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Transport analogy for segregation and granular rheology
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Here, we show a direct connection between density-based segregation and granular rheology that can lead to
insight into both problems. Our results exhibit a transition in the rate of segregation during simple shear that occurs
at I ∼ 0.5 and mimics a coincident regime change in flow rheology. We propose scaling arguments that support a
packing fraction criterion for this transition that can both explain our segregation results as well as unify existing
literature studies of granular rheology. By recasting a segregation model in terms of rheological parameters,
we establish an approach that not only collapses results for a wide range of conditions, but also yields a direct
relationship between the coordination number z and the segregation velocity. Moreover, our approach predicts
the precise location of the observed regime change or saturation. This suggests that it is possible to rationally
design process operating conditions that lead to significantly lower segregation extents. These observations can
have a profound impact on both the study of granular flow or mixing as well as industrial practice.
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Segregation [1] is a costly phenomenon that has garnered
research for decades [2–4]. In contrast, the study of dense
phase granular rheology has only recently gained traction,
but significant inroads have been made [5–11]. Despite these
parallel strides, only a tenuous connection has been proposed
[12] between these two seemingly disparate topics and work
focusing on building a formal analogy is lacking, despite the
synergistic advantages that analogies have afforded [13] in a
variety of fields [14–17].

It is generally accepted [18–20] that the scaling of gravity-
driven density segregation is proportional to the density
difference between species as well as to the local value of
the shear rate within the flow (although segregation in the
absence of gravity has been shown to be more complex
[21,22]). This simple phenomenological scaling results in just
three relevant dimensionless groups—for segregation velocity,
v̄s = vs/(

√
gdp), shear rate, γ̄ = γ̇

√
dp/g, and density, ρ̄ =

ρh/ρl , where g is the acceleration due to gravity and dp is
the particle diameter; however, it does not account for the
impact of varying boundary conditions (specifically, confining
pressure P ), thus it does not readily allow direct coupling
between granular flow rheology and the segregation rate. In
this Rapid Communication, we examine a simplified “ideal
solution” segregating flow whereby isolated dense intruders
segregate as a function of a host of rheological variables. By
explicitly accounting for the confining pressure, we make a
more direct connection between rheology and segregation.
In this way, we not only shed light on how rheological-
segregation coupling may be modeled, but also uncover a direct
analogy between measurements of rheological variables and
the resulting segregation rate.

A recent survey of density-based segregation models [23]
found that a successful phenomenological model for the
density-driven segregation velocity has been set forth by
Tripathi and Khakhar [19]. They begin with a force balance
on a single dense particle in a medium of light particles to get

0 = Fw − Fb + Fd, (1)
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where Fw is the weight of the dense particle, Fb is the buoyant
force, and Fd is the particle drag force. Taking the particle drag
force to have a Stokesian form, they assume

Fd = βπηdpvs, (2)

where η is the particle medium viscosity, dp is the particle
diameter, β is a constant, and vs is the segregation velocity.
Assuming that the drag force and net particle weight are in
balance, after simplification, yields an expression for vs which
may be written as

vs = gd2
p(ρh − ρl)

6βη
, (3)

where g is the acceleration due to gravity and ρi is the density
of the heavy (h) and light (l) particles, respectively. In order
to recover the previously mentioned traditional scaling, one
assumes that the stress τ within the granular flow is shear rate
independent so that we can write

η = τ

γ̇
∝ 1

γ̇
. (4)

Based on the above equations, we recover that (1) vs is
proportional to the shear rate γ̇ , and (2) at a constant shear
rate the segregation velocity vs should scale as (ρh − ρl).

To test these predicted scaling relations, yet at the same
time allow for the variation of flow boundary conditions, we
employ the discrete element method (DEM) to examine a
wall-driven periodic plane shear cell. The details of the model
can be found in a previous paper from our group [24]. Table I
shows the material properties that were used in the simulations
reported here. A schematic of the simulated three-dimensional
(3D) plane shear flow system is shown in Fig. 1. Periodic
boundaries are used in both the x and z directions. In most
trials, the majority of the particles have the same (light) density
of ρl = 1300 kg/m3, material properties that roughly match
cellulose acetate, and an average radius of 4.5 mm with a 10%
particle size distribution to prevent crystallization. In some
cases we examine the impact of varying particle diameter
over a range from dp = 6.0 to 18 mm in 3.0 mm increments.
For all simulations, eight uniform heavy intruders (which
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TABLE I. Material properties used in the simulations.

