
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 96, 020104(R) (2017)

Effect of instantaneous and continuous quenches on the density of vibrational
modes in model glasses

Edan Lerner1 and Eran Bouchbinder2

1Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
2Chemical Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel

(Received 2 May 2017; revised manuscript received 14 July 2017; published 28 August 2017)

Computational studies of supercooled liquids often focus on various analyses of their “underlying inherent
states”—the glassy configurations at zero temperature obtained by an infinitely fast (instantaneous) quench
from equilibrium supercooled states. Similar protocols are also regularly employed in investigations of the
unjamming transition at which the rigidity of decompressed soft-sphere packings is lost. Here we investigate the
statistics and localization properties of low-frequency vibrational modes of glassy configurations obtained by
such instantaneous quenches. We show that the density of vibrational modes grows as ωβ with β depending on the
parent temperature T0 from which the glassy configurations were instantaneously quenched. For quenches from
high temperature liquid states we find β ≈3, whereas β appears to approach the previously observed value β =4
as T0 approaches the glass transition temperature. We discuss the consistency of our findings with the theoretical
framework of the soft potential model, and contrast them with similar measurements performed on configurations
obtained by continuous quenches at finite cooling rates. Our results suggest that any physical quench at rates
sufficiently slower than the inverse vibrational time scale—including all physically realistic quenching rates
of molecular or atomistic glasses—would result in a glass whose density of vibrational modes is universally
characterized by β =4.

DOI: 10.1103/PhysRevE.96.020104

Introduction. Instantaneous quenches of high-temperature
configurations into their so-called “underlying inherent states”
are a prevalent practice in computational studies of disordered
materials [1–6]. One conspicuous example of this methodol-
ogy is found in the large body of numerical work dedicated to
the unjamming scenario (see, e.g., [7], and references therein),
in which simple models of soft repulsive spheres are regularly
employed. In these studies, packings of soft spheres at zero
temperature are conventionally generated by instantaneous
quenches from some random, high-energy disordered states,
and later subjected to various structural analyses [8–11] and/or
perturbations [12,13].

A similar methodology is also extensively utilized in
computational investigations of the glass transition [1–4],
whose structural origin remains a highly debated topic in
condensed-matter physics [14,15]. Instantaneous quenches
that map an equilibrium configuration to a zero-temperature
glassy state were first put forward by Stillinger and Weber
[16], and subsequently utilized by many others [1–4], with
the general assumption that the structural properties of the
inherent states are indicative in some quantitative way of the
dynamics of the supercooled configurations from which they
are mapped.

A clear advantage of analyzing the structure of glassy
inherent states over equilibrium configurations is the ability
to cleanly and quickly extract structural observables while
avoiding the difficulties that stem from thermal-fluctuations-
induced noise, and from the broad spectrum of relaxation
times that characterizes these systems. Instantaneous quenches
are considered to be unrealistic idealizations of the physical
cooling process by which glasses are formed. However, it
is regularly assumed that generic properties of the resulting
glasses remain unaffected by such protocols. This uncontrolled
assumption overlooks the potential physical artifacts involved

in performing instantaneous quenches in computational stud-
ies of the structural properties of glassy materials.

In this Rapid Communication we question the common
practice of investigating glassy states that were instantaneously
quenched from high-temperature configurations, and subse-
quently deducing conclusions about generic glasses formed
via physically realistic protocols. We focus, in particular,
on the statistical and structural properties of low-frequency
vibrational modes measured in ensembles of inherent states
created by an instantaneous quench of configurations equi-
librated at various parent temperatures T0. Recent studies
of several structural glass-forming models [11,17,18] (see
additional comments about the relation between [17] and the
present work in [19]) identified a population of quasilocalized
low-frequency glassy vibrational modes whose density D(ω)
grows from vanishing frequencies ω→0 as D(ω)∼ω4. These
modes are either measured below the lowest Goldstone modes’
frequency [17,18], or identified by classifying vibrational
modes according to their degree of localization [11]. Similar
findings for a three-dimensional Heisenberg spin glass in
a random field were put forward in [20]. Here we show
that the functional form of the density of low-frequency
vibrational modes can be affected by instantaneous quenches,
and, under some conditions, displays deviations from the ω4

law. We contrast our findings with measurements performed in
ensembles of inherent states created by a continuous quench
at a cooling rate Ṫ through our model systems’ glass transition
temperature. We find that the ω4 law is robust to very rapid but
not overdamped quenches, suggesting that inertia plays a key
role in the self-organizational processes that occur as systems
tumble down the multidimensional potential energy landscape
during their quench into a glassy solid.

