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Proof of Vivo-Pato-Oshanin’s conjecture on the fluctuation of von Neumann entropy
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It was recently conjectured by Vivo, Pato, and Oshanin [Phys. Rev. E 93, 052106 (2016)] that for a quantum
system of Hilbert dimension mn in a pure state, the variance of the von Neumann entropy of a subsystem of

dimension m < n is given by
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where v (-) is the trigamma function. We give a proof of this formula.
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I. BACKGROUND AND THE CONJECTURE

Consider a composite quantum system that consists of
two subsystems A and B of Hilbert space dimensions m
and n. The Hilbert space H1p of the composite system
is given by the tensor product of the Hilbert spaces of the
subsystems, Ha.+p = Ha ® Hp. The random pure state of
the composite system is written as a linear combination of
the random coefficients x; ; and the complete basis {|i 4y}
and {| %)} of H and Hp. ) = Yoy 31, xij1i%) @ 155).
The corresponding density matrix p = |y ) (| has the natural
constraint tr(p) = 1. This implies that the m x n random
coefficient matrix X = (x; ;) satisfies

(XX = 1. (1)

Without loss of generality, it is assumed that m < n. The
reduced density matrix p4 of the smaller subsystem A admits
the Schmidt decomposition py = Y 1, A:|¢{*) (#7], where A;
is the ith largest eigenvalue of XX'. The conservation of
probability (1) now implies the constraint » ;- ; A; = 1. The
probability measure of the random coefficient matrix X is
the Haar measure, where the entries are uniformly distributed
over all the possible values satisfying the constraint (1).
The resulting eigenvalue density of XX is well known (see,
e.g. [1]),

f<x>=r(’:n)5(l‘i“> [ “f—*/‘)zlﬂ[?&?"”’
i=1

I<i<j<m i=1
(2)

where §(-) is the Dirac delta function, and the constant
c=[]r@—i+Dro. (3)

i=1
The random matrix ensemble (2) is also known as the (uni-
tary) fixed-trace ensemble. The considered bipartite quantum
system is a fundamental model that describes the interaction
between a physical object and its environment. For exam-
ple [1], the subsystem A is a black hole and the subsystem B
is the associated radiation field. In another example [2], the
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subsystem A is a set of spins and the subsystem B represents
the environment of a heat bath.

A measure of the entanglement of the considered bipartite
quantum system is the von Neumann entropy,

S:—Zkilnki, 4)
i=1

where S € [0,Inm]. Its mean value was conjectured by
Page [1] as

1
E /1S = domn + D — o - 2= (9)

where [E ¢[-] denotes that the expectation is taken over the
fixed-trace ensemble (2). Here, Yo(x) = dInT(x)/dx is the
digamma function (Psi function) [3], and for a positive
integer /,

-1

1
oH==-y+) —. (6)

¥ y ; p
where y ~ 0.5772 is Euler’s constant. The mean value
formula (5) was proven independently by Foong-Kanno [4],
Sanchez-Ruiz [5], Sen [6], and Adachi-Toda-Kubotani [7].
For the orthogonal and symplectic fixed-trace ensembles, the
mean formulas of the von Neumann entropy were derived by

Kumar-Pandey [8].

To gain more insights, one needs to know the fluctuation
of the von Neumann entropy. In fact, its mean value turns
out to be a poor representative that has led to an incorrect
conclusion on the full distribution [1]. Recently, Vivo, Pato,
and Oshanin conjectured [Ref. [9], Eq. (57)], based on small
n and m calculations from some complicated representations
[Ref. [9], Egs. (54)—(56), (A3), and (A9)], that the variance of
the von Neumann entropy V([S] equals

—mn 4 1) + mn~|—n m+1D(m+2n+1)
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’
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where ¥ (x) = d*InT'(x)/dx? is the trigamma func-
tion [3,10], and for a positive integer /,
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In this paper, we show that the conjecture (7) of Vivo-Pato-
Oshanin (VPO) is indeed correct. The presentation of the proof
is organized as follows. In Sec. II, we relate the variance of the
von Neumann entropy to that of an induced variance over the
Laguerre ensemble, which is calculated explicitly. The derived
induced variance is simplified to functions involving digamma
and trigamma functions in Sec. III, which leads to a proof of the
conjecture. Most of the technical tools for the simplification
are presented in the Appendix. Finally, we point out that
even though the exact distribution of von Neumann entropy
is unknown, its asymptotic distribution was obtained via the
Coulomb gas approach by Nadal-Majumdar-Vergassola [11].

II. VARIANCE OF AN INDUCED ENTROPY IN
THE LAGUERRE ENSEMBLE

A. Variance relation

By the construction (1), the random coefficient matrix X
has a natural relation with a Wishart matrix YY' as

XX = YY'

= i 9
tr(YY") ®

where Y is an m x n (m < n) matrix of independently and
identically distributed complex Gaussian entries. The density
of the eigenvalues0 < 6,, < --- < 6; < coof YY' equals[12]

m

1
g == ] @-op[]oy™e” (0

I<i<j<m i=1

where c is given by (3) and the above ensemble is known as
the Laguerre ensemble. The trace of the Wishart matrix

m

r=tr(YYT)=Zei (11)

i=1
follows a y distribution with the density [9]

—r_ .mn—1

r 9
I"'(mn)

hn(r) = r € [0,00). (12)

The relation (9) induces the change of variables
Ai=—, i=1,...,m, (13)

which leads to a well-known relation (see, e.g. [1]) among the
densities (2), (10), and (12) as

m

Oy dr [T dri = @) ] ] d6:. (14)

i=1 i=l1

This relation implies that r is independent of each A;, i =
1, ...,m, since their densities factorize.

