ii)]. The quantitative and qualitative comparison in the
behavior of the scaling functions within the DA and SIA is
presented on Fig. 6. Let us emphasize again that in contrast
to the DA, the use of SIA does not put any restrictions on
the sizes and separation lengths that can be considered. To
illustrate only the main idea, here we restrain ourselves to the
choice of parameters s; . = —1.0, s = —0.2, and A = 1.0
in a system with L = 20 fluid layers. The first distinction one
notices is that in comparison to the DA, within the SIA the
mathematical expressions for calculating the CCF and vdWF
are different for the sphere-plate and sphere-sphere systems,
respectively—see the corresponding equations in Secs. IIC
and IV A: when studying X, for the interaction between a
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FIG. 6. Behavior of the scaling functions X S;LSIA and X f;;l;’ng within the SIA approximation in a d = 3-dimensional sphere-plate and

sphere-sphere fluid systems, respectively. The separation distance for every shown system is L = 20 [99]. In all four sub-figures the parameters
characterizing the interactions in the systems have values s; . = —1.0, s, = —0.2 and A = 1.0. The plotted curves on sub-figures (a) and (b)
are obtained with the use of Eq. (53), while these depicted in (c) and (d) using Eq. (56). As expected, when the ratio & = R/L increases the
overall behavior of the scaling functions tends to that predicted by the DA [see subfigures (a) and (b)]. One notice that while the curve evaluated
within the DA ( ) corresponds to repulsive force in the entire interval of values of x; and x,, when the ration E is finite the
scaling functions change sign once for x;, < —50 [see (a)] and x,, > 500, with a shallow attractive minimum, which gradually tends to zero
with increase of E. In contrast, as a function of the field scaling variable the curve corresponding to £ = 1 (-e—) exhibits double sign change
in the “gas phase” of the fluid medium. Such is no longer observed for & > 2. Also with increase of Z the value of x, at which the minimum
occurs goes to zero, while that of the global maximum changes slightly [see (b)]. Subfigures (c) and (d) depicts explicitly the validity of the

T Ri,Ry  __ = yRI :
limit limg, 0o X i sia = 27 B2 X it s1a» DOth as a function of x, and x,,.

plate and a spherical particle Eq. (53) is used, while between
a pair of spherical particles one uses Eq. (56). The results
presented on Figs. 6(a) and 6(b) demonstrate that with the
increase of the ratio E, the overall behavior of the scaling
functions tends, as expected, to that predicted by the DA.
One also notices that while the curve evaluated within the
DA corresponds to repulsive force in the entire interval of
values of x; and x,,, when the ratio E is finite X s1a changes
sign once for x; < —50 [Fig. 6(a)] and x, > 500, with a
shallow attractive minimum, which gradually tends to zero
with increase of E. More specifically, studying the temperature
dependence of the scaling functions we notice that while those
evaluated within the DA exhibit a single minimum and two
maxima of equal height, the maxima of the scaling function
evaluated for a system with E = 1 differ with about 10%.
Another comparison shows that the difference between the
global maximum of X sia evaluated for E = 1 and any of
the two of X pa i nearly 2 times. As a function of the

field scaling variable [Fig. 6(b)] the curve corresponding to
E = 1 exhibits double sign change in the “gas” phase of the
fluid medium. For E just under 2 the minimum of the scaling
function is zero. For x,, < 0 all curves obtained for & > 2
describe repulsive force. Also with increase of E the value of
x,, at which the minimum occurs goes to zero, while that of the
global maximum changes slightly. For the field dependence of
Xit one finds that the difference between the global maxima
of Xcrit,s1a(8 = 1) and Xciie pa is 73%.