Models and methods. Here we briefly review the models
and methods used in this work; a detailed description of
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our model, methods, and preparation protocols can be found
in the Supplemental Material (SM) [21]. We employ a
binary mixture of pointlike particles in three dimensions
(3D) that interact via a purely repulsive inverse-power-law
potential. In what follows, physical observables (temperatures,
frequencies, lengths, etc.) are understood as expressed in terms
of the relevant microscopic units as defined in the SM. For
visualization purposes alone we rescale frequency axes by a
scale ω0 (see figure captions). We chose to simulate systems
of N =2000 particles for which the linear size of the box is
slightly larger than the localization length of low-frequency
glassy modes (estimated in our model at about ten particle
diameters [17]), but still small enough such that Goldstone
modes are sufficiently suppressed, allowing ample exposure of
vibrational modes that occur below the lowest Goldstone mode
frequency [17].

Ensembles of inherent states were created by collecting a
large number of independent equilibrium configurations from
each parent temperature T0, and evolving each one of these
forward in time under fully overdamped dynamics �̇x ∝− ∂U

∂ �x
until convergence, where �x denotes particles’ coordinates
and U the potential energy. We have also created ensembles
of continuously quenched glasses, starting from independent
equilibrium configurations at T =1.00, followed by a quench
at a prescribed quench rate Ṫ . Each of the constructed
ensembles consists of 10000 glassy samples, which ensures
statistical convergence (see SM for further details).

Results. Our model system exhibits the conventional phe-
nomenology of computer glass-forming models. In Fig. 1 we
demonstrate the slowing down in the relaxational dynamics
upon supercooling of our model by monitoring the stress au-
tocorrelation function c(t)≡N〈σ (t)σ (0)〉 measured at various
equilibrium runs at temperatures T . Here σ ≡ 1

V
∂U
∂γ

, V is the
volume of the simulation cell, U is the potential energy, and
γ is a simple shear strain. The angular brackets denote an
average over the time-translationally invariant signals of the
stress from our equilibrium simulations. The inset of Fig. 1
shows the relaxation time τα vs 1/T ; relaxation times are
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FIG. 1. Stress autocorrelation function (see text for definition)
measured in equilibrium simulation runs at temperatures T =
2.00, 1.20, 0.85, 0.70, 0.60, 0.56, 0.54, 0.53, and 0.52, decreasing
from left to right. Inset: the relaxation times τα vs 1/T , determined
by c(τα)=1, as indicated by the dashed horizontal line of the main
panel.
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FIG. 2. Density of vibrational modes D(ω) measured in the
ensembles of glassy samples quenched from the parent temperatures
T0 =2.00, 0.70, 0.60, 0.56, 0.54, 0.53, and 0.52, decreasing from
top to bottom. The frequency axis is scaled by ω0 =3.0 for
visualization purposes. The dash-dotted line fitted to the T0 =0.60
data set corresponds to D(ω)∼ω3.4.

estimated via c(τα)=1, as indicated by the horizontal dashed
line. The computer glass transition temperature of our model is
estimated at Tg ≈0.5, where the relaxation time τα(Tg)≈105.

We next turn to the investigation of the statistics and
properties of vibrational modes in the different ensembles of
instantaneously quenched glasses. Each such ensemble was
obtained by an instantaneous quench of independent config-
urations that were equilibrated at some parent temperature
T0. In Fig. 2 we show the low-frequency tails of the density
of vibrational modes D(ω) measured in all the ensembles
of glassy samples that were instantaneously quenched from
parent temperatures as indicated by the figure caption. We find
that D(ω)∼ωβ with 3 < β �4 for all ensembles, and β →4
as T0 →Tg . These data demonstrate that it is not only that the
high T0 inherent states possess more soft glassy vibrational
modes, but that the actual functional form of the vibrational
modes’ distribution function depends explicitly on T0, at least
up to the vicinity of the accessible equilibrium temperatures
using conventional simulation methods. We emphasize at this
point that our goal is not to accurately estimate the precise
numerical value of the scaling exponents that characterize the
density of vibrational modes. Our aim is rather to identify
trends in the observed exponents upon systematically varying
the preparation protocol of the glassy samples.