Page [1] exploited the relation (14) by relating the first
moment of von Neumann entropy over the fixed-trace ensem-
ble (2) to that of an induced entropy [13],

T:ZQilnBi, (15)
i=1
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over the Laguerre ensemble (10) as follows. First, by using the
relations (13), one has

20,6
S=—Y ZIn==r"'rInr="1). 16
;r n—=r"'¢lnr = 1) (16)
Then, the expected value of S is evaluated as

E/[S] = frfl(r Inr—T)fQW) [ ] dni
A

i=1

= “Yornr—T)f(A - dszhmn d
fxr rinr = D)f QO[] di | hunii@dr

i=1

% A f(l)ll:! dX; / By (F)r In 7 dr

l m
-— A / Tf<x>hmn(r)drg dhi (17)

1
Yo(mn + 1) — —E,[T], (18)
mn

where the expectation Eg[-] is taken over the Laguerre ensem-
ble (10). Here, (17) is obtained by the identity r~'h,,,41(r) =
hun(r)/mn and the fact that r is independent of A, and (18) is
established by the change of measures (14) and the identity

/oo e”r*nrdr = T(a)yo(@), Re(@) >0. (19
0

Séanchez-Ruiz [5] and Sen [6] have calculated that
Eo[T] = mnyo(n) + sm(m + 1), (20)

which, together with the relation (18), leads to their proofs of
Page’s conjecture on the mean entropy (5).

We now show that the idea of Page [1] can be generalized
to find a relation between the second moments (hence the
variances since the first moments are known) of S and T,
which is the starting point of our calculations. First, using the
result (16) we have

§* =r*(T* = T2rInr + r*In’r) 1)
=r(T*+ S2r*Inr — r*In’r). (22)

The expression (22) is obtained by replacing only the first
power of T in (21) by the identity (16), and the reason for this
replacement will become clear. The second moment of S can
now be written as

E/[8*] = /xr*Z(T2 + 827 Inr — 21 r) FA) | | di.
i=1

(23)

To utilize the independence between r and A, we multi-
ply (23) by an appropriate constant 1 = fr hyn2(r) dr, which,
along with the fact that 7 2,412 (r) = hpu(r)/mn(mn + 1),
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leads to

m

2 2
Es[$*] = —mn(mn+1)f/T (x)hmn(r)dr]_[ dA;

2 2
+ m/}:Sf(X)E dxifrhmn(r)r Inrdr

_; - . 21,2
mn(mn + 1)/; f(k)D d)‘l/rhmn(’”)r In“rdr.

From the second line of the above equation, we see that the
replacement of the first power of T by S in (21) makes it
possible to evaluate the integrals over r and A separately.
Finally, using the change of measures (14) as well as the
identities (19) and

/00 e'r* ! In*rdr = T(@)[¥1(a) + ¥5(@)], Re(@) > 0,
0

(24)
we arrive at
N U g
E/[$*] = —— I)Eg[T ]+ 2v0(mn + DE£[S]
— Y1(mn +2) — Yg(mn + 2). (25)

Inserting the mean formula (5) and the VPO’s conjecture (7)
into the definition ]Ef[Sz] Ve[ST+ E? [S] and equating it
to the derived relation (25), the VPO’s conjecture boils down
to showing that E,[7?] is given by

mn(m + n)yri(n) + mn(mn + 1)1//3(11) + m(mzn + mn
+m+2n+ 1)1//0(11) + im(m + 1)(m2 +m+ 2), (26)
where we have used the identities [cf. (6) and (8)]

n—1

Yol +n) = o) + Z (27a)
n—1 1
Ui +n) = Y () — kX:(; T (27b)

forthecasel = mn + 1,n = 1.

We have so far converted the VPO’s conjecture (7)
evaluated over the fixed-trace ensemble (2) to an equivalent
conjecture (26) evaluated over the Laguerre ensemble (10).
Instead of working directly with the complicated correlation
functions of the fixed-trace ensemble as in [7-9], the induced
variance over the well-investigated correlation functions of
the Laguerre ensemble can be explicitly calculated, as will
be shown in Sec. II B. The proposed “moments conversion”
approach may be generalized to study the higher moments
of the von Neumann entropy as well as other entanglement
measures such as the Tsallis entropy and the Rényi entropy.