Parameter Acetate Glass Steel

Young’s modulus E (GPa) 2.9 68.95 193
Density ρ (kg/m3) 1300 2700/3900 7900
Coefficient of friction μ 0.3 0.3 0.3
Poisson ratio ν 0.43 0.33 0.29
Yield stress σy (MPa) 30 68.95 265

have the same radius as the light particles, but with varying
heavy density ρh) are randomly placed in the system. Three
different ρh values are used (2700, 3900, and 7900 kg/m3),
along with corresponding material properties that roughly
match glass, “heavy glass,” and stainless steel, respectively.
The top and bottom walls (shown as black in Fig. 1) are
roughened with particles and the top wall is given varying
masses in order to examine the effect of confining pressure
(P ). Alternatively, several trials were run at a constant volume
fraction (i.e., fixed height h) where we measured the time
average of the pressure at the top wall (rather than prescribing
the confining pressure). Shearing velocity is varied from 0.1
to 4.0 m/s (0.1, 0.5, 1, 2, 3, and 4 m/s) while the bottom wall
remains static. To obtain a nearly homogeneous shear flow,
fins made of wall particles are attached to both the top and
bottom walls, and in most simulations we employ a modified
gravitational field whereby (net) gravitational forces act only
on the heavy intruders (similar to the approach of Ref. [25]).
The particle bed is deep enough (15 particle diameters) that the
segregating intruders reach a steady segregation velocity under
all examined conditions. In a small number of simulations full
gravity effects are included, however, due to shear localization
in these cases we perform all calculations based on the local
value of the shear rate (and only measure the segregation
velocity while in the sheared region).

In Fig. 2 we show the dimensionless segregation velocity
obtained for the average of the heavy intruders for three
different density ratios under a range of boundary conditions
(confining pressures versus fixed volumes and our modified

FIG. 1. Schematic of the simulated plane shear geometry. The
3D flow is periodic in both the streamwise (x) and transverse (z)
directions. Blue (dark) particles are heavy intruders while yellow
(light) particles are lower density particles. We employ either constant
pressure or constant volume boundary conditions.

FIG. 2. Segregation velocity under varying conditions of shear
rate, density ratio, particle diameter, and boundary conditions.
Differing colors represent boundary conditions [constant pressures:
78 Pa, red (dark gray); 117 Pa, blue (solid light gray); 156 Pa, green
(open light gray); constant volume, solid circles; full gravity effects,
dotted and crossed circles] while shape represents the density ratio
(circle, ρ̄ = 2; triangle, ρ̄ = 3; square, ρ̄ = 6). While most particles
are 9.0 mm in diameter, the thick-walled open circles represent a range
from 6.0 to 18.0 mm. (a) The dimensionless segregation velocities
are plotted vs the shear rate made dimensionless with

√
g/dp . The

inset shows packing fraction as a function of I . (b) In this panel we
have replotted the v̄s as a function of inertia number (I ). Note that
the varying boundary conditions all collapse onto individual curves
corresponding to different density ratios. In all figures, error bars on
the data are smaller than the symbol sizes chosen.

gravity field versus full gravity), particle diameters, and shear
rates. In Fig. 2(a), which shows the variation of v̄s with dimen-
sionless shear rate (γ̄ ), we note that there are roughly three
groups of curves, corresponding to each of the three density
ratios; however, it is clear that there are a number of issues with
this naive scaling. First, there is a systematic variation in the
value of v̄s for differing boundary conditions, whereby higher
pressures and/or the constant volume cases result in a routinely
smaller value of the segregation velocity. Second, when
varying the particle diameter, we notice a qualitatively different
shape to the scatter plot (it does not appear to pass through the
origin, for example). Finally, when including the full effects
of gravity, our segregation velocity values are uniformly
lower than for the corresponding shear rates in modified
gravity cases, and ultimately the segregation rate saturates
at dramatically larger values of the dimensionless shear
rate.
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FIG. 3. Variation of dimensionless segregation velocity with
varying density at fixed values of the inertia number (upright triangle,
I = 0.1193; diamond, I = 0.2350; square, I = 0.4563; inverted
triangle, I = 0.8627). The inset shows the traditional scaling of the
segregation rate with the dimensionless density difference. Note that,
in contrast to previous studies, we find a power-law relationship with
exponents that range from 0.6 to 0.75. In contrast, when we plot
the segregation velocity vs our proposed density scaling, we obtain
straight lines.