In Fig. 3 we show the means and the second to ninth
deciles of the participation ratio e binned over frequency ω.
The participation ratio of a vibrational mode 	̂, defined as
e≡ [N

∑
i(	̂i ·	̂i)2]−1, is a simple measure of the degree of

localization of a mode: the more localized a mode is, the
smaller its participation ratio is expected to be. In [17,18] it has
been shown that the participation ratio of low-frequency glassy
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FIG. 3. Participation ratio e of vibrational modes vs frequency
ω, for glassy samples instantaneously quenched from a parent
temperature T0 as indicated in the figure. The shaded gray areas cover
the second through ninth deciles of data, and the circles represent
the mean participation ratio binned over frequency. The frequency
axes are scaled by ω0 =3.0 for visualization purposes. Stronger
localization is observed as T0 →Tg .

modes scales as N−1, indicating that they are quasilocalized
[22]. Figure 3 here shows that the degree of localization of low-
frequency glassy modes increases for deeper supercooling,
consistently with the findings of [17] that show a decrease
in the participation ratio of low-frequency glassy modes for
slower cooling rates. The data indicate that the transition of
the mean participation ratio from the Goldstone modes’ value
to the low-frequency plateau (shown clearly for a much larger
data set in [18]) is faster in ensembles created by an instan-
taneous quench from deeply supercooled solids. Furthermore,
the rapid crossover in the localization properties of modes with
increasing frequencies suggests that the exponent β can only
be read off D(ω) below frequencies that are roughly a third
of the lowest Goldstone mode frequency (see, e.g., the data in
Fig. 4 below). We note that the crossover from quasilocalized,
glassy modes at low frequencies to the first Goldstone modes
is broader for smaller N ; this can be seen, for instance, in Fig. 1
of Ref. [18]. In the SM we show that increasing the system
size does not, however, appear to have a substantial effect on
our results, which reinforces the statement that the crossover
broadening in our systems of N =2000 does not affect our
conclusions.

It is natural to contrast our results for instantaneously
quenched glasses with similar measurements in glassy samples
formed by a continuous quench into solids at finite quench
rates. In Fig. 4 we show the density of vibrational modes
of systems quenched at rates Ṫ as described in the legend.
Each such quench was preformed from initial equilibrium
configurations at temperature T =1.00 (see SM for details).
We find β =4 at rates Ṫ <10−2, as shown by the continuous
lines. For higher rates, β appears to decrease, and for an
infinitely fast quench from T =1.00 we find β ≈3.3 as
indicated by the dashed line.

In Fig. 5 we plot the average potential energy per particle of
the ensembles of instantaneously quenched and continuously
quenched glassy samples. Interestingly, we find that the
mean energy per particle of glasses quenched at the highest
continuous rate for which β =4 is observed (Ṫ =10−3; see
Fig. 4) is the same as for instantaneously quenched samples
from the parent temperature T0 =0.60, up to less than a percent.
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FIG. 4. Density of vibrational modes D(ω) measured in emsem-
bles of glassy samples quenched continuously at rates as indicated
by the legend, starting from equilibrium configurations at T =1.00.
Both continuous lines correspond to the ω4 law. The frequency axis
is scaled by ω0 =3.0 for visualization purposes.

However, in the latter ensemble we clearly find β <4 (see
dash-dotted line in Fig. 2). This observation of two ensembles
with the same inherent state energies but different β indicates
that inertia that is present during the continuous quenches,
but absent in the instantaneous quenches, plays an important
role in the self-organizational processes that determine the fine
details of the microstructure of the resulting glasses.

In order to explore the implications of our results for
realistic glasses, we cast our reported observables into dimen-
sionless numbers. We start with forming an atomistic time
scale by considering the shear-wave speed cs ≡√

μ/ρ ≈4,
with an athermal shear modulus [23] μ≈15 and a mass density
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FIG. 5. Potential energy per particle of glassy samples averaged
over (a) ensembles created by instantaneous quenches from the parent
temperature T0, and (b) ensembles created by continuous quenches at
quench rates Ṫ . The dashed horizontal line shows that the T0 =0.60
ensemble and the Ṫ =10−3 ensemble have very similar energies per
particle (see text for further discussion).
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ρ =0.82, and dividing it by an atomistic length a0 ≈1.0 to find
cs/a0 ≈4. We next take Tg ≈0.5 as a characteristic temperature