B. Calculations of the induced variance
Since T2 =11, 6210%6;, +2),,_;c,, 6:6;In6; In6;,

i=1"i
the calculation of E,[7?] involves one and two arbitrary

eigenvalue densities, denoted, respectively, by g;(x;) and
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g2(x1,x7), of the Laguerre ensemble as

o0
E,[T%] = m/ x?1n® x1g1(xy) dx; + m(m — 1)
0

o0 o0
x/ / x1x2 Inxy Inxpg2(x1,x2) dxy dx;.
0
(28)

In general, the joint density of N arbitrary eigenvalues

gn(xy, ..., xy) is related to the N-point correlation function
Xn(x, ... .XN) —det[K(x,,xj)],, 1 (29)
as [12] gN(X1,...,xN)=XN(X],...,XN)(m_N)!/m!,

where det(-) is the matrix determinant, and the symmetric
function K (x;,x;) is the correlation kernel. In particular, we
have

1
g1(x1) = —K(x1,x1),
m

82(x1,x2) = K (x1,x1)K (x2,%2) — K*(x1,3%2)].

|
m(m — 1)
As aresult, one can represent (28) as

Eo[T? = In — Ig + [mnyro(n) + im(m + D], (30)

where
I4 =/ xiIn? x; K (x1,x1) dx;, (31)
0

o0
13=f / xix Inx Inxo K2(xy,x0) dxy dxs,  (32)
0 0

and we have used the result (20) and the definition
o o0
/ xInxK(x,x)dx =m/ xInxgi(x)dx =Eg[T].
0 0

Before computing the integrals /4 and Ip, the following
results on the correlation functions (29) are needed. The
correlation kernel of the Laguerre ensemble can be explicitly
written as [12]

v C(x)C
K(xi.xj) = /e~ (x;x; )= '”Zk.(l,;(x_) "J(rx;c)' (33)

where
Cr(x) = (= 1KLY ™™ (x) (34)
with
k .
n—m i - +k !
L) = Z;(—l) <" o )% (35)

being the (generalized) Laguerre polynomial of degree k. The
Laguerre polynomials satisfy the well-known orthogonality

relation [12]
o —m n—m - k)!
/ x”fmefog’ )(x)L; )(x)dx = —(n ’Z‘—’_ ) l
() .

(36)
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where §;; is the Kronecker delta function. It is known that
the one-point correlation function [cf. (29)] admits a more
convenient representation as [5,12]

!
n—1"
— LUy LD (), (37)

X (x) = X —x{[L('l m+1)(x)]

We also need the following identity, due to Schrodinger [14],
that generalizes the integral (36) to

o0
/0 x"e—ng"‘)(x)Lgﬂ)(x) dx

:(_l)Htmmit) qg—a\{q—B\T(@+1+k)
s—k)\t—k k! ’

k=0
g>—1. (38)

J

m—1 2
1 (n—m+2+k)
PR e

{[Yo(n —m + 3 + k) + 2¢(2)
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By taking the first and second derivative on both sides
of (38) with respect to g, we obtain two more integral
identities as shown in (44) (see also [5]) and (45), which
are, respectively, denoted by B (¢) and A" (¢). With the
above preparations, we now proceed to the calculations of I A
in (31) and I in (32).

1. Calculating 1,
By the fact that [cf. (29)]

Xi1(x1) = K(x1,x1), (39
one inserts (37) into (31) to obtain
m!
Iy = —— m—1,m—1 — Am—2m)> 40
A (n—l)!(A =1 — Am—2m) (40)

where for convenience we have further defined [cf. (45)]
Asz _A(n m+1,n— m+1)(n_m+2)‘ (41)

We now use (45), and the contribution to the sum

—2Yo(3 —m + k)

k=0
+yi(n—m+34+k)+291(2) — 291 (3 —m + k)} (42)
consists of the cases when the binomial terms are zero (k =0, ...,m — 3) with the polygamma functions being infinity, and

nonzero (k =m — 2,m —

1) with the polygamma functions being finite. Namely, we have

(n+ 1!
Aptm = m[wé(n +2)+yi(n +2)] + W{[%(H + D+ 2P +yi(n+ 1) —2}
m—3 2
m—m+24+k) 4933 —m+k)—2y1(3—m+k)
+ X(; (m — 1 —k)!%k! 23 —m+k) ’ “43)
BEP(q) = / e In xLOx)LP (x)dx

0

min(s,t)

ot g—a\(q—B\T'(g+1+k)
= (=" ; (S_k>(t_k)T[1/fo(CI+1+k)+1ﬂo(q_“+1)+l/fo(q—,3+1)

—Yolg—a—s+1+k) —yolg—B—t+1+k), (44)

o0
AP (g) = / x%e " In® x L (x)LP (x) dx
0

T o q—a) ¢—F\Tg+1+k
s—k)\t—k k!

k=0
—Yolg —a—s+1+k)—
—Yilg—a—s+1+k—

{Wolg + 1+ k) +Yolg —a+ 1) +olg =+ 1)

Yolg—B—t+1+F+vi@+1+k+yi(@g—a+D+yi(g—B+1)
Yilg—B—t+ 1+, (45)

which by interpreting the gamma and polygamma functions of negative integer arguments as the limit € — 0 of