In order to fix these issues with the scaling, and as a first
step toward connecting segregation to granular rheology, in
Fig. 2(b) we instead plot v̄s against a different dimensionless
shear rate, that of the inertia number (I ). The inertia number

[5], given as I = γ̇ dp

√
ρ

P
, is the final, relevant independent

dimensionless group governing this problem; it relates the
time scale of shearing to the time scale of consolidation, and
has been a staple of constitutive model development in recent
years [8–11]. We note that I is a better independent variable for
correlating changes in segregation velocity as the scatter from
pressure (and constant volume) variation is now eliminated in
the higher density ratio (triangle and square) trials. Moreover,
the low density ratio (circle) case now collapses results not only
for varying boundary conditions, but also for varying particle
diameters and for both full and modified gravity cases (note
that the modified gravity case uses the measured average bed
pressure and the local shear rate in the calculation of I ). Using
the inertia number allows us to capture a clear observation that
the segregation rate saturates [Fig. 2(b)] at a specific value of
I in much the same way that the effective friction (μeff) is seen
to saturate (at high inertia numbers) in μeff(I ) rheology [5,26].
Also, we note that, while our v̄s results now collapse onto three
curves regardless of particle size and boundary condition, the
relevant scaling for the density ratio is not captured in this plot.
This scaling is examined next.

Turning to the impact of the density ratio, one can note that
using the traditional density scaling suggested from Eq. (3)
(ρh/ρl − 1) fails to collapse the data [that is, the plot in
Fig. 3 (inset) does not lead to a straight line and Fig. 4
does not collapse, especially on the saturated regime]. If we
relax the assumption that all segregating flows operate in the
rate-independent regime and instead develop a scaling relation
for the local viscosity near a segregating particle, we can recast
Eq. (3) and not only recover the proper density relationship

FIG. 4. Traditional scaled segregation velocity under varying
conditions of shear rate, density ratio, particle diameter, and boundary
conditions. Differing colors represent boundary conditions [constant
pressures: 78 Pa, red (dark gray); 117 Pa, blue (solid light gray);
156 Pa, green (open light gray); constant volume, solid circles; full
gravity effects, dotted and crossed circles] while shape represents the
density ratio (circle, ρ̄ = 2; triangle, ρ̄ = 3; square, ρ̄ = 6). While
most particles are 9.0 mm in diameter, the thick-walled open circles
represent a range from 6.0 to 18.0 mm. The dimensionless segregation
velocities are plotted vs the shear rate made dimensionless with√

g/dp . The magnitude of the segregation velocity is scaled by the
traditional density scaling [that is, (ρh/ρl − 1)]. Note that, particularly
in the saturated rate region, it is clear that this scaling does not collapse
the data.

(Fig. 3, motivated below), but also establish a direct analogy
between granular flow rheology and the segregation velocity.

We start by choosing a characteristic stress scale in the
neighborhood of the heavy intruder(s) as the quantity τchar ∼
ρhgdp. If we similarly take the local shear rate to be related to
a characteristic collisional velocity vcoll (to be identified later),
divided by the particle diameter, we obtain

η ∼ ρhgdp

vcoll/dp

. (5)

For a heavy intruder, a density dependence of the collisional
velocity vcoll arises due to the fact that the intruder must
undergo repeated collisions with the lighter “background”
particles. By performing a conservation of energy balance
around a colliding particle [27], we obtain a postcollision
characteristic velocity given as vcoll ∼ vo( ρh

ρl
)1/2, where vo

may be thought of as the precollisional characteristic velocity.
Combining these expressions, we can write an equation for
the viscosity near a heavy intruder particle that is segregating
within a granular fluid as

η ∼ ρhgd2
p

vo

(
ρh

ρl

)1/2 . (6)

This simple model suggests a modification of the density
scaling from what is traditionally used whereby

vs ∼ vo(ρ̄ − 1)√
ρ̄

. (7)

As a direct test of this scaling, we plot the measured segregation
velocity as a function of this density scaling for fixed values
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of the inertia number (see Fig. 3). Note that each set of results
examined lies on a straight line whose slope is a function of
the inertia number chosen and that all curves correctly pass
through the origin.

