
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 96, 020101(R) (2017)

Period proliferation in periodic states in cyclically sheared jammed solids
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Athermal disordered systems can exhibit a remarkable response to an applied oscillatory shear: After a relatively
few shearing cycles, the system falls into a configuration that had already been visited in a previous cycle. After
this point the system repeats its dynamics periodically despite undergoing many particle rearrangements during
each cycle. We study the behavior of orbits as we approach the jamming point in simulations of jammed particles
subject to oscillatory shear at fixed pressure and zero temperature. As the pressure is lowered, we find that it
becomes more common for the system to find periodic states where it takes multiple cycles before returning to a
previously visited state. Thus, there is a proliferation of longer periods as the jamming point is approached.
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Oscillatory sheared athermal particle packings or suspen-
sions can fall into periodic “absorbing states” [1] in which the
system returns to a configuration previously visited during the
shearing process at the same point in the cycle. Once it returns
to that configuration, the dynamics repeats itself indefinitely.
At low densities in the absorbing state, the particles follow
the flow without ever making contact with one another, so
that the system moves back and forth along a flat direction
in the energy landscape [2–4], and particles return to their
original positions after a single shear cycle, T = 1. As the
strain amplitude γt increases beyond some value γ ∗

t , particles
can no longer avoid each other and the system undergoes
a dynamical “absorbing-state” transition from the absorbing
phase to a phase in which the system continually visits new
configurations. Models [3,5–8] have linked this transition to
variants of directed percolation [8–10], which represents a
broad class of nonequilibrium phase transitions [1].

Athermal glasses such as Lennard-Jones glasses, by con-
trast, have an extensive entropy of energy minima that are
not flat [11–13]. At very small strain amplitudes, they exhibit
elastic behavior in which they explore different configurations
within the same energy minimum. As γt increases so that
the system can explore more than one minimum, one might
expect the system to meander indefinitely around a hopelessly
intricate energy landscape as the system is driven in an
oscillatory fashion. Yet, remarkably, these systems can fall into
absorbing states—they can find their way back to previously
visited energy minima even as they undergo multiple particle
rearrangements. Thus these systems explore many such min-
ima [14–17] over and over again. Finally, when γt is increased
to γ ∗

t , the system undergoes an absorbing-state transition to a
phase in which the system never returns to previously visited
minima.

In this Rapid Communication, we investigate the fate
of absorbing states in packings of jammed spheres in two
dimensions that can be tuned to the jamming transition, where
the system loses rigidity [18,19]. Far above this transition,
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absorbing states have a one-cycle period, so that the system
returns to the same set of minima in each cycle. With increasing
amplitude γt , the number of minima explored before the
system falls into an absorbing state increases so that there
is a diverging time scale τa required for the system to fall into
an absorbing state at γ ∗

t .
As the system approaches the jamming transition, the τa

for the system to reach an absorbing state increases only
weakly, by a factor of 3 over two orders of magnitude of
pressure. However, the nature of the absorbing state changes
markedly—there is an increase in the number T of applied
shear cycles between returns to a previous minimum. That is,
there is a proliferation of higher-order periods, i.e., T > 1,
so that the same set of minima are explored in every set
of T consecutive shear cycles. This result is consistent with
the observation of multicycle periods in systems at densities
just below jamming [20] as well as in frictional sphere
packings very near jamming [16]. Here, we show that as the
jamming transition is approached from the high-density side,
the distribution of periods shifts systematically to higher T

while the value of γ ∗
t decreases far more weakly than the

typical strain between rearrangements. As a result, the number
of minima visited in each period increases quite rapidly,
not only because the number of minima visited per cycle
increases, but also because the number of cycles per period
also increases. Although we work in two dimensions in this
Rapid Communication, an analogous phenomenon is expected
in three dimensions, where we also find the absorbing states
and the jamming transition.

Simulations. In our simulations, we study N particles (in
two dimensions) interacting with a pair potential Uij acting
between pairs of particles i and j (with radii ai and aj ) located
at positions ri and rj (i,j = 1,2, . . . ,N ),

Uij (rij ) = ε

α

∣
∣
∣
∣
1 − rij

Aij

∣
∣
∣
∣

α

�(Aij − rij ), (1)

where ε is a characteristic energy, rij = |ri − rj |, Aij = ai +
aj , and �(x) is the Heaviside step function. We use Hertzian
interactions with α = 5/2 instead of the harmonic potential
so that there is no discontinuity in the second derivative of
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FIG. 1. (a) The enthalpy H as a function of time. An oscillatory
strain with amplitude γt = 0.15 is applied quasistatically to a system
of N = 64 particles. (b), (c) The probability Pactive of a system (with
N = 256) to still be “active” and not in a periodic cycle vs the number
of applied shear cycles t , for a fixed γt = 0.05 in (b) and for a fixed
pressure p ≈ 0.004 in (c). The error bars for the γt = 0.09 data are
smaller than the symbol sizes.

the potential at the point of contact. We study a mixture of
particles with radii distributed uniformly between a and 1.4a,
all with the same mass m. The units of length, mass, and
energy are a, m, and ε. The initial particle configurations were
prepared by randomly placing the particle centers within the
simulation box and then quenching to zero temperature using a
fast inertial relaxation engine algorithm [21] to relax the total
energy. The particle packing fraction was adjusted to yield
the desired pressure p, as in Ref. [22], and the enthalpy (the
appropriate thermodynamic potential for fixed pressure) was
minimized at fixed pressure.