For the study of the CCF between two spherical particles
within the STA we choose to vary the ratio E; and fix that
of &, to 1; see Figs. 6(c) and 6(d). The depicted on these
two subfigures justifies the mathematically predicted limit
limg, o X20% =25 EZXCRALSIA, both as a function of x;
and x,. On Fig. 6(c), one sees that for moderate values of
E; the scaling function exhibits three maxima (one in each
phase and at the critical point) and a couple of minima. With
the increase of &1, the maximum at x, = 0 and the minimum,
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FIG. 7. Interplay between the critical fluctuations of the fluid medium and the van der Waals interactions in it, resulting in the TF
LB th"_'SI A/mEand LB thtl,élfi within the SIA in a d = 3 dimensional sphere-plate and sphere-sphere fluid systems, respectively. The separation
distance for every shown system is L = 20 [99]. In all four sub-figures the parameters characterizing the interactions in the systems have
values 51, = 1.0, 55 = —0.01, and A = 2.0. The plotted curves on subfigures (a) and (b) are obtained with the use of Egs. (44), (45), (51),
and (52)—(54), while these depicted in (c) and (d) using Eqs. (44), (45), (25), and (55)-(57). Specifically, as expected when the ratio E = R/L
increases the overall behavior of the scaling functions tends to that predicted by the DA ( ) [see subfigures (a) and (b)]. On both
subfigures the curves show similar qualitative behavior, as the force exhibits a double sign change [once in the “gas” phase (x, > 0) and once in
the “liquid” one (x; < 0)] as a function of the temperature and a single one [only in the “liquid” phase (x,, > 0)] as a function of the chemical
potential. Subfigures (c) and (d) depicts explicitly the validity of the limit limglqw(ﬂfl‘,'sﬁ) = F[f[’_lSI A» both as a function of x, and x,,. On (c),
the model predicts a repulsive force (—e—), which becomes zero only at its minimum (achieved for x, > 0), when the interaction is between two
spherical particles characterized by E; = 10 and E, = 1. Here one also notices that the behavior of the force becomes slightly nonmonotonic
at the vicinity of the bulk critical point, which is due to the occurrence of a shallow minimum at x, < 0 of X fril{,lsele- One can speculate that for
10 < E; < 20 a double sign change of the force will be observed in the “gas” phase of the fluid. As a function of the chemical potential [see
subfigures (d) and (d')] a triple sign change (—-) of the NTFs appears for x,, < 0 when E; = 10 and E, = 1. Then, upon increasing the radius
of the second sphere to and above Z; = 20 (-i) the force changes sign once for x,, > 0. This change is observed very near the critical point
[see subfigure (d)].

which appears in the “liquid” phase, both disappear, as the
scaling function of a sphere-sphere system with &; = 100E,
approaches that for the sphere-plate system with E, = 1.
On a quantitative level, as a function of x; the difference

between the values at the global maxima of X git’g% A(E1 =10)

and XCRF{[‘.I;fA(E] — 00) is about three times. The scaling
functions evaluated for various values of E; and x, differ
only quantitatively. In analogy with the comparison made
for Xg{t”g%A(x,,xﬂ = 0), here we have that the difference
between the values at the global maxima as well as minima of
XCRr{t’,ISeiA(El = 10) and Xcli;t’ng(El — 00) is about 2.4 times.

We will close the discussion with some comments on
the behavior of the TF, in a sphere-plate and sphere-sphere

systems studied within the SIA. The obtained results are
depicted on Fig. 7. In scope of arguing the experimental
feasibility of the presented theory, which will be done in
the following section, here the comment will be put on a
particular system with L = 20 characterized by the following
coupling parameters: s; . = 1.0, 52, = —0.01, and 1 = 2.0.
The behavior of the Hamaker term (associated with the vdWF)
both as a function of x, and x, is rather trivial, when one
considers a lattice-gas model. An example of it for a system
with sy .52 = 0 is depicted on Fig. 5 in Ref. [1]. Unlike the
case presented there, when s; .52 . # 0, as considered here, the
direct substrate-substrate interaction [the first term in Eq. (44)]
adds to overall behavior of the interaction. For sy .52, <0
at x, =0 H, is nonzero and corresponds to repulsion for
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any value of x;. On the other hand, as a function of x,, at
T =T, and for sy .5, <0, Hy changes sign once in the
“gas” phase of the fluid, being attractive for x, < 900 and
repulsive otherwise, with an infinite slope at x,, = 0. With

