
PHYSICAL REVIEW E 96, 022103 (2017)

Entropy production and energy dissipation in symmetric redox supercapacitors
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In this work we propose a theoretical model that accounts for the main features of the loading-unloading process
of a symmetric redox MnO2-based supercapacitor dominated by fast electrochemical reactions at the electrodes.
The model is formulated on the basis of nonequilibrium thermodynamics from which we are able to deduce
generalized expressions for the electrochemical affinity, the load-voltage and the current-voltage equations that
constitute generalizations of the current-overpotential and Butler-Volmer equations, and that are used to describe
experimental voltagram data with good agreement. These equations allowed us to derive the behavior of the
energy dissipated per cycle showing that it has a nonmonotonic behavior and that in the operation regime it
follows a power-law behavior as a function of the frequency. The existence of a maximum for the energy
dissipated as a function of the frequency suggests the that the corresponding optimal operation frequency should
be similar in value to ωmax.
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I. INTRODUCTION

The current energy demand and the need of improvement of
electrochemical storage devices has intensified both scientific
and industrial research in order to increase their energy
conversion, efficiency, and safeness, as well as to reduce
their cost, size, and environmental impact. Among the most
common and widely used electrochemical storage and energy
conversion devices are batteries, fuel cells, and capacitors.
In the last decades, many materials, synthesis techniques,
and improved electrode morphologies have been proposed in
order to increase both their storage capacity and their energy
efficiency [1].

Recently electrochemical capacitors (ECs) or superca-
pacitors have received a lot of attention due to their high
power density, high cycling stability, long shelf life, high
efficiency, wide range of operating temperatures, and high
energy conversion rates [2–5]. The EC systems still have
several challenges to overcome, such as low-energy densities,
high production cost, and low specific capacitance; this has
promoted an intense research for electrode materials that have
both high specific surface and porosity [6,7].

The EC can be categorized in two types: the first are
the electrical double-layer supercapacitors, in which their
capacitance is due to electrostatic charge accumulation in
the electrode surface and there is no charge transfer or net
ion exchange between the electrode and the electrolyte; and
second, the faradaic supercapacitor, or pseudocapacitor, in
which there is a charge transfer between the electrode and
the electrolyte by means of a redox reaction, an intercalation
process or an electrosorption on the surface of the electrode
that changes the oxidation state through an external potential
applied to the cell [8]. It is important to mention that faradaic
and nonfaradaic processes may be simultaneously present in
a supercapacitor, as the so-called hybrid capacitors, as the
lithium-ion capacitor.

In this article we analyze a pseudocapacitor subject to
redox reactions as the ones that happen in electrodes based
in transitions metals, for example, RuO2, MnO2, and Co3O4

[9–11], in order to describe the hysteresis loop and the energy
dissipation during rapid charging or discharging processes.

We chose to study this type of electrode material because the
chemical kinetics dominates the whole capacitor dynamics
over ion transport phenomena. This includes the overcoming
of the double layer potential, the ion diffusion in the electrolyte,
in the surface and inside the nanoparticle, and the intercalation
and insertion process among other effects.

We based our description on chemical kinetics as de-
rived from Onsager’s nonlinear irreversible thermodynamics
[12,13]. It allows us to derive a Langevin equation that
describes the charging or discharging process. This procedure
is very rich since it allows us to replicate the hysteresis
loop, to obtain a scaling law behavior for the dissipated
energy in the low- and high-frequency regime and the entropy
production per cycle. Even more important is the fact that
the Onsager formalism is consistent with the Butler-Volmer
equation, which has been generalized in other contexts in order
to include nonidealities, for instance, phase transitions [14],
hysteresis [15], electrodeposition [16], electrocatalysis [17],
Li-ion insertion batteries [18,19], concentrated solutions [20],
adsorption [21], double layer effects [22,23], and nonequilib-
rium [20,24], among others.

Hysteresis emergence translates into several technical
difficulties and limits possible industrial applications; it is
present in many areas ranging from physical phenomena (such
as ferromagnetic, ferroelectric, and elastic materials), chemical
reactions, and weather dynamics to social and economic
sciences. Systems in which the enclosed area of the hysteresis
loop depends on the frequency of the input variable are called
rate-dependent (and exhibit dynamical hysteresis). Systems in
the previous category possess several properties, perhaps the
most appealing is the emergence of scaling laws that relate
the area enclosed of the hysteresis loop with the frequency, ω,
and amplitude of a periodic driving force; the way in which ω

and the external input relate to each other, and the value of the
exponents of the scaling laws varies for every system (there is
no universal behavior).

Scaling laws have been found in several systems exhibit-
ing dynamical hysteresis, for example, a Langevin three-
dimensional (3D) spin model subject to an external magnetic
field [25] and a switched semiconductor laser [26]. Monte
Carlo simulations in a two-dimensional (2D) model have
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found that the scaling law exponents vary according to
the systems dimension [27]; this has been verified using
renormalization methods [28], suggesting that the difference
between exponents is defined by the universality class to
which the system belongs [29]. The noise intensity has major
significance in the functional form of the scaling law behavior,
as has been proven for a Ginzburg-Landau potential [30].

The article is organized as follows. In Sec. II we lay
the groundwork for our electrochemical model by means of
the Onsager’s nonequilibrium thermodynamics; this scheme
allows us to relate the concentrations in each electrode with the
current for a supercapacitor. Our approach is consistent with
the Butler-Volmer equation. In Sec. III we develop our model
further in order to obtain a stochastic equation for the current,
from which we were able to integrate in order to reproduce
hysteresis cycles observed in experimental data. In Sec. III as
a consequence that our model exhibits dynamical hysteresis,
we obtained an expression for the entropy production per cycle.
Last, we present our conclusions.