1\
(=l +¢) = ( ) [1+ Yol + e +o(e )] (46a)
1
Vo(—l +¢€) = —g[l — Yol + De +o(€?)]1, (46b)
1 2
V(=1 +¢e) = 2[1 + o(e?)1, (46¢)
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leads to a well-defined limit

1 A3 —m+k) - 2013 —m+k) 2 3 B
(m—1—=k)? 23 —m+k) T m=2—kP*m—1—k? k=0,....m=3. “7)
In the same manner that has led to A,,_; ,,—1, we obtain
n! (n—1)!
Ap—om = m[xﬁo(rﬂr +1] - 30m 3),[wo( n)+ 1]
- (n—m+2+k)! 2
+Z k! m—-3—-k(m—-2—-k(m—1—k(m—k) “48)

k=0

Finally, we insert (43), (47), and (48) into (40) and simplify the expression by rearranging the sums as well as using (27) to
obtain

Iy = %[3n(m + n)yYi(n) + 3n(m + n)yg(n) + (m* + 9mn + 3m + 3n + 2)Yo(n) + m* + 3mn + 6m — 3n — 1]

om! "2 = k) 1 n—1—k! 1
NETEEY LX_; (m—2—k) K2k + 12 ; (m —3 — k) k(k + 1)(k+2)(k+3)]' (49)

2. Calculating I

Inserting (33) into (32) and using the symmetry of the correlation kernel, the integral /5 can be represented as

ity ki(k + )IBE, ; kB
Z Z e T et (50)
il —m+\n—m+k+j) k=0(n—m+k)!2
where we have further defined [cf. (44)]
By, =BY"" (e —m + 1). (51)
The identity (44) gives
k 2 .
1 n—m-+1+ j)! . .
Bu="(, ") N 0 0) 4 gt — m 24 ) — 2002 — K+ ]
= k—j Jj!
(n—m+k)!
k—[( n—m+1+42k)yo(n —m+14+k)+ 2k + 1], (52)

where j = k — 1,k provides the nonzero contribution to the sum, and we have used (27a) for the simplification. In the same
manner, one obtains

(n—m+k)!
Bk_H,k:T[(n—m—l—l—i—k)lpo(n—m—{—l+k)+n—m+3k/2+2], (53)
and the cases j = 2,...,m — 1 are computed to be
m—m+K(n—m+1+k k
Biyjk = - - - = . (54
k!j j—1 j+1
Inserting (52), (53), and (54) into (50), we arrive at
m—1 m—2 2(k+1)
Ig = n—m+1+2k n—m+4+1+k)+2k+ 1]+ ———[n—m+1+k n—m+1+k
5= kX;[( ol ) I’ Z — T ol )
m—1m—1—j 2
2n—m+Ik+ ) (n—m+1+k k
— 2 + 3k /2] - . 55
oo m 232 +; ; (n—m+k+ HKGZ\ -1 j+1 &)

III. SIMPLIFICATION OF SUMMATIONS

The remaining task is to simplify the sums that appear in 4 and /g to polygamma functions. This is a straightforward but
tedious task, for which we need several finite sum identities as listed in the Appendix. Some remarks on these identities are
also provided in the Appendix. Though 74 in (49) and I in (55) are valid for any positive integers m and n with m < n, it is
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convenient to assume n > m > 3 in the following simplification, as will be seen. For this reason, we will first simplify /4 and Ip
in the case n > m > 3. The remaining special cases will be considered at the end of this section.

For ease of presentation, we cite the identities used in each step on top of the equality symbol. The argument of each of
the resulting polygamma functions is shifted to one of the following n — m + 2, m, n, 1, with the help of (27). In addition,
simplification by combining like terms is also performed in each step without being explicitly mentioned. We start with 7,
in (49), where by using partial fraction decomposition, the first sum is simplified as

(n—k)! 1
(m —2 — k) k2(k + 1)

M7

k=1
m—2
=k (1 1 2 2
et T ek

kzl(m 2 k) k+1D2  k+l &

m—2

1 -k 1 (m+nm—-—m+1)! Cn—m)n-—1)
(m+”)z /<)wc2+2("_m+l)Z -k (m— 1) T m—2)
(ALD) (n— k) 1 2(n —m + n! 5n —3mn —2m +2)(n — 1)!
(m +>§j “oE =TT Vo = voln —m + D)+ =D

(A12) (m 4+ n)n! Z Yoln —m+k) (m—+n)n!

(m —1)! (m —1)! ( wl(n_m+2)——'¢/1(l’l)——wo(n—m+2)——1p0(n)