regard to the behavior of X g;t‘ sia both as a function of x;
and x,, for the system speciﬁed’ above, one observes a single
sign change with a low repulsive maximum, appearing in the
“liquid” phase of the fluid, which gradually tends to zero with
increase of E. After superimposing both quantities, namely
2B H4 and Xclerit‘,SIA’ using Egs. (44), (45), (51), and (52)—(54),
one ends up with the temperature [see Fig. 7(a)] and field [see
Fig. 7(b)] dependencies of the TF between a spherical particle
of arbitrary radius and a planar substrate within the SIA.

C. Experimental feasibility of the predicted effects

In the previous section, it has been argued that if the
coupling parameters are tuned in a certain way, then one can
realize not only repulsive or sign changing CCF, but even the
total force can exhibit such a behavior. Particular values of
the model parameters at which these phenomena are observed
are, e.g., 51 = 1.0, 55 = —0.01, and A = 2.0. In the current
section, we will show that there are materials characterized
by the above-mentioned values of the parameters in question,
thus demonstrating the feasibility of the theoretical predictions
presented. Let us consider a sphere-plate and sphere-sphere
systems immersed in xenon (Xe), which exhibits critical
fluctuations near its bulk critical point. This is obviously a
nonpolar simple fluid. Its physical characteristics are presented
in Table I in Ref. [1]. We will make the assumption that all
interactions between the constituents of a given system are
of Lennard-Jones type, i.e., JI* =2J.5 and A = J!/J =2
(see Eq. (7.1) in Ref. [1] and the text therein). For the
calculation of the substrate-fluid coupling constant s, within
the mean-field treatment of the problem, we use the following
expression: s, = 0.5 G(4,4) [pnaBeJ"* — peBeJ'], where J5S
(see column 3 of Table I) and J! (see column 7 of Table I in
Ref. [1]) are the long-range interparticle interaction energies
and ppg (see column 7 of Table I) is the number density
of the bulk substrate relative to the critical one p. of the
fluid medium. The quantitative assessment of the interatomic
interactions between the xenon and some concrete substances
listed in column 1 of Table I, manifests itself with values of
s¢ (see column 8 of Table I) very near to the above mentioned
model ones. With regard to the experimentally realizable
spherical particles studied here, the following composites are
considered: ruthenium [104] (Ru) or platinum [105] (Pt) core,
encapsulated by thin (about 4 unit cells or ~ 1 nm) ZrO, or
CeO, film [106]; lithium (Li) core, encapsulated in a carbon
shell [107]; carbon [108] (C) or silica [109] (Si0O;) aerogels.
The contact surface of any of the interacting geometries
(spherical or planar) is assumed coated by monolayer of
lead [110] (Pb) or thallium nitride [111] (TIN) to ensure
the (+4,4) boundary conditions. In addition, from the data
reported in Ref. [112], we have that B.JX*P® = 0.956 and
B JXeTN = 0.968.

Although the mean-field theory gives poor quantitative
estimation of the behavior of the studied forces, it is tempting
to evaluate them, nevertheless. As it has been done in the
calculations leading to the results reported in Fig. 7, we fix
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TABLE I. Physical characteristics and interaction parameters of
the considered core materials: ruthenium (Ru), platinum (Pt), lithium
(Li), carbon (C), and silica (SiO,) aerogels with the fluid medium
(Xe). The columns show: the distances r; and ré’S in A (columns 2
and 4) at which the interparticle potential within the substrate and
between it and the fluid is zero, the corresponding potential well
depths J2 and J'* in units k3T, (columns 3 and 5), the density p of
the substrates in g/cm? (column 6), the number density p,q (column
7), and the substrate-fluid coupling parameter evaluated at the critical
temperature—s, (column 8). The values of rj and J;, are taken from
Ref. [112], while these of r{* and J.* are calculated via Kong’s
mixing rules (see Egs. (7.2) in Ref. [1]). The densities of the aerogel
substrates [113] are taken in such a way as to render the desired value
of s., namely —0.01.