II. IRREVERSIBLE THERMODYNAMICS
OF AN ELECTROCHEMICAL CELL

The current-overpotential equation relates the electrical
current I in a electrochemical cell with the overpotential
η of the electrode surface [31]. The standard procedure for
deducing this equation is based on the theory of rate processes
[32] and has the following form [31,33]:

I = Ic − Ia

= I0

[
cox

cox
eq

e−αn
Fη

RT − cred

cred
eq

e(1−α)n Fη

RT

]
. (1)

Here the cathodic and anodic electrical currents are indicated
by Ic and Ia and the exchange current is defined as [31,33]

I0 ≡ nAFk0c
(1−α)
ox cα

red, (2)

where n is the number of electrons involved in the electrode
reaction, A is the area of the electrode, F the Faraday’s constant
and k0 the standard rate constant; α is known as the transference
coefficient. The terms in the parentheses of Eq. (1) include the
nonequilibrium concentrations of the compounds participating
in the redox reaction taking place at the anode (ox) and the
cathode (red), cox and cred, respectively, and their equilibrium
counterparts cox

eq and cred
eq . The electrical energy associated with

the overpotential, Fη, is normalized with the thermal energy
RT , with R the universal gas constant and T the temperature.
When the nonequilibrium ion concentrations cox and cred

deviate weakly from their equilibrium values, cox/cox
eq ≈ 1 ≈

cred/cred
eq , the current-overpotential equation reduces to the

commonly known Butler-Volmer equation, which is valid in
the low current limit [31,33]. The Butler-Volmer equation
obeys two limiting behaviors: (1) for large overvoltage values
it reproduces the Tafel equation and (2) the Ohm law for small
values of the overvoltage [34].

It was recently shown that the framework of nonequilibrium
thermodynamics allows us to give a unified description of
electrochemical processes since it establishes the basis to
deduce both the Butler-Volmer and the Nernst equations over

FIG. 1. Schematic representation of a symmetric supercapacitor.

the same thermodynamics principles [35]. Here we benefit
from this fact in order to formulate our more general model.

A. Electrochemical affinity for a cell under
nonequilibrium conditions

The most basic thermodynamic analysis of an electrochem-
ical cell can be formulated by considering that the system has
three regions: two regions corresponding to the surface of the
electrodes, the anode A and the cathode C, and a third region,
B, that is constituted by the ion solution (see Fig. 1).

Our goal in this section is to deduce the kinetic equation
associated with the charge exchange per unit time at the surface
of the electrodes. Hence, we are compelled to calculate the
entropy production per unit time, diS/dt , of this process. This
quantity satisfies the second law of thermodynamics, which
is the most general criterion for the evolution of irreversible
thermodynamic processes.

Thus, the total change of the entropy can be written,
respectively, by the relations [36,37]

dSA = deS
A + diS

A and dSC = deS
C + diS

C (3)

and

dSB = deS
B + diS

B, (4)

where the subindex e stands for the exchange of entropy with
the surroundings and the subindex i for the entropy produced
in the corresponding system due to irreversible processes. The
total change of entropy is therefore given by

dS = dSA + dSB + dSC. (5)

Let us assume that the during operation the entropy exchanged
between the electrodes and the solution is reversible so that
deS

A, deS
B , and deS

C satisfy the relation deS
A + deS

C =
−deS

B . If in a first approximation we make the assumption
that the relevant irreversible processes taking place during
the operation of the supercapacitor are due to the oxidation
and reduction reactions taking place at the surface of the
electrodes, that is, that diffusion across the solution does not
contribute appreciably. Then we have that for the oxidation
and reduction reactions in the anode diS

A > 0 and cathode
diS

C > 0, whereas in region B, diS
B � 0. In view of these
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considerations, the total entropy change is simply given by

dS = diS
A + diS

C. (6)

Our analysis may be generalized in order to consider other
irreversible processes like ion diffusion in and between both
regions or heat exchange along lines similar to those of
Refs. [38,39]. Nevertheless, in this work we want to emphasize
how the current-overpotential and the Butler-Volmer equations
are naturally generalized when adopting a thermodynamic
consistent approach, as well as the consequences of this
generalization. Thus, we will restrict our analysis to analyze
electrochemical reaction taking place at the surface of the
working electrodes.

If the system operates at constant pressure and temperature,
then the total entropy production (diS = diS

A + diS
C) and the

Gibbs free energy are related by the well-known expression
[40] T diS = −dG � 0. When the irreversible processes
taking place in the system are the oxidation-reduction elec-
trochemical reactions, then we may write

−T diS = dGA + dGC =
⎡
⎣ k∑

i

νA
i μ̃A

i +
l∑
j

νC
j μ̃C

j

⎤
⎦dξ,

(7)

where k and l denote the total number of species and we
have introduced the extent of reaction ξ , defined by the usual
relation: dξ = dni/νi . Here ni is mole number of the ith
species taking place in the reaction and νi its corresponding
stoichiometric coefficient, which follows the standard sign
convention (νi > 0 for products and νi < 0 for reactants) [40].

The electrochemical potential μ̃i is defined by the formula

μ̃i = μi + ziFψi, (8)

where ψi is the electrostatic potential of the ith ionic species
with zi its electrovalency and F the Faraday constant. In
addition, the chemical potential, μi , is defined according to
the well-known relation

μi = μ0
i + RT ln |ai |, (9)

where μ0
i is the standard reference chemical potential, ai , is

the chemical activity that depends on the mole fractions of the
chemical reagents, xi ≡ ci

c�
, with ci the concentration of the

ith species and c� is the standard amount of concentration.
The activity can be written in the form

ai(xi) = xiγi(xi), (10)

where the activity coefficient γi(xi) introduces all the nonide-
alities associated with the physical nature of the species partic-
ipating in the electrochemical reaction and, more importantly,
it should include nonidealities arising from the interaction
between the ions and the surfaces of the electrodes and the
electric double layer, to mention some effects. This point
highlights the fact that the introduction of the activities ai is
unavoidable in order to propose a consistent thermodynamic
model of the operation of systems like supercapacitors and
even in the case of insertion batteries. An explicit relation
between the chemical reagent mole fractions xi and the extent
of reaction ξ will be given in the next section.