We shear our configurations at fixed pressure p so that we
can maintain the distance to the jamming transition during
a shear cycle. (Different particle configurations at the same
packing fraction φ will generically have different values of
the critical packing fraction φc [23,24], so a constant-volume
ensemble does not keep the distance |φ − φc| constant.) To
apply quasistatic shear at a constant pressure, we deform
the system using a small strain step δγ ∼ 10−5–10−6, and
then minimize the enthalpy after each step. The minimization
process varies both the relative particle coordinates ri − rj and
the system volume V . The volume is varied by minimizing
over an overall scaling factor βV of the particle positions
(ri → βV ri). Note that such a factor corresponds to a variation
δV in the system volume V , with βV = √

1 + δV/V . During
the minimization process, βV remains close to one for the small
strain steps. The simulation box is taken to have Lees-Edwards
periodic boundary conditions. A similar procedure was used
to generate packings at constant shear stress [25]. Note
that by lowering p, we are able to approach the jamming
point [since for our pair potential in Eq. (1), we expect
that p ∝ |φ − φc|α−1 = |φ − φc|3/2 [23]]. For each pressure
and training amplitude, we average results over 300–1000
different initial configurations, until the quantities of interest
have converged.

The strain is applied in both directions: The simulation box
is sheared in one direction to a strain of γt , then in reverse to
−γt , and then back to zero again. The resultant enthalpy during
the repeated application of such cycles is plotted in Fig. 1(a)
for a single system. We see that cyclic shear forces the system
into a periodic state with T = 1 after a four-cycle transient.
After the system becomes periodic, the enthalpy experiences
various “jumps,” indicating the presence of rearrangements
during which the system passes from one enthalpy minimum
to another. (We identify a rearrangement as any strain step
during which the enthalpy changes by more than five times
the typical enthalpy change. As long as the strain steps are
small enough, this procedure captures rearrangements and is
insensitive to the particular threshold.) We are interested in the
behavior of these systems as we increase the amplitude γt and
vary the pressure p.

We check that each absorbing state we find is perfectly
periodic after some number of strain cycles, with net particle
displacements equal to zero within numerical noise. However,
to calculate the period T of these periodic states robustly, we
track the enthalpy H in stroboscopic snapshots taken at the
end of each strain cycle. As soon as a cycle has the same
H as a previous cycle (i.e., the enthalpy difference is 10−5

times smaller than a typical enthalpy change during a shear
cycle), then we count the number of intervening cycles to find
T . We also verify that H is the same every T cycles for the
remainder of the run. We use enthalpy rather than particle
positions to calculate the period T , for two reasons. First,
the method automatically excludes rattler particles, which do
not contribute to the enthalpy but can complicate analysis
in terms of particle positions because they do not have to
return to the same position in each period, even if the rest
of the system has fallen into an absorbing state. Second, the
method is less sensitive to numerical errors because small
position fluctuations around the periodic states may lead to
periodicity counts that depend sensitively on the threshold.
Such small fluctuations in the particle positions during a cycle
were observed in simulations of frictional particle packings
[16]. Finally, we checked this enthalpy method by also tracking
the sum of all particle displacements after each cycle. We find
that after T cycles in the absorbing state, this total displacement
is either zero within numerical noise or a small fraction of
a single particle radius (below 20%), meaning the particle
configurations are nearly identical.

Results. Figures 1(b) and 1(c) show that Pactive, the fraction
of systems in the active (nonperiodic) state, drops in an
approximately exponential fashion to zero with the number
of applied cycles. This occurs both as we send the pressure p

to small values at fixed γt [Fig. 1(b)] and as γt is increased
at fixed p [Fig. 1(c)]. We may extract the characteristic time
to approach a periodic state τa from Figs. 1(b) and 1(c) by
fitting the exponential decays (τa being the inverse of the
decay constant), to yield the results in Fig. 2. The errors are
estimated by fitting τa to different parts of the Pactive vs t

curves [see Figs. 1(b) and 1(c)]. We see in Fig. 2(a) that the
relaxation time τa appears to diverge as τa ∼ (γ ∗

t − γt )−ν with
a critical exponent ν = 2.4 ± 0.3 at a finite critical training
amplitude γ ∗

t ≈ 0.13. If γt is larger than the critical value γ ∗
t ,

the particles fail to return to a previously visited configuration
before the end of the simulation run. This is consistent with
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FIG. 2. Characteristic time τa to reach a periodic state, as a
function of the training amplitude γt at fixed pressure p ≈ 0.004
(a) and as a function of p at fixed γt = 0.05 (b). In (a), we see that
τa appears to diverge at a critical amplitude γ ∗

t ≈ 0.13 (dotted line).
The dashed line shows a fit to a(γ ∗

t − γt )−ν , with ν = 2.4 ± 0.3 and
a = 0.0043. In (b), τa grows very slowly as p decreases. The dashed
line shows a linear fit to the data τa = a log p + b with a = −0.88
and b = −0.38.

previous work on sheared packings above jamming [14]. When
the pressure p is lowered, τa increases only slightly, consistent
with τa ∼ ln(1/p), as shown in Fig. 2(b).