1 2 3 4 5 6 7 8

Core ry  BJs  r"  BIEp P S

Ru 2963 0.097 3964 0.171 12370 7.219 1.03
Pt 2754 0.139 3.868 0.190 21.450 6.485 1.03
Li 2451 0.043 3916 0.069 0.535 4546 —0.01
C 3.851 0.182 4.245 0.341 0.232 1.139 —-0.01
SiO, 1.233 0.698 3.425 0.079 0.250 0.525 —-0.01

the separation between the interacting objects to L = 20ag >~
12 nm, where ay is the suitable distance between the xenon
atoms at the bulk critical point (see column 5 of Table I in
Ref. [1]). Then, studying the temperature dependence of the
TF occurring in a sphere-plate system, see Fig. 7(a), with
R = 12 nm at u = u., one shell observe a double sign change
at Ty ~ 0.9965T, and T, = 1.0195T,, with an attractive global
minimum at Tpin = 1.00397,., which magnitude is Fiw hin =
—0.31 pN. If now the interaction takes place between a plate
and a sphere with radius 120 nm, the force sign change
will be at T} >~ 0.9978T,. and T, = 1.01435T,, the minimum
will remain attractive, observed at Ty, = 1.00187,, and with
magnitude of th{"min ~ —4.97 pN.

As afunction of the chemical potential difference at 7 = T,
see Fig. 7(b), the force changes sign only once irrespectively
on the sphere’s radius, with the occurrence of a single attractive
minimum. Thus, when R = 12 nm the force is repulsive for
BeApn > 1.11 x 10~* and attractive otherwise. The minimum
is reached at (B, A)min ~ —8.868 x 10~*, with a magnitude
of thl’,'m,-n ~ —2.58 pN. The increase of the sphere’s radius
10 times results in insignificant change in the value of 8, A at
which the sign change occurs, but the magnitude of the force at
its minimum increases substantially to thf,lmin ~ —35.12 pN,
observed at (BeA)min =~ —6.534 x 107*. For even larger
spherical particles E >> 10 the value of the force at its mini-
mum is a linear function of the ratio E [see Eq. (47)] and for the
particular case considered here can be estimated with the use

~

of the expressions: Iﬂf{y'm,-n(xf, min = 3.24) >~ —0.54 x E pN
and Foh i (X, min = —175.616) ~ —3.705 x E pN.

Now we focus our attention on the interaction between
spherical particles in critical xenon. Let the radius of one of
the particles we consider fixed is, say R, = 12 nm, and vary
the other one R;. Starting with the temperature dependence
Fig. 7(c), we see that when R; = 120 nm the TF is repulsive
at any temperature, only becoming zero at T = 1.0067,. With
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the increase of R; a double sign change and a single attractive
minimum are observed. For Ry = 1.2 um, the magnitude of
the force’s minimum is Flftly’rﬁzn ~ —0.271 pN. At T = T, and
R; = 120 nm, one observes not so trivial behavior of the TF as
a function of the field scaling variable [see the last paragraph
of Sec. IV B as well as Figs. 7(d) and 7(d")]. For such a system,
the global minimum has a value of FX':%2 ~ —1.01 pN and a

ot,min —
maximum of Flff;,;fgx 2~ 0.26 pN. Upon increasing the value of
R to 1.2 um, the force changes sign only once, having a single
attractive minimum with magnitude of Flfft{ffn ~ —2.40 pN.
For the sake of completeness, we give the critical tempera-
ture of xenon 7, = 289.765 K and the value of the critical
chemical potential per kpT,: B.u. = —16.213, calculated

using Egs. (2.2b), (5.37b), and (8.8) from Ref. [114].