Equation (7) can be written in terms of the electrochemical
affinity

Ã ≡ −
⎡
⎣ k∑

i

νA
i μ̃A

i +
l∑
j

νC
j μ̃C

j

⎤
⎦, (11)

which is the thermodynamic force driving the irreversible
process associated with the chemicals reactions in each
electrode. These reactions may be explicitly written as follows:

C :
∑

i

νC
i XC

i + ne−
C

−−−⇀↽−−−
∑

i

νC
i XC

red,i ,

A :
∑

j

νA
j YA

j
−−−⇀↽−−−

∑
j

νA
j YA

ox,j + ne−
A, (12)

where n is the number of electrons transferred in the chemical
reaction. The total electrochemical reaction reads∑

i

νC
i XC

i +
∑

j

νA
j YA

j + ne−
C

−−−⇀↽−−−
∑

i

νC
i XC

red,i +
∑

j

νA
j YA

ox,j + ne−
A. (13)

The electrochemical affinity can be explicitly expressed by
means of Eq. (11) and is given by

Ã =
∑

i

νC
i μ̃C

X,i +
∑

j

νA
j μ̃A

Y,j + nμ̃C
e

−
∑

i

νC
i μ̃C

Xred,i −
∑

j

νA
j μ̃A

Yox,j − nμ̃A
e . (14)

Equation (14) can be further simplified with the substitution
of Eqs. (8)–(10). Using the properties of the logarithms and
collecting terms the resulting expression is

Ã = −�G0 − nFE + RT

[
ln

∣∣∣∣ aox
C

ared
C

∣∣∣∣ − ln

∣∣∣∣ aox
A

ared
A

∣∣∣∣
]

+F

A∑
q=C

⎡
⎣∑

i

z
q

i ν
q

i ψ
q

i −
∑

j

z
q

j ν
q

j ψ
q

j

⎤
⎦. (15)

The first term of this equation is the standard Gibbs free energy:
�G0 ≡ ∑

q

∑
r νrμ

0,q
r , where the subindex r represents the

contributions of all reagents at the electrolyte of both reactants
and products and q = A,C. The second term is the whole
cell potential difference: E ≡ ψC − ψA. The last terms of
Eq. (15) contain the activities associated with oxidation aox

q

and reduction ared
q reactions in both electrodes which were

defined according to the relations

aox
C =

∏
i

a
νC
i

X,i , ared
A =

∏
j

a
νA
j

Y,j ,

ared
C =

∏
i

a
νC
i

Xred,i and aox
A =

∏
j

a
νA
j

Yox,j . (16)

The last term in Eq. (15) represent the electrical potential of
the reagents at the electrolyte and can be used to describe, for
instance, cations near a double layer or in a nonhomogeneous
electrolyte (in which bulk potential is not uniform). The
splitting into sums over indexes i and j explicitly takes
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into account the sign convention of the stoichiometric co-
efficients of products (i) and reagents (j ). In equilibrium,
or near equilibrium, all chemical species in the electrolyte
are at the same bulk potential, so ψb = ψ

q
r . Therefore, the

corresponding sum of the electrical potentials satisfies the
relation

∑
q,r z

q
r ν

q
r ψ

q
r = ψb

∑
q,r z

q
r ν

q
r = 0, which vanishes

because the whole electrolyte, and the reagents in it, are at
electrochemical equilibrium. This assumption is consistent
with our previous assumptions on the entropy production of
the electrolyte (region B) also vanishes.

In equilibrium, the electrochemical affinity (15) vanishes,
E = Eeq, and therefore we may write

Eeq = E0 − RT

nF

[
aox

C,eqa
red
A,eq

ared
C,eqa

ox
A,eq

]
, (17)

where we have introduced the equality �G0 = −nFE0 =
−nF (EC

0 − EA
0 ) and the equilibrium activities ai,eq. The last

equation is the classical Nernst equation for the equilibrium
potential.

B. Generalization of the current-overpotential equation

In this subsection, we will derive the current-overpotential
equation for the half-cell reaction occurring at the cathode
and finish our general analysis showing the consistency of
the theoretical approach used with well-known results of the
literature in the corresponding limiting cases.

The entropy production at the cathode appearing in Eq. (7)
can be rewritten in the form

−dGC

dt
= ÃC

T

dξ

dt
= ÃC

T
Jξ > 0, (18)

where Jξ ≡ dξ/dt and the electrochemical affinity ÃC at the
cathode is given by

ÃC = −�GC
0 + RT ln aox

C − RT ln ared
C − nFEC, (19)

with �GC
0 = ∑

r νrμ
0,C
r and the cathode potential given by

EC = ψC . Since the entropy production must be a positive
quantity in accordance with the second law of thermody-
namics, we may follow the postulates of nonequilibrium
thermodynamics and assume that that fluxes and forces are
proportional to each other with an Onsager coefficient as a
proportionality coefficient [40,41]. Hence, we may write [42]

Jξ = βÃ(ξ ), (20)

where β is an Onsager coefficient with units [β−1] = J s/mol
and may, in general, be a function of the state variables like the
temperature T , the chemical activities a(x), and the electric
potential ψ [40].

The load-voltage equation (20) connects the evolution of
the extent of reaction ξ , that measures the loading state of
the electrodes as the electrochemical reaction advances, with
the voltage. Solving this equation allows to obtain the time
evolution of ξ (t).