scale, such that a dimensionless quench rate is formed as Ṫ a0
Tgcs

.
Our findings suggest that for dimensionless quench rates lower
than a crossover value 10−3, or alternatively, for quench rates
Ṫ �10−3Tgcs/a0, the density of vibrational modes exhibits
the ω4 law. To compare to physical glasses, e.g., metallic
glasses, we take Tg ≈500 K, cs ≈103 m/s, and a0 ≈10−9 m
[24], from which we conclude that glasses quenched at rates
Ṫ �1011 K/s would exhibit the ω4 law. The fastest rates that
these materials can be quenched are typically on the order
of 107 K/s (for quasi-2D ribbons; for bulk glasses the fastest
cooling rates are slower), some four decades slower than our
estimated crossover rate. This comparison essentially implies
that any laboratory glass formed by quenching a melt would
follow the ω4 law.

Summary and discussion. In this Rapid Communication
we have shown that the low-frequency tails of the density
of vibrational modes of computer glasses created by an
instantaneous quench have qualitatively different features
compared to glasses created by a continuous quench. Our
results suggest that the presence of inertia is important for
the structural relaxation that occurs during quenches which
leads to more stable glassy structures with less low-frequency
vibrational modes. This suggestion is consistent with the
results of Salerno et al. [25], who showed that upon reducing
the inertia in the microscopic dynamics of sheared model
glasses, the nature of avalanches of plastic activity, which
depends in turn on the abundance of soft glassy modes, can
change dramatically. Similar findings were reported in [26]. If
indeed the presence of inertia in the microscopic dynamics is
key in determining the low-frequency spectra, it would be of
interest to observe whether overdamped glasses such as emul-
sions or foams, or computer glasses generated in simulations
that employ Brownian dynamics, exhibit observable quali-
tative differences in their spectra compared to their inertial
counterparts.

Our results call for caution when attempts are made to
establish general conclusions about glassy solids from studies
of model glasses that are created by instantaneous quenches
from high-temperature liquid states. For instance, it is common
practice in studies of the unjamming point to create packings of
soft spheres by instantaneous quenches. While the qualitative
features of the scaling of most mechanical observables with
respect to the distance to the unjamming point do not seem to
depend on the protocol with which packings are generated, our
results suggest that the density of vibrational modes of those

packings might not be representative of the spectra of glasses
created by physical quenches.

It is interesting to attempt to relate our findings to the
predictions of the soft potential model [27–30]. This theoret-
ical framework assumes that a glass can be decomposed into
small subsystems, each possessing a quasilocalized soft glassy
mode. Focusing on such a typical subsystem, and assuming
that particles are displaced a distance s along the soft mode
associated with that subsystem, this framework suggests that
if the energy in the vicinity of s =0 satisfies U (s)�U (0), then
D(ω) is expected to grow as ω4. However, relaxing this con-
straint results in a different prediction, namely, that D(ω)∼ω3

[30]. The condition that the energy only grows in the vicinity of
s =0 can be viewed as a stability condition; in instantaneously
quenched glasses the overdamped nature of the quench makes
it possible to form barely stable glasses that would possess
local soft potentials U (s) that have deeper minima at s �=0
compared to U (0), e.g., asymmetric double-well potentials
[29]. Creating such unstable structures in slowly quenched
glasses is much less likely. According to the discussed
framework, one may hypothesize that β =3 should be observed
in glasses created by an instantaneous quench; we indeed find β

very close to 3 in samples that were instantaneously quenched
from very high temperatures (see Fig. 2).

In this work we followed the simple approach of [17] and
investigated the density of vibrational modes in small, three-
dimensional model glasses, in which Goldstone modes are suf-
ficiently suppressed to expose a population of quasilocalized
soft glassy vibrational modes. This approach is, however, still
limited in terms of the range of soft glassy modes’ frequencies
that can be probed, due to hybridizations with extended
Goldstone modes at higher frequencies, as can be seen in
Fig. 3. It is therefore of interest to investigate these issues
using frameworks that overcome the issue of hybridization
with Goldstone modes, e.g., [18,20,31–33], allowing one to
probe the density of quasilocalized excitations up to higher
frequencies.

A key question to be addressed in future research is whether
extremely slow quench rates can result in glasses with β >4.
Recent developments [34,35] in the computational research of
structural glasses allow one to equilibrate a particular model
glass well below what is possible using conventional molecular
dynamics or Monte Carlo methods. The new methodology
introduced in [34,35] will be certainly useful in addressing
this question.
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