V. DISCUSSION AND CONCLUDING REMARKS

In the current article, we have studied the interactions
between objects governed by dispersion forces immersed in
a nonpolar critical medium also governed by such forces. We
envisage the case in which the critical medium is either a
one-component fluid or a binary liquid mixture, i.e., its critical
bulk behavior belongs to the Ising surface universality class.
Because of the modifications of the order parameter of the
fluid, as well as of its fluctuation spectrum, in addition to
the dispersion force one also has an additional effective force
known as the CCF, acting between these objects. Since the
dispersion forces influence the critical medium, they change
the order parameter profile and the fluctuations of the system.
Thus, studying the CCF in such systems one, unavoidably,
studies the interplay between these two long-ranged and
fluctuation induced forces. In addition to the contribution
of any of these forces to the overall interaction between the
immersed objects, we also studied the TF between them. To
achieve this, we have used general scaling arguments and
mean-field type calculations utilizing the Derjaguin and the
surface integration approaches—see Sec. IIC. Any of these
two approximations uses data for the forces between two
parallel slabs separated at a distance L from each other, made
of the same materials as the objects and confining the same
fluctuating fluid medium characterized by its temperature T
and chemical potential p. The corresponding model, which
we have used to produce the data needed for the current study,
is presented in Sec. III.

In the article, we concentrated on a system that involves
either a sphere and a thick planar slab or two spheres with,
in general, different radii—see Fig. 1. The surface of any of
the objects immersed in the fluid is supposed coated by thin
layers exerting strong preference to the liquid phase of the
fluid, or one of the components of the mixture, modeled by
strong adsorbing local surface potentials ensuring the so-called
(+,4+) boundary conditions. We suppose that the core region
of the slab and the particles, on the other hand, influence the
fluid by long-ranged competing dispersion potentials.

Figures 3—6 show that for a suitable set of colloid-fluid,
slabs-fluid, and fluid-fluid coupling parameters, the compe-
tition between the effects due to the coatings and the core
regions of the objects involved result in a sign change of the
critical component of the CF between the objects considered.
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Figures 3—5 present these results obtained within the DA, while
Fig. 6 shows the ones obtained within the SIA. As it is clear
from the data presented, the sign change happens when one
changes T, u, or L between the colloid and the slab or between
the colloids.

Figure 7 shows, on its turn, that a sign change can also
be achieved for the total force between these objects. It is
worthwhile to emphasize that this can be used for governing
behavior of objects, say colloidal particles, at small distances,
say in colloid suspensions for segregation of colloids. It can
also provide a strategy for solving problems with handling,
feeding, trapping, and fixing of micro parts in nanotechnology
resolving the issues related to sticking of the particles on
the surface of the mechanical manipulator utilizing, e.g., the
reversible dependence on the forces under minute changes
of the temperature of the critical medium. One can perform
grabbing of particles for small values of x;, where the force
is attractive and release them at a given spacial position after
slightly increasing or decreasing of temperature achieving in
that way a value of x, with a repulsive TF. Data given in
Table I for specific substances demonstrate that the values
of the parameters used in the theoretical calculations are
experimentally feasible.