Now, taking into account that the electrical current is related
to the number of faradays transferred at the electrodes and
the reaction velocity [2,41], we may define the electrical

current as

I ≡ qtrk0
Ã

RT
, (21)

where qtr represents the effective amount of charge transferred
at the electrodes and, for convenience, we have written β =
k0/RT with k0 the reaction velocity constant. Using Eq. (19)
in Eq. (21) we obtain the following general expression for the
electrical current:

I

Itr

= −�GC
0

RT
+ ln

[
aox

C e−nFEC/RT

ared
C

]
, (22)

where we have defined the effective transference current
Itr = qtrk0. Now, using the relation EC

0 = −�GC
0/nF the last

formula transforms into

I

Itr

= ln

[
aox

ared
e− nF (E−E0)

RT

]
, (23)

where we have dropped the superscript C for notation sim-
plicity. The explicit dependence of the rate constant k0 on
temperature and other variables may be determined from a
microscopic theory, like the theory of absolute reaction rates
and its generalizations to the case of electron transfer in the
presence of quantum effects; see Refs. [32,43].

Equation (23) can be written in a more familiar way
by splitting the exponential after introducing the charge
transference coefficient α, which measures the fraction of the
interfacial potential between the electrode and the electrolyte
[31]. Thus, we may write

I

Itr

= ln

[
aox

ared

e−α
nF (E−E0)

RT

e(1−α) nF (E−E0)
RT

]
. (24)

Equation (24) represents the most general way to express
the electrical current associated to an heterogeneous oxidation-
reduction reaction and is fully consistent with the Nernst
equation when equilibrium is reached.

The current-overpotential equation and the Butler-Volmer
equation are particular cases of Eq. (24), which are valid for
ideal systems near equilibrium. This can be shown by writing
Eq. (24) in the more convenient form

I

Itr

= ln
[
aoxe−α

nF (E−E0)
RT

]
− ln

[
arede(1−α) nF (E−E0)

RT

]
. (25)

Introducing now the equilibrium potential difference Eq ,
Eq. (25) becomes

I

Itr

= ln
[
aoxe−α

nF (E−Eq +Eq −E0)
RT

] − ln
[
arede(1−α)

nF (E−Eq +Eq −E0)
RT

]
.

(26)

A first order expansion of the logarithms around the equilib-
rium value of their arguments [ln x ∼ (x − 1) + O(x2)] yields

I

Itr

= aoxe−α
nF (E−Eq )

RT e−α
nF (Eq −E0)

RT

− arede(1−α)
nF (E−Eq )

RT e(1−α)
nF (Eq −E0)

RT . (27)
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Equation (27) can be simplified by identifying the overvoltage
η ≡ E − Eq and noticing that the exponentials carrying the
term Eq − E0 can be rewritten in terms of the equilibrium
concentrations by means of the Nernst equation for the half-
cell:

e− nF
RT

(Eq−E0) = ared
eq

aox
eq

, (28)

which was obtained from Eq. (19). Substituting now the
relation (28) into Eq. (27) and making some rearrangements,
we finally obtain the current-overpotential equation

I

Ĩ0
= aox

aox
eq

e−α
nFη

RT − ared

ared
eq

e(1−α) nFη

RT , (29)

where we have identified the generalized exchange current Ĩ0:

Ĩ0 = Itr

[
aox

eq

]1−α[
ared

eq

]α

= nFAk0[γ ox]1−α[γ red]α
[
cox

eq

]1−α[
cred

eq

]α
. (30)

Comparison of this expression with ours suggests that the
effective charge transferred is related with the the surface
concentration of ions at the electrode, c�, and thus, in this
limit it obeys the relation qtr = c�nFA. The exchange current
has been generalized in other works by including excluded
volume effects [18] or by considering the electron transference
process [20]. Here have neglected this second process because
we assumed fast chemical kinetics. However, these and other
effects can also be incorporated in our description.

The Butler-Volmer equation can be obtained from Eq. (29)
in the low-current limit for ideal systems: γ q � 1 and aq/a

q
eq �

cq/c
q
eq � 1 for q = ox,red.

III. GENERALIZED CURRENT-OVERPOTENTIAL
EQUATION FOR A MODEL REDOX-PSEUDOCAPACITOR

In this section we will formulate a minimal electroki-
netic model describing the operation of an idealized redox-
pseudocapacitor, understood as a pseudocapacitor whose time
behavior is dominated by the chemical kinetics and not by
diffusive transport processes [44,45].

Our analysis will follow the general scheme presented in
previous section and focuses on the description of the charging
or discharging process in terms of the extent of reaction
ξ , which reflects the loading state of the capacitor in the
following way. As the reaction advances, the extent of reaction
evolves from a completely charged state to a fully discharged
state. The different degrees of loading are represented by ξ ,
with ξ ∈ [0,1]. Here ξ = 1 represents the charged state and
ξ = 0 the discharged state. The value of the extent of reaction
depends upon the chemical affinity of the reaction and the
external voltage and is, in general, influenced by fluctuations
in chemical reagents at the surface of the electrodes.