In order to more fully realize the form of Eq. (7), we
finally examine the characteristic (pre)collisional velocity vo.
Obviously, in the absence of interactions with neighboring
particles, the characteristic velocity of a falling intruder would
scale as

√
dpg (motivating the choice of dimensionless scaling

thus far used). If we argue that the relevant velocity is
actually a “frustrated free fall” whereby the characteristic
velocity varies from this scaling value solely due to interactions
with neighboring particles, we can write that the number
of interactions with neighbors per unit time is captured by
the product of the coordination number z and the shear
rate, zγ̇ . That is, the quantity zγ̇ may be thought of as the
inverse of the time between interparticle interactions (note
that z has been shown to be a function of the inertia number
[10,11] so that, at higher inertia numbers, the time between
interactions increases). We note that, in our results, the average
coordination number per particle decreases from a finite static
value via a power law of the form z ∼ I−a—similar to what
was discussed in Ref. [7]—however, as seen in Fig. 5(a), we
find two regimes where a = 1/3 and 1 for I values below and
above 0.5, respectively. We note that this transition point is
coincident with the saturation location of both the effective
friction coefficient μeff and the segregation velocity. Finally,
if we limit the effective number of neighbor interactions
to those that occur faster than the consolidation time scale,
tc = dp(ρl/P )1/2, we obtain a choice of vo that is given by

vo ∼ (
√

dpg)zγ̇ tc = (
√

dpg)zI. (8)

One way to interpret our scaling in Eq. (8) is that the maximum
time between collisions is the consolidation time. Thus, in
the limit of large I , we obtain free-fall scaling during the full
extent of the consolidation time. At the other extreme, where
the time between collisions is small, the “frustrated free-fall”
velocity can become quite small. Combining Eq. (7) with (8)
and recovering the constants from previous equations yields
an expression for the dimensionless segregation velocity as

v̄s = vs√
dpg

= z(ρ̄ − 1)

6β
√

ρ̄
I. (9)

Thus, by using our scaling, and determining a relationship
between the collision frequency and inertia number (I ), we
yield a closed form equation for segregation velocity that
includes only a single parameter β that captures the drag force
felt on a segregating particle [as well as an O(1) correction
to our collision velocity scaling argument]. Figure 5(b) shows
the relationship between segregation velocity (scaled with our
density relation) and I for all simulation conditions studied
and includes a line corresponding to Eq. (9) with β = 1
(which, in a fluid system, would imply that form drag is small
compared to frictional drag).

It is interesting to note that the location of the segregation
velocity (and μeff and z) transition corresponds to the value of
I where the solid packing fraction decreases below a value of
roughly φ ≈ 0.52 [Fig. 2(a) inset]. This value of the packing
fraction is characteristic of a simple cubic lattice of equal sized

FIG. 5. Rheology and segregation in a sheared cell system under
varying conditions of shear rate, density ratio, particle diameter, and
boundary conditions (symbols explained in Fig. 2). (a) shows how
the effective friction coefficient changes with the inertia number. The
inset shows the variation of the coordination number with I . Note that
both rheological quantities display a regime change near a value of
I = 0.5. (b) shows the dimensionless segregation velocity rescaled
with our proposed density scaling [Eq. (7)] and plotted against I .
Note that all results fall on a master curve regardless of gravitational
condition, boundary condition, or other process parameters. The
included line represents the model proposed in Eq. (9). The inset
shows the packing fraction as a function of I .

spheres. While the rheological transition from linear μeff(I ) to
saturated μeff has been reported at varying values of I in the
literature [5,7,10], examining these transitions in light of this
packing fraction observation one notes that a simple cubic
solids’ fraction criterion would identify this critical I value
irrespective of whether the system is 2D [5,6] or 3D [10].
Regardless of the origin of this transition, here we show that
recasting our data in light of the inertia number collapses our
results onto a single master curve for a wide variety of process
variables, boundary conditions, and gravitational conditions
and allows us to recognize—and predict the location of—a
regime where the segregation rate saturates. This observation
could have significant industrial importance as it could enable
the rationale design of industrial processing methods that could
lead to dramatically reduced segregation extents since operat-
ing in the “saturated” regime (i.e., at high I values) will enable
more rapid processing to reduce the ultimate degree of segre-
gation observed. Moreover, this work highlights that density-
based segregation is not only coupled to the underlying flow
rheology in shearing geometries, but that a true analogy exists
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whereby determination of the relationship between the coor-
dination number (z) and I can lead directly to a quantitative
expression for the segregation velocity (and likely vice versa).
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