Finally, let us make some remarks on the SIA which
has been suggested in Ref. [89] as an improvement and
generalization of the DA. It delivers an exact expression
between a body with a general shape and a slab, expressing
the interaction in terms of the plate-plate interaction, provided
the interactions involved can be described by pair potentials,
say van der Waals type potentials. As Eq. (18) shows, the final
result is expressed in terms of integral over projection AY of
the surface of the colloid particle on the plane which faces
towards this plane, minus the contribution over the surface
projection A" that faces away from the plane. The main
advantage of this approach over the DA, which involves only
integration over AY, is that it is not bound by the restriction
that the interacting objects must be much closer to each other
than their characteristic sizes. The integral solely over AY can
also be used, as it is customary within the DA, to evaluate
the interaction between the surface of the colloid and a plane
also for the cases when the interaction cannot be prescribed to
some point like sources. The last includes, e.g., the way it is
used for calculating the CCF. If the colloid is in a mechanical
equilibrium in a fluid it is clear that the force at a given point
on the surface of the colloid is orthogonal to the surface at that
point. Then one can suggest an improvement over DA also
for the case of CCF-type interactions since the standard DA
does not respect this fact. The corresponding improvement is
suggested in Eq. (19) for a colloid particle of any shape and a
plane. Unfortunately, we are not aware for an expression for the
interaction of two bodies of general shape expressed in terms
of the corresponding plate-plate interactions. We have been
able, however, to derive such an expression for the case of two
spheres—see Eq. (23). It has been shown that it delivers correct
results for interactions decaying with the distance o =977,
withd = 3and2 < o < 4reproducing, for o = 3 the classical
result of Hamaker [102], see Eq. (25), and delivering a new
analytical result for the retarded van der Waals interaction with
o = 4—see Eq. (26). Furthermore, this expression delivers
in the limit R;/L,R,/L — oo the standard Derjaguin result
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Eq. (15) for the sphere-sphere interactions—for proof see the
Appendix. The corresponding expression for the CCF between
two spheres within the SIA approximation that takes into
account only the interactions between surfaces facing each
other, similar to the approach of DA, is given in Eq. (28). A
comparison of the results obtained via DA and SIA is presented
in Figs. 6 and 7.
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APPENDIX: DERIVATION OF THE SPHERE-SPHERE
INTERACTION FORCE WITHIN THE SIA
APPROXIMATION

Within the pairwise summation hypothesis [102] proposed
by H. Hamaker in 1937, the van der Waals interaction energy
wPB2 between two macroscopic bodies in d =3 can be
written as an integral over the individual interactions w?”-?
between all particles constituting the two objects,

P B(L) = f dvy / dvrpo (), (A1)
Vi )

with

WP P(r) = ———0"", (A2)

y3to
where L is the minimal distance between the objects; V;, i =
1,2 are the volumes occupied by them; p;, i = 1,2 are
their number densities; r denotes the distance between the
elementary volume elements dv;, i = 1,2, and J is any of the
van der Waals coupling parameters.

Therefore, within the Hamaker approach, for the interaction
energy between a sphere of radius R; and a pointlike object p
atadistance R = R; + 75 to the sphere’s center, one can write
(see Eq. (5) in Ref. [102])

R+R,
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Now, by making use of the expression for the interaction
energy w” | between a pointlike object and a half-infinite space
(plate) (for details see Eqgs. (7), (9), and (17) in Ref. [89]),
Eq. (A3) can be written equivalently as

R kAR /74
wgix (R) = / (E - 1>dwp’|(Z1)
R—R

= PR+ Ry + 0P (R~ Ry)

1 R+R,
—-—= Pl (z))dz,, (A4)
R Jr_g,
where
2nJps, 1 _
wPl(z) = - o3, A5
(z1) s+ (AS)

Using the same considerations as in the derivation of Eq. (A3),
Hamaker managed to obtain for the interaction energy w®-*2
between two spheres of radii R and R;, separated at a distance
C = R; + R, + L apart, the following expression:

Ri,Ry _ CHfe PRy R 2 2
wp(C) = "1 (R)p,,m = [R5 — (C — R)’]dR.
C—R C

(A6)

Substituting Eq. (A4) into Eq. (A6), taking into account that
fﬂj = w”!p, and performing differentiation with respect to
the separation L, one ends up with an expression relating the
interaction force F®1-R2 between two spherical particles with
the force per unit area between two parallel plates,

L+2R,
F™(L) = =Ry / £ (z2) + 1 (22 + 2RDIC (z2)d 22

L
L+2R, 22+2R,;
+ / f tz) f) (zndzidza, (A7)
L 22

where the function ¢(zp) is given in Eq. (24) in the main
text. Because in the derivation of Eq. (A7) no restrictions
on the allowed sizes and separations between the particles are
considered, one can say that this expression was derived within
the SIA.