The modeling of the charging or discharging process is
carried out in terms of a reversible chemical reaction which is
the sum of the half-reactions in each electrode. Let us consider
a MnO2-based pseudocapacitor. In this case the charging or
discharging process happens through a redox reaction in which
the Mn changes its oxidation state from +4 to +3 by the

following reversible reactions [3,46]. At the cathode we have

C : [MnO2]C + C+ + e− → [MnO−
2 C+]C, (31)

where C+ stands for an alkali cation that may be Na+, Li+,
or K+. Due to the fact that most capacitors are made with
symmetrical electrodes, we assume that the other electrode
follows a similar reaction but with the peculiarity that the
extent of reaction advances in the opposite direction

A : [MnO−
2 C+]A → MnOA

2 + C+ + e−. (32)

Thus, the complete electrochemical reaction is

[MnO2]C + [MnO−
2 C+]A + C+ + e−

A

−−−⇀↽−−− [MnO−
2 C+]C + [MnO2]A + C+ + e−

C . (33)

The electrochemical affinity for the complete cell reaction
can be expanded by means of Eq. (11) and by following the
standard sign convention [47], then reads

Ã = μ̃C
MnO2

+ μ̃A
MnO−

2 C+ + μ̃C
C+ + μ̃C

e

− μ̃C

MnO−
2 C+ − μ̃A

MnO2
− μ̃A

C+ − μ̃A
e . (34)

The electrochemical potentials appearing in Eq. (34) can
be expanded by using Eq. (8). Considering now that the anode
and the cathode are at fixed given potentials, then the following
equalities hold: ψA

MnO−
2 C+ = ψA

MnO2
and ψC

MnO2
= ψC

MnO−
2 C+ . In

the case of the chemical potentials we have the equalities μA
e =

μC
e and μC

MnO2
= μA

MnO2
due to the fact that they represent the

same material at identical proportions.
Using these relation into Eq. (34) we obtain that the

electrochemical affinity reduces to

Ã = −A0 + μA
MnO−

2 C+ + μC
C+ − [

μC

MnO−
2 C+ + μA

C+
]

−FψC + FψA + FψC
C+ − FψA

C+ . (35)

The ion concentrations at the reaction plane can be written in
terms of the bulk concentrations by following the Frumkin
approach [48]. Hence, we use the Poisson-Boltzmann ion
distribution [23], which reads

cC
C+ = cbulke

−F (ψC

C+ −ψbulk)/RT ,

cA
C+ = cbulke

−F (ψbulk−ψA

C+ )/RT . (36)

Similarly, each chemical potential at the reaction plane can
now be written in the following manner:

μC
C+ = RT ln γ +cbulke

−F (ψC

xC+ −ψbulk)/RT

μA
C+ = RT ln γ +cbulke

−F (ψbulk−ψA

C+ )/RT . (37)

Substituting Eq. (37) into Eq. (35) and following the results of
the previous section we have that the electrochemical affinity
reduces to

Ã = RT ln

[
aA

MnO−
2 C+

aC

MnO−
2 C+

]
− κF (E − E0), (38)

where we have introduced the effective charge transfer
coefficient κ ∈ [0,1] measuring the effectiveness of charge
transfer in the electrokinetic reactions.
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A. Mass fractions, activities, and extent of reaction

During the charging or discharging process of the super-
capacitor the composition of each electrode changes as the
reaction evolves. When the supercapacitor is fully charged,
the anode composition is MnO−

2 C+. As the reaction advances,
its composition changes until the anode composition is MnO2.
In a similar way, the cathode composition changes from MnO2

to MnO−
2 C+.

In view of this, the anode and cathode activities in
Eq. (38) can be modeled by considering that the compound
[MnO−

2 C+]A,C can be described as a solid mixture of the pure
substances MnO2 and MnO−

2 C+. Thus, although the state of
composition represented by the number of moles n[MnO−

2 C+]A,C

of [MnO−
2 C+]A,C at the anode and the cathode varies as the

reaction advances, the total number of moles nT of the pure
quantities MnO2 and MnO−

2 C+ remains constant during the
whole charging or discharging process:

nT = nMnO2 + nMnO−
2 C+ . (39)

The molar fractions which represent the composition of each
electrode during the charging or discharging process can be
defined as

xA
MnO−

2 C+ = n[MnO−
2 C+]A

nT

,

xC

MnO−
2 C+ = n[MnO−

2 C+]C

nT

. (40)

If the initial state of the supercapacitor corresponds to the
discharged state, each molar number can be written in terms
of the extent of reaction according to the relations

n[MnO−
2 C+]A = ξnT and n[MnO−

2 C+]C = (1 − ξ )nT . (41)

Thus, the molar fractions are given by

xA
MnO−

2 C+ = ξ and xC

MnO−
2 C+ = 1 − ξ (42)

and obey the relation

xA
MnO−

2 C+ + xB
MnO−

2 C+ = 1. (43)

Recalling Eq. (10), the anode and cathode activities in
Eq. (38) can now be written in the form

aA
MnO−

2 C+ = xA
MnO−

2 C+γ A
MnO−

2 C+ ,

aC

MnO−
2 C+ = xC

MnO−
2 C+γ C

MnO−
2 C+ , (44)

where the activity coefficients γ
A,C

MnO−
2 C+ account for the

deviation of the system with respect to the diluted case.
Since both activity coefficients γ

A,C

MnO−
2 C+ change as the

reaction advances, then they must depend on the extent of
reaction. However, this dependence must be consistent with
the limiting behavior of pure substances γMnO−

2 C+ and γMnO2 ;
that is, when the supercapacitor is fully charged the anode
composition is MnO−

2 C+, and when it is fully discharged its
composition is MnO2. The inverse conditions apply for the
cathode.

The corresponding limiting behaviors for each activity
coefficient can be reproduced by using the Vegard law [49],
which relates the limiting states by means the following the

G/
R

T

ξ

Ω = 1.5, E = 0

Ω = 2.56, E = 0.15

Ω = 2.56, E = 0

FIG. 2. Schematic comparison between three characteristic
curves of Gibbs free energy.

linear relation in terms of the extent of reaction

ln γ A
MnO−

2 C+ = (1 − ξ ) ln γMnO−
2 C+ + ξ ln γMnO2 ,

ln γ C

MnO−
2 C+ = ξ ln γMnO−

2 C+ + (1 − ξ ) ln γMnO2 , (45)

where γMnO−
2 C+ and γMnO2 are the pure substance activity

coefficients. Vegard’s law is commonly used to model the
volume change in solid mixtures [50] and can be generalized
to other properties; see Ref. [51]. Equations (45) allow us to
describe both the charged and discharged states with ξ = 0
and ξ = 1, respectively.