To investigate how system dynamics changes during the
training protocol, we study the rearrangements in the first
training cycle compared to those found in the eventual
absorbing states. The simplest way to quantify any differences
is to measure the number Nr and magnitude �H of enthalpy
drops during a cycle. We first compare the average change in
enthalpy �H per rearrangement as a function of the training
amplitude. Figure 3(a) shows that magnitude of the enthalpy
drops are suppressed by roughly a factor of 2 after the system
has been trained into a periodic state. We also estimate �H

from systems under a continuous, steady-state shear at a fixed
pressure p ≈ 0.004. In this case, we find an average enthalpy
drop of �Hcon ≈ 4.6 × 10−4. This is larger than both the first
training cycle and absorbing-state enthalpy drops shown in
Fig. 3(a): For example, the first training cycle drops range
from 0.97 × 10−4 to 2.8 × 10−4 in the data shown. We expect
that the first training cycle drops will converge to �Hcon as
we increase the training amplitude, but our amplitudes are less
than 0.1 and far from this convergence.

Figure 3(b) shows that the average number of rearrange-
ments per cycle Nr does not vary appreciably between the first
cycle and the periodic state. Also, Nr scales linearly with the
training amplitude γt . Therefore, we may think about these
rearrangements occurring at a constant rate, with an average
yield strain separating successive rearrangements,

γy ≈ 4γt/Nr (2)

(since 4γt is the total strain during a cycle). Figure 3(b) shows
a linear fit γy ≈ 8.3 × 10−3 for the first cycles in systems with
p ≈ 0.004 (dashed line). Our strain step size δγ ∼ 10−5 was
chosen to be much smaller than this value.

Figure 3(c) shows that the average enthalpy drop during a
rearrangement in the first cycle increases with the pressure,
�H ∼ p1.17±0.06. As in Fig. 3(a), we find a relatively small
suppression of �H for the periodic states compared to the
first training cycle, with the biggest differences (suppression by
about a factor of 2) occurring at higher pressures. Figure 3(d)

FIG. 3. Comparison for a system with N = 256 of the first
training cycle (red ×’s) with the eventual periodic cycle (purple
diamonds and blue squares) into which it settles, for fixed pressure
p ≈ 0.004 and varying training amplitude γt in (a) and (b) and for a
fixed γt = 0.05 (and varying p) in (c) and (d). We plot the average
enthalpy drops �H during particle rearrangements in (a) and (c) and
the number of rearrangements Nr in (b) and (d). In (b), the dashed
line shows a linear fit through the first cycle data, Nr = 480γt . In (c)
and (d), the dashed lines show power-law fits to the first cycle data,
with �H = 0.11p1.17 and Nr = 3.5p−0.33, respectively. The errors in
the data points are smaller than the symbol sizes.

shows that at fixed amplitude of strain, Nr ∼ p−0.33±0.09.
This is consistent with an argument based on using the
scaling properties near the jamming transition. The static shear
modulus G scales with the distance to the jamming point
according to G ∼ (�φ)α−3/2 ∼ p2/3 for Hertzian interactions,
α = 5/2 [23]. Next, the yield stress σy that induces a
rearrangement should be given by σy ∝ (�φ)α−1 ∝ p [26]
in the quasistatic limit. Therefore, the yield strain satisfies
γy ∼ σy/G ∼ p1/3. In a cycle, then, we would expect the
number of rearrangements to scale according to Eq. (2),
Nr ∼ 1/γy ∼ p−1/3, in reasonable agreement with our results.

In summary, Fig. 3 shows that the absorbing states explore
many different minima in the landscape, and that enthalpy
drops during transitions between minima are not appreciably
smaller than those in the initial training cycle. Similar behavior
was recently observed in finite-temperature simulations of
Lennard-Jones glasses [27], where the avalanche size statistics
provides no signal of the absorbing-state transition. Together,
these results show that even multiple, quite extended particle
rearrangements with large enthalpy drops are precisely can-
celed out so that the system returns to the same configuration at
the end of each period. The presence of these delicate balances
likely leads to sensitivity to perturbations in particle positions
as observed in constant-volume simulations [14]. Neverthe-
less, our results show that the statistics of the absorbing states
depends systematically on pressure and training amplitude.

By studying the periodicity of the absorbing states, we
find a qualitative change in the dynamics that arises as the
system approaches the jamming transition (p → 0). Figure 4
shows that as p is lowered, the system settles into periods with
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FIG. 4. The fraction of N = 256 particle systems P (