Now, if one performs the integration with Eq. (9) [see also
the text below Eq. (13)] in d = 3, the general expression for

bR (R = / ”P(r)ps, 7 % [Ri— (R—r)*]dr. (A3)  the vdWF between two spheres reads
R—R
J
FRE (Llg) = — HT® 9o /“ZRZ { [0 — DR — 2] [0+ DR +2] } ez
vdW,STA A | 3 >+ 2Ry 2)dzs
2H(reg) o-3 L
- 2V [ L2 R . 1)}, (A8)
(0 —2) o —3) L+ R +Ry)| (6 —4)(L+ R;+ Ry)
which is applicable for any o € (2;4) with
£(Llo) = Pi(Lle)  Pa(Llo) P5(L|o) P4(L|o) (A%)
L2  (L+2R)2 (L+2R)°2 ' (L+2R,+ 2Ry 2
P (Llo) = L? — L(Ry + Ry))(0 —4) + R Ry(c —4)(o — 3), (A9Db)
Py(Llo) = L* + L[Ryo — Ri(0 — 4] + Ro[2R2(0 —2) — Ri(0 — 4)(o — D], (A9¢)
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P3(Llo) = L + L[R 10 — Ry(0 — 4]+ Ri[2R (0 — 2) — Ra(o —4) (o — 1)], (A9d)
Py(Llo) = L* + L(R, + Ry)o + 2(R} + R3)(0 —2) + RiRo[4 + (0 — 3)o]. (A9e)

For the two most commonly considered cases 0 = 3 and o0 = 4, Eq. (A7) delivers the results reported in Egs. (25) and (26),
correspondingly, in the main text.

From Eq. (A7) the general expression describing the L dependence of the sphere-plate interaction follows directly. Indeed,
by taking, say, Ry — oo [i.e., one of the spheres becomes a half-space (plate)], one has that for any inverse distance force law

Fl(x) =3 0and ¢(z2) = —27(L + R, — ). Thus,

pRe baak I
Fgiy (L) =27 / (L+ Ry — 22)f;(z2)d 22, (A10)
L

which is exactly the result Eq. (20) reported in Ref. [89]. It is easy to show that from Eq. (A7) follows the expression obtained
by Derjaguin (see for example Eq. (1) in Ref. [89]) describing the interaction between spherical particles at close proximity to
one another [i.e., R;,R, > L, or L — 0]. Introducing the notations z; = z;/L and E; = R; /L, Eq. (A7) takes the form

—~
®

e 5, [ | 1428, [5+28 ”
Rt =25 [ e e men s o [ [ caasheodada. @
1 1 22
Now, we notice that within the DA E; — oo, i = 1,2; then f (Zo +28)) — 0, lim;_ on+2“1 cee= f;o ...=0 and
limL_>0 {(Zz) = 232/(81 + Ez) Therefore
FRR (L) = _E18 H RiR, I _
(L) =2m L2, fgy(Zz)de m fgf(Zz)de 277 Regreoly (L) (Al12)

In a way analogous to the use of the DA for determlnatlon of the CCF between objects of complicated geometry, one can
make use of the SIA technique to do the same. Then, as usual, the restriction appears that the integration must be carried on only
over these parts of the objects surfaces which are facing each other (see for details the text above). Taking this into account, we
can write the following expressions for the CCF between two spherical particles of arbitrary radii as well as between a spherical
particle and a planar substrate, respectively,

R & L+R, I L+Ry 22+R;
FiR (L) = /L RiZ() £, o (z)ds + /L £(@) / 1 wendzdza, (Al3a)
22
L+R
F&! | a(L) =27 / (L+R- z)fd cas(2)dz. (A13b)
L
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