B. Load-voltage and current-voltage equations

The results of the previous paragraph allow us to write
the electrochemical affinity in terms of the extent of reaction.
Substituting Eqs. (42) and (45) into Eq. (44) and the result into
Eq. (38), the electrochemical affinity then becomes

Ã(ξ ) = RT

[
ln

(
ξ

1 − ξ

)
− �(1 − 2ξ )

]
− κF (E − E0),

(46)

where the regular parameter is defined in terms of the
activity coefficients of the pure substances by the relation
� = ln |γMnO2/γMnO−

2 C+|. It is convenient to notice that the
use of Vegard’s law leads to an expression of the chemical
part of the affinity which is entirely similar to a regular
mixture expression. This fact suggests that, if the linear relation
between limiting states of the Vegard’s law is replaced by
a nonlinear relation, then a more general expression for the
affinity can be obtained. This will be studied in future work.
The regular parameter can be related to the height of the energy
barrier by integrating the electrochemical affinity, by means of
Eq. (7), in order to obtain

G(ξ ) = RT [(1 − ξ ) ln(1 − ξ ) + ξ ln ξ

+�(1 − ξ )ξ + εEcξ ] + G0, (47)

where Ec stands for a fixed voltage, G0 is an integration
constant, and ε = κF/RT . Figure 2 shows how the regular
parameter � controls the height of the free energy barrier in
Eq. (47). By increasing the nonideality yields a higher barrier.
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ξ

E(V )

I
(A

g
−1

)

(V )

(a)

(b)

FIG. 3. (a) Three overlapping Langevin trajectories for fixed val-
ues E1 = 0.4 V, � = 2.56, ω = 0.2748 s−1, k0 = 0.077 s−1, and κ =
0.025. (b) Three overlapping voltagrams for the same parameters.

The substitution of Eq. (46) into Eq. (20) yields the general
load-voltage equation

dξ

dt
= k0

[
ln

(
ξ

1 − ξ

)
− �(1 − 2ξ ) − κF

RT
(E − E0)

]
+ ζ (t).

(48)

Here, for completeness, we have included the presence of
thermal fluctuations in the system through the term ζ (t)
accounting for the fluctuations of the concentrations of the
reacting species at each electrode. We will assume that these
fluctuations are thermal, that is, they are characterized by a
white noise with zero mean and correlation function given by
〈ζ (t)ζ (t ′)〉 = 2kbT k0δ(t − t ′).

A numerical solution of Eq. (48) for ξ (t) can be computed
by first expanding the logarithmic terms by using a (8,8)-th
order Padè approximant and solving for each voltage by means
of the Euler-Maruyama method [52].

Figure 3(a) shows some numerical solutions for the extent
of reaction, ξ (t) = ξ [E(t)], as a function of the applied voltage,
E(t), which for simplicity is given by an oscillating function
of the form E(t) = E1 sin(ωt), with ω a characteristic angular
frequency.

When the obtained data are substituted into the expression
for the electrochemical affinity Ã(ξ ) in Eq. (46), and the result
into Eq. (21), then one obtains the general fluctuating current-
voltage relation

I

Iρ

= ln

[
ξ (t)

1 − ξ (t)

]
− �[1 − 2ξ (t)] − κ

F [E(t) − E0]

RT
.

(49)

Here the current density is defined as Iρ ≡ qtrk0/m (Ag−1),
with m the mass of the active materials at the electrodes.
In Fig. 3(b) we show the typical voltagrams obtained from
Eq. (49). As expected, the current-voltage plot shows the
hysteresis of the system during a charge or discharge process.

Notwithstanding that a detailed analysis and interpretation
of Figs. 3(a) and 3(b) for an specific case will be provided
in the next section, it is worth stress that the three Langevin
trajectories calculated during one cycle, shown in Fig. 3(a),
indicate that the behavior of the supercapacitor can be
interpreted as the average of those trajectories. During the
process of loading and unloading of the electrodes, the external
potential changes in a continuous manner, meaning that an
arbitrary state of loading depends on the noise intensity and
the rate at which the external voltage changes. Hence, Eq. (48)
implies that a very fast chemical kinetics is taking place at
the electrodes, in such a way that any sudden change in the
external voltage induces an instantaneous change in the extent
of reaction.

IV. COMPARISON WITH EXPERIMENTS

The behavior of a supercapacitor may emerge from several
coupled physical phenomena. For instance, in the cases when
ion insertion in the electrodes is important, it could induce a
volume change of the electrodes. This effect would imply
that the electrochemical phenomena can be coupled with
the ion insertion through the lattice crystal of the electrode
and, therefore, with surface and bulk-transport effects through
the pores of the crystal. Thus, in the general case both
contributions to the current must be taken into account.
Nonetheless, if the loading-unloading process occurs very fast
for certain classes of electrodes, it is reasonable to assume
that the charging-discharging kinetics is surface-controlled
(capacitive) and, therefore, it is valid to neglect insertion and
diffusive contributions to the current behavior.

In practice this can be evaluated by means of cyclic
voltametric experiments, since the functional relation between
the current and the sweep rate ν (Vs−1) can be used to discern
among surface and diffusion controlled processes [53] and
therefore to determine for which systems and conditions the
insertion and diffusive effects can be neglected.

Here we will compare theory with experiments for a
MnO2-based supercapacitor with small current density under
the assumption that a very fast chemical kinetics controls its
behavior.