4m — 1 1 1
+ Yo(n —m + 2)[Yo(n) — Yo(m) + Yo(1)] + < + + + - - 2> [Vo(n —m +2)
m+n n—m+1 n—m n
2n —2m + 1 - 1 5n—3mn —2m + 2 2n —
o) + @n —2m+ DiYo(m) — Yo(D] — Yo(m)  5n—3mn —2m+2 n—m (56)
n—m)n—m+1) m (m +n)n nn—m)n—m+1)
Similarly, the second sum in (49) is simplified as
”i? n—1—k)! 1
P (m—3—-k)!k(k+ Dk +2)(k+3)
’”3(n—1—k)v Lol 1
kzl(m—3—k)'2 k41 k42 3k +3)
- ! -1 -2)— 1 2 1
@iy (0 = DmGm = D(m —2) —nn + Dn +2) G —m +2 | [ vo) — votn —m +2) —
2m! 3 n—m+2
(”36 D o = 31 m? + 617 — 15mn — 18m + 120 + 4). (57)
Inserting (56) and (57) into (49), 1, is simplified to
Iy =2mn(m + n) Z % + mn(m + n){lpl(n —m+2) — Y —m +2) + 2¢o(n — m + 2)[Yo(n)
k=1
2(2n —2m + D[yo(m) — Yo(1)] aryo(n) + axpo(n —m +2) + az
- 1 , 58
olm) + o] + =T T rm—— (58)
a; = %(9m3n +9m> — 17m*n* — 6m?n — m* + Tmn® — mn® — 10mn — 2m +n* = 2n> —n® + 2n), 59)
1
a, = g(m5 + Tm*n + 2m* — 26m3n® — 26m3n — m> + 26m*n® + 18m*n® + 3m*n — 2m> — Tmn*
+ 10mn® + 15mn® + 4mn — n> — 4n* — 5n° — 2n?), (60)
1
az = 1—8(—5m5 — 65m*n + 14m* + 139m’n® 4+ 169m°n + 41m> — 63m*n’ — 282m*n* — 142m*n
—2m?* — 6mn* + 87mn® — 13mn® — 40mn — 12m + 12n* + 420> + 420> + 12n). (61)

022106-6



PROOF OF VIVO-PATO-OSHANIN’s CONJECTURE ON ... PHYSICAL REVIEW E 96, 022106 (2017)

We now simplify /g in (55), where the first two sums are
m—1
> 0 —m+ 1+ 2k)yo(n —m + 1+ k) + 2k + 172

k=0

m—2
+Z—2(k+l) [ —m + 1+ k)Won —m+1+k) +n—m+2+3k/2]

—n—m+1+k
m—2 m—2
=6 kYt —m+140)+20n =3m+4) ) kyg(r—m+1+k)+ @ —m+Din—m+3)
k=0 =0
= m—2 m—2
X ng(n—m—i-l+k)+142k21/f0(n—m+1+k)+2(4n—4m+II)Zkl/fo(n_m_i_l+k)
=0 k=0 k=0
m—2 m—2 )
+203n —3m+5)Y Yon —m+1+k) + 2(k + D(n —m 42 4 3k/2)
k=0 —o n—m+1+k
m—2
+ D k417 +[(n+m — Dio(n) +2m — 1T
k=0

_ 1 1
(A1)_(46) mn(m +n — l)wg(n) + 6(3m3 + 15m®n + 3mn® — 6mn —3m — n° + n)lﬁo(n) + g(n —m—1)

1
X(m—m)n—m+ Dyo(n —m +2)+ %(_%Sm3 + 21m%n + 6mn® —9mn — 17m — 12n* + 6n + 6). (62)

The remaining double sums in /g needs some preprocessing before the sum of the types in the Appendix appear. Specifically, by
shifting the inner sum k — k — j, changing the summation order, and using partial fraction decomposition, we have
1

m—1m—j

2(n—m+k)!(k+j)!<n—m+1+k_ k )2

L (n—m Atk + )k ji—1 j+1

~
—_

m—

2m—m k- k! <n—m+1+k—j k—j)2

S —m Rl =)L) j—1 j+1

=~

m—1

~ 2n—mk— [ o[ 1 1.2 2
= <n—m+k>!(k—j)!{(” m itk ”[(j—l)”jﬁj j—l]

k=2 j=2

+ (k ')2 ! + ! + 2 2 ( +1+k N (k ) ! ! 2 =T +7 (63)
- —+——=|—-(m—m — — — = =)t =
Plgypr T2 g SN VI B S e

where 7, and Z, collect terms involving 1/j and 1/j2, respectively, as (the terms involving 1/j° cancel)

ok Hm—m+24k—j Ln-—m+k— ) S —m+1+k— )
L = — + 2k +1
P eyl D ety ; a2y ); (k= lj
k . k . - .
(n—m+k—j)! m—m+1+k—j)! (n—m+k—j)!
-y = 4 2n—-m+1/24k -y — | s 64
; G—1=)) rmmtl )]X:; *— )Y ; *—1= (©4)
m—1 k . k . k+1 .
_ 2k! m—m+14+k—j)! n—m+k—j! m—m+14+k—j)!
Iz_k:z("_m“‘)’ 22 (k—1— j)j? ]X:; (k—1— )2 +(k+1)2_; *— )2
by koD +1+k)2k:("_m+l+k_j)! (65)
e h—1-pyz " TETE

=2
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The sums in Z; are further simplified as

R 206n = 3m A D —m A L2k G (n—m Ak — )] R A= m D G (1 —m -k — )
=) 2 -2 2

P (n —m+k)! = (k— pDYJj = (n—m+k)! = (k — j)!