The comparison can be done by first generating an ensemble
of simulation data for ξ (t) after solving the load-voltage
equation (48) and then calculating the mean value of the extent
of reaction, ξ̄ [E(t)]. Then, following the steps indicated in the
previous section, one may derive the averaged current-voltage

022103-7



N. PALMA-ARAMBURU AND I. SANTAMARÍA-HOLEK PHYSICAL REVIEW E 96, 022103 (2017)
I
(A

g
−1

)

E(V )

−1
−1 ×−1

I
(A

g
−1

)

E = E1 sin(ωt)

E = Ei + νt

(a)

(b)

FIG. 4. Experimental data fitting of the CV with sweep rates ν =
0.03 Vs−1 (diamons), ν = 0.05 Vs−1 (crosses), and ν = 0.07 Vs−1

(circles) with the parameters given in the text. (b) Comparision of
a experimental data fitting of a CV with sweep rate ν = 0.07 Vs−1

(circles) by means of a sinosoidal (dots) and triangular (continuous
line) voltage oscillation.

relation

I

Iρ

= ln

(
ξ̄

1 − ξ̄

)
− �(1 − 2ξ̄ ) − κF

RT
(E − E0). (50)

This equation was used to fit experimental cyclic voltagrams
(CV) of a symmetrical supercapacitor; see Ref. [54]. The
experimental CV curves correspond to electrodes based on
MnO2 spheres decorated by carbon-coated cobalt nanobeads
(MnO2-NPs@Co/C). Figure 4(a) shows the comparison be-
tween experiments and theory for an electrical potential
window of 0–0.8 V and scan (sweep) rates of ν = 0.03 Vs−1

(diamonds), 0.05 Vs−1 (crosses), and 0.07 Vs−1 (circles).
The lines were obtained by using Eq. (50) for two cyclic

voltametric protocols corresponding to a periodic external
potential of the form E(t) = E1 sin(ωt). The comparison using
a sinusoidal protocol is acceptable in all cases [Fig. 4(a)]
although the model works better for larger sweep rates. The
Fig. 4(b) shows the comparison between the fits performed us-
ing sinusoidal (dotted line) and triangular protocols (solid line)
for E(t). The results indicate that the experimental data has a

softer voltage inversion (like that of the sinusoidal model); see
the turning points of the current-voltage representation.

For the first case, ν = 0.03 Vs−1 (diamonds) was fitted by
using the parameters Iρ = 2 Ag−1, � = 2.75. In the second
case, ν = 0.05 Vs−1 (crosses) was fitted with the parameters
Iρ = 3.6 Ag−1, and � = 2.62. Finally, with the third third
case, ν = 0.07 Vs−1 (circles), was fitted with Iρ = 4.95 Ag−1,
and � = 2.56. The values of the other parameters are κ =
0.025, E1 = 0.4 V, and E0 = 0.4 V. The difference between
the regular parameters used to fit each CV curve shows a
dependence of the activity coefficients with the sweep rate.
We conjecture that the origin of this dependence may be
found in the mechanical properties (elastic moduli) of the
electrodes during operation. However, the description of this
effect deserves a detailed study that goes beyond the regular
model presented here.

V. ENERGY DISSIPATION AND ENTROPY PRODUCTION
OF A PSEUDOCAPACITOR

One of the main features of batteries and supercapacitors
that exhibit dynamical hysteresis is the dependence of the
enclosed area with the angular frequency of the external
voltage in such a way that, if ω increases then the area of the
cycle increases, meaning a higher energy dissipation during
cycling. The main consequence of the hysteresis translates
into several technical difficulties in applications and imposes
limits on the performance of these systems.

Thus, it is convenient to determine the dependence of
the energy dissipation for the model we have proposed by
analyzing its energy dissipation as a function of the voltage
frequency ω, the regular parameter � determining the height
of the free energy barrier associated with the electrochemical
reaction and of the amplitude of the imposed voltage E .
These dependences can be deduced by using the first law of
thermodynamics, which for this system reads

dU = δQ + E(t) dq, (51)

where E(t) dq represents the differential work provided by the
external voltage E(t) to transfer the charge differential, dq.
Then Eq. (51) can be substituted into the dissipated energy per
cycle, given by

Ed = −
∮

δQ =
∮

(E(t) dq − dU ), (52)

which can be further simplified by noticing that the internal
energy U is a state function, that satisfies

∮
dU = 0, in order

to write

Ed =
∮

E(t) dq. (53)

Taking into account Eqs. (20) and (21), we obtain dq = qtr dξ ,
and, therefore, we can identify the dissipated energy with the
enclosed area, Ac, of the hysteresis cycle which satisfies the
relation

E�
d

E1qtr

=
∮ E(t)

E1
dξ = Ac(ω,�,E1), (54)

where E1qtr acts as a reference value of the energy. From
Eq. (54) it follows that the energy dissipated has a strong
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FIG. 5. Experimental data fitting for ν = 0.07 Vs−1 (circles) with
parameters: Iρ = 4.95, ω = 0.2748, E1 = E0 = 0.4, κ = 0.025, ζ =
0.025, and � = 2.56. (a) Comparison of the fitting curves by fixing
all parameters and changing ω. (b) Comparison of the fitting curves
by fixing all parameters and changing �.

dependence on the external frequency ω, the height of the free
energy barrier � and the amplitude of the external voltage
applied E1.

In general, the dependence of the energy dissipated, or
the cycle area Ac(ω) on the frequency ω of the externally
applied voltage is nonmonotonic. Thus, for convenience we
may introduce the maximum dissipated energy E�

d,max(ω�
max)

in order to normalize the results. Noticing that

E�
d,max

E1qtr

= A�
c,max, (55)

then we may write the general relation

Ed

E�
d,max

= Ac

A�
c,max

. (56)

The dependence of the normalized dissipated energy
Ed/E

�
d,max on the frequency of the externally applied voltage

ω can be obtained numerically by averaging over several
Langevin trajectories obtained with Eq. (48) with � and
E1 fixed and calculating Ac(ω); see Fig. 5(a). The energy
dissipated increases as a function of the frequency until a
maximal value E�

d,max is reached at ω�
max. For ω > ωmax the

ln
[E

d
/E

Ω d
,m

a
x
]

ln[ω/ωΩ
max]

ω0.106

ω0.178

ω0.211

FIG. 6. Normalized dissipated energy dependence for experimen-
tal values as a function of frequency. The parameters are � = 2.75
(continuous line), ωmax = 0.302, and Amax = 0.6; � = 2.62 (dashed
line), ωmax = 0.46, and Amax = 0.57; � = 2.56 (dots), ωmax = 0.52,
and Amax = 0.55. The fixed parameters are E1 = E0 = 0.4, k0 =
0.077 s−1, κ = 0.025, and ζ = 0.025.

tendency of the dissipated energy is to decrease. A similar
study (not shown) can be done by fixing ω and E1 and changing
the amplitude of �. The result indicates that the energy
dissipation depends in a nonlinear way when increasing the
nonideality of the system. When � increases the separation
between the two minima of the Gibbs free energy and the
value of the maximum of the energy barrier also increase. This
effect implies that both, the area and the shape of the hysteresis,
increase as � does, as it shown in Fig. 5(b).

For frequencies in the range 0 < ω < ωmax, the energy
dissipated follows a power-law-like behavior in terms of the
frequency whose mathematical expression can be written in
the form

Ed

E�
d,max

�
[

ω

ω�
max

]γ

, (57)

where we have introduced the normalizing factor A�
max(ω�

max)
for each case. This scaling behavior is shown in Fig. 6 for the
three cases of Fig. 3(a), that is, for � = 2.56 (black), � = 2.62
(blue), and � = 2.75 (red).

The model allows us to model systems with voltage-
sensitive electrodes, that is electrode materials that may be
responsive to the external voltage. For instance, during cycling,
the material response to a loading voltage could be different
from the unloading process because the volume and internal
area of the electrodes changes in a different way. These types of
effects effects would translate in a asymmetry in the hysteresis
loop.

There are two limiting cases of interest that can be
illustrated. The first one corresponds to a material that opposes
to the load-unload processes. In this case �(E1) is maximal
at E1 = 0 and zero at E1 = E1,max,E1,min. This can be modeled
with a tent function and labeled with �∧(E1), where the symbol
at the subindex schematically indicates the dependence of � on
the applied voltage. On the contrary, a material that favors the
load-unload process would be maximal at E = E1,max,E1,min
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I

Ω = 2.56

Ω∧(V )

Ω∨(V )

FIG. 7. Hysteresis loops for a nonconstant regular parameter
�∧(V ) and �∨(V ) compared to fixed � = 2.56; all curve parameters
are E1 = 0.4, w = 0.2748, ζ = 0.025, and �max = 2.56.

and zero at E1 = 0. This can be modeled, in turn, by a
linear function labeled with �∨(E1). Figure 7 shows how
the hysteresis cycle becomes affected in these limiting cases.
Notice that the area of the cycle, that is, the dissipated energy,
decreases in both cases.

VI. CONCLUSIONS

In this work we have formulated a theoretical model
that accounts for the main features of the loading-unloading
process of a symmetric redox supercapacitor dominated by
fast electrochemical reactions at the electrodes.

First we have analyzed the general description of an elec-
trochemical cell in terms of nonequilibrium thermodynamics.
We have derived a very general expression for the current-
overpotential equation and shown how it can be reduced to the
classical current-overpotential and Butler-Volmer equations by
successive approximations.

Once proved that our general analysis is consistent with
classical works, we have elaborated a basic model of the
electrochemical reaction taking place at the electrodes of
an MnO2-based supercapacitor. Using this information and
the rules of nonequilibrium thermodynamics, we were able

to deduce the form of the nonequilibrium electrochemical
affinity, Eq. (46). As a consequence of this, we were able
to deduce a very general forms for the load-voltage and
current-voltage equations [Eqs. (48) and (50)] that describe
galvanostatic and voltametric experiments, respectively.

In the most elemental case, the electrochemical affinity
follows a regular mixture law in which the regular parameter
is a measure of the departure of the system with respect to
ideality. We have show that this law follows from assuming a
linear Vegard’s law connecting the actual composition of the
electrodes with their pure states.

Solving the load-voltage equation (48) we were able to
describe the galvanostatic diagram, and, using this information
into Eq. (50), we obtained a typical hysteresis cycle of the
voltametric diagram. We have fitted experimental data for
three different sweep rates. The fits are acceptable good taking
into account that we have assumed oversimplified voltage
protocols.

Notwithstanding, we consider that the main result of our
work is to show that, for a wide range of frequencies previous
to reach a maximum value, the energy dissipated per cycle
depends on the external voltage frequency ω as a power law.
It is also shown that this behavior is sensitive to the value
of the nonideal parameter �. The existence of a maximum
for the energy dissipated as a function of the frequency
implies a more intense entropy production per unit time by the
electrochemical reactions, and therefore the largest number of
electrons exchanged by the system. This suggests the that the
corresponding optimal operation frequency should be similar
in value to ωmax.

Although the basic model we have formulated here can
be generalized in different ways in order to account for more
complex systems in which ion insertion, diffusion, and surface
and volumetric effects can be important, we believe that our
model is a ready-to-use tool in the modeling and performance
evaluation of electrochemical systems controlled by fast very
electrochemical reactions at the electrodes.
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