— k(k — 1)5n — 5m — 1+ 9k)
n—m-+k

k
(410 252(3n—3m+4)(n—m+1+2k)kvZ(n_m+k_j)!
— (n—m+k)! S k=)

+(n—m)(4m2—8mn—m+4n2+n—7)

m—2 3 2 2 2 3 2
X[wo(n)—wo(n—m+2)]+m(18m —38m*“n — 19m” + 28mn” 4+ 19mn — 14m — 8n” — 6n +13n+7)
n—m

m—1
WY 23n — 3m +4)|:Z(n —m+ 1+ 2000 —m + 1+ k) — (mn +2m — 2n — d)o(n —m + 2)}
k=2
6m? — 16mn —Tm +4n* +6n +7
2m —2)!

— 12m*n — m® + 12mn® + 10mn — m — 2n> —n* + n)[lﬂo(n) — Yo(n —m + 2)]

—@2n —=2m—1Dn —m)n —m+ DYoo) — yo(n —m +2)] +

AD—(A2
(AD—(A2) (2m3

1 2 2
+50m — 2)(12m* — 22mn — 9m + 4n” — 1). (66)

The sums in 7, are further simplified as

m—1 k .
2[m? —2mn —3m +n®>+3n+2 — 6(m — n — Dk + 6k*1k! n—m+k—j)!
L= ) > ’

— — )42
— (n —m+k)! = k=Dl
mZ_IS(n—m-Fl—i-Zk)k!i(n—m—l—k—j)!+m2_:] 4k! Xk:(n—m—i-k—j)!
S a-mab A k=Y Sn-mtble k=)
" k(k — D)(@dn — dm — 1+ 3k)
* 2 k
k=2 (n —m+k)
(/410):(A11)'11712[Wl2 2mn —3m +n*+3n+2 — 6(m—n—1)k—i—6k2 i(n—m_pk_])!
& (n—m+k)! S k-

2

1

E(m —3m®n — 16m2+3mn2+48mn—9m—n3—16n2+9n)[1/f0(n)—wo(n—m+2)]

n m—2 (
dn—m+ D"

1
[(n—m+2)n—m+ 1)+ 6(n —m+ Dk + 6k*]

—6m*n — 7Tm?> + Tmn® + 112mn + 19m — 20> — 330> 4+ 2n + 9)

3
|

k
(412) 22%('1 m+j) i —m 14k

k

||
(3]

j=1

—Yom—m+1+k)+ v —m—+ D)+ Y5 —m+ 1)+ 2900 — m)[Yo(n —m + 1+ k) — Yok + 1)
—vYon —m+ 1)+ Yo(1)] ¢ — %(5m3 — 15m®n — 4m® + 15mn?* 4+ 24mn — m — 5n° — 4n? +n)[1/f0(n)

(m — 2)(25m3 — 46m%n — 45m? + 31mn?* + 48mn + 27m — 10n> — 170> — 38n — 55)
dn—m+1)

—Yo(n —m +2)] +

(AD)=(A9)  Yo(n —m + k)

2mn(m +n) Yy p +mn(m+n){—1/f1(n)+1/f1(n —m+2) = Yg(n) — Yi(n — m +2) + 29
k=1

x (n —m + 2)[Yo(n) — Yo(m) + Po(1)] +

’

2(2n —2m + D[yo(m) — Yo(1)] } bio(n) + boho(n —m +2) + bs
(n—m)n—m+1) (n—m)n—m+1)
(67)
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where we also changed the summation order between j and k to arrive at the last equality, and b,,b,,b; are

by = %(—Sm5 +29m*n + 5m* — 62m3n* — 40m>n + m> + 62m*n® + 86m*n® + 17m*n — m? — 29mn*

—56mn® — 25mn® + 2mn + 5n° + 5n* — n® — n?), (68)
by = $(5m®> — 29m*n — Sm* + 62m*n* + 36m’n — m* — 62m*n® — 82m*n* — 13m*n + m* + 29mn*

+60mn> 4 25mn® — 2mn — 5n° — 9n* — 303 4+ n?), (69)
by = 1(—29m° 4+ 83m*n + 95m* — 89m’n* — 24Tm’n — 89m> + 45m*n’ + 243m*n* + 187m’n + 29m*

—10mn* — 111mn® — 140mn® — 33mn + 2m + 20n* + 26n° 4 4n> — 2n). (70)

With Z, and 7, being simplified as in (66) and (67), respectively, we now insert (62) and (63) into (55) to obtain

Yo(n —m + k)
k

Yi(n)
m-+n

IB=2mn(m+n)Z +mn(m+n){—1/f1(n)+1//1(n—m+2)— —lﬂg(n—m—i—Z)
k=1

22n — 2 1 — 1
+290(n — m + D[o(n) — Yo(m) + po(1)] + —ar— 2t Do) = oDl }

(n—m)n—m+1)
bypo(n) + bsyo(n — m + 2) + bg
n—m)n—m+1)

) (71)

1
by = g(—3m4 +9m3n? + 9mPn — 17Tm%n® + 3m*n? + 8m2n + 3m? + Tmn* — Tmn® — 19mn® — 5mnn® — 2n* —n’ + 2n2),

(72)
bs = %(m5 + Tm*n + 2m* — 26m3n® — 26m3n — m> + 26m*n® + 18m>n® + 3m>n — 2m> — Tmn*
+ 10mn® + 15mn® + dmn — n® — 4n* — 5n° — 2n2), (73)
be = lig(—Sm5 — 65m*n + 5m* + 139m°n* + 187m’n + 41m> — 63m>n® — 291m>n* — 133m>n + Tm*
—6mn® + 87mn® — 22mn* — 49mn — 12m + 12n* + 42n° + 42n* + 12n). (74)

We observe that 14 in (58) and I in (71) share many common terms, where by inserting (58) and (71) into (30) the remaining
terms of the induced variance E,[T?] are

1
E,[7?] = mn(m + n)y(n) + mn(mn + Dyg(n) + m*(m + Dnyo(n) + Zmz(m + 1)

(a1 — by)o(n) + (a2 — bs)Yo(n —m +2) + a3 — be
+
n—m)n—m+1)

= mn(m + n)yr1(n) + mn(mn + l)wg(n) + m(m2n +mn+m+2n+ l)wo(n) + ‘1—‘m(m + D(m®> +m + 2),
where we have used the results
ai—bs=mn—mmn—-—-m+1)2n+m+1),
a, —bs =0,
a3 —bg = ym(m + 1)(n —m)(n —m + 1),

obtained by comparing (59)-(61) with (72)—(74). This completes the proof of the induced conjecture (26) in the casen > m > 3
and hence the VPO’s conjecture (7) for the same case.

Since m < n, the remaining cases to be shown are m = 1, m = 2, and m = n, where I, in (49) and I in (55) can be directly
computed. We list the simplified expressions for /4, I, and the induced variance E, [Tz] in Table I. Each of the special cases is

proven by comparing the expression of E g[Tz] in Table I with that of the corresponding induced conjecture (26). We complete
the proof of the VPO’s conjecture (7).
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TABLE 1. Special cases.

Iy n(n + Dy (n) + n(n + DYgn) + @n + 2)o(n) + 2
m=1 Iy [n¥o(n) + 117
E,[T°] n(n + Dy (n) +n(n + D (n) + (4n + 2)¢o(n) +2
14 2[n(n + 2)y1(n) 4 n(n + 2)y5(n) + (Tn 4 4)yo(n) 4+ n + 5]
m=2 Iy 2n(n + l)wg(n) +2(5n 4+ Dyo(n) +2n + 7
E,[T?] 2[n(n + 2)¥1(n) + n(2n + DYEn) + (8n + 3)Yo(n) + 6]
14 é[—18n31//1(n) +36n3y, (1) + 1813y (n) + 6n(5n? + 3n + Dyo(n) — 43n® + 33n> + 22n + 6]
m=n Iy 1—'8[—72}13%(11) + 72039, (1) + 18(2n — l)nzwg(n) +6n(10n% — 3n — Do(n) — 86n3 + 57n% 4+ 351 + 12]
Eg[Tz] %[8n3¢1 (n) + 4n’*(n* + l)wg(n) +4nn® +n>+3n + Do(n) + n(n + D> +n+2)]

APPENDIX: FINITE SUM IDENTITIES USEFUL IN SEC. III

In this Appendix, we provide some useful finite sum identities involving digamma and trigamma functions:

Zlﬂo(k+l) =+ Dyo(n +1) — Ipo(l) — n, (AD)
k=1
> kpotk +1) = %(n2 +n—P+)Yn+D+ %l(l — Do) + %n(—n +20—1), (A2)

k=1

- 1 1
Z kKol +1) = 6(2n3 +3n% +n+20 =3 +1)yo(n + 1) — 61(212 — 31+ 1))
k=1

1 2 2
—l—%n(—4n +6nl —3n — 121 +121+1), (A3)
D oWdk+1) =+ Dyg(n + 1) — 2n + 20 = Dypo(n + 1) — Iyg (1) + 2 = Do) + 2n, (A4)

k=1

kag(k +1)= %(nZ +n—F+)yin+D+ %( —n*42nl —n 431> =31+ 1) Yo(n +1) + %1(1 . N0
k=1

[ 1
=5 (3 =31+ 1)yo() + 7n(n — 61 +3), (A5)

n 1 1
Zkngg(k +1) = 6(2n3 +3n% +n+20 =32 +1)ys(n+1) — 1—8(4n3 — 6n°l + 3n* + 12n1*
k=1

1
— 120l —n +221° — 331> + 171 = 3)yro(n + 1) — g1(212 =31+ 1)y

1
+—(220° = 3312 + 171 = 3)Yo(1) + ——n(8n* — 30nl + 15n + 1321 — 1321 +25),  (A6)

108

SR
ool’—‘

Vitk +1) =+ Dyi(n 4+ D — Iy (1) + Yo(n + 1) — Yo(l), (AT)
k=1

kal(k +1) = %(n2 +n—F+0)Yin+D+ %l(l — Dy () — %(21 — Do(n +1) + %(21 — Do) + %n (A8)
k=1

- 1 1
Zkzl//l(k +1) = g(2n3 +3n* +n+20 =3 +1)y(n+1) — 61(212 — 31+ 1)y ()
k=1

+ —(61* — 61 + 1)yro(n + 1) — é(az — 6l + 1)yo() + én(n —41+2) (A9)

N =
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i(n—k)! _(n—=D!'  n

—m—k)! (m—=Dln—m+1 (A10)
" mn—k!'1l n
Z—(m —iE %Wo(’l 1) = Yot —m+ 1), (A1)

m

Z(n—k)!i_ n! 1//0(n—m+k)
k

— (m — k) k2 " m! — k

[wl(n—m+ D—yi(n+ D)+ ygn—m+1)— ygn+ D]
!
+ :T}Wo(" —m)[Yo(n + 1) — Yo(m + 1) — Yo(n —m + 1) + Yo(1)]. (A12)

Some remarks on the identities in the Appendix

The formulas of finite sums of polygamma functions of the types (A1)-(A9) are straightforward to show. The proofs
essentially involve changing the order of the sums and making use of the lower-order sums already obtained in a recursive
manner. In particular, the formulas (A1)—(A4) are available in Ref. [15], Chap. 5.1. The formulas (A5)—(A9) can be read off from
the expressions in Ref. [16], p. 861, by keeping in mind the difference between polygamma functions (6) and (8) and harmonic
numbers.

The last three formulas (A10)—(A12) play a crucial role in the simplification in Sec. III as they connect some of the sums
in (49) and (55) to polygamma functions. The first of them [Eq. (A10)] is known as the Chu-Vandermonde identity (Ref. [3],
p- 99). The next formula [Eq. (A11)] can be established as follows. First, the identity (27a) implies that

=k s (n— k)
2 G BIE = 2 o D = el A

By using the definition of digamma function (6), changing the order of sums, and evoking the Chu-Vandermonde identity (A10),

the first term in (A13) is represented as

m

k . oon+1 (n—k)‘l n! 1 Ald
Z k)'w°(+) - Z(m 0! k (n—m+1)(m—1)!<”+n—m+1)' (Ald)

k= =1

m

Similarly, we have

m m—1
(n —k)! n m—1-Kk'1 n—1)! m—1
= T k) = - — — ). Al5
k;(m—k)z'/’(’( ) = T ;(m—l—k)!k (n—m+1)(m—1)!<yn+n—m+1> (ALS)
Inserting (A14) and (A15) into (A13), we obtain a recurrence relation of the sum (A11) as
(n—1)!
s(m,n) = —s(m —1,n—1), (A16)
m! m
where we denote
2 (m—k)1
) = _— Al7
s(m,n) ;(m—k)!k (A17)

Finally, by iterating m — 1 times the relation (A16), we arrive at

(m.m) n! 1+ 1 I 1 nmn—1)---n—m+1)
s(m,n) = —| -
m!'\n n-—1 n—m+1 mm—1)---1

|
$(0.n — m) = %[Wo(ﬂ + 1) — o(n —m + 1],

(A18)

where we have used the fact that s(0,n — m) = 0. Note that the formula (A11) can also be obtained via its connection to a
hypergeometric function of unit argument as (Ref. [3], p. 111)

SR D w2 - = " e+ D vtn —m D)
Lm0k m-nly o e = o+ 1) = Yol —m + D].

To prove the last formula (A12), we first observe from (27b) that

-kl (n —k)!
;mﬁ_;( k) — vk + Dl (A19)
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Following the same idea that has led to (A16), we also obtain a recurrence relation in this case as

(n—Dln—m) n
t(m,n) = T[iﬁo(ﬂ) — Yo(n —m)] + Zt(m —Ln-1), (A20)
where we denote
(n—kKk! 1
t(m,n) = (A21)
,Z:l: m— k) k>
Iterating m — 1 times the relation (A20), we arrive at
2=k 1 n! X Yon—m+k) Yon —m + k)
T E T Z LD ot — mlotn + 1)
k=1
—Yo(m + 1) — Yo(n —m + 1) + Yo(D], (A22)
where by using the identity [Ref. [17], Eq. (23)]
“ — 1
vo-m+h _ [+ 1) =i —m+ D)+ 20+ 1) — Y3 —m + 1], (A23)
n—m-+k 2

k=1

we obtain the claimed formula (A12). Though the expression (A12) still contains a sum of digamma functions that may not be
further simplified, it is sufficient for simplification purposes. As shown in Sec. III, the terms involving this remaining sum cancel
each other. Finally, we note that as a result of the relation to the hypergeometric function

3 (n—b!1 _ (=1 P L

_ —m;2,2,1 —n; 1),
Cm— U T (m— D)y " 1)

the formula (A12) implies a byproduct that generalizes a result of Luke (Ref. [3], p. 111) as

n — Yoln — m+k)
F(1,1,1,1 = m;2,2,1 —n;1) = — _—
4F5( m n; 1) - E r

k=1

+ %%(ﬂ —m)[Yo(n + 1) —do(m + 1) — ho(n —m + 1) + Yo(D)],

which may be of independent interest.

[1/f1(n—m+1)—1/f1(n+1)+1/fo(n—m+1)—1/f0(n+1)]

(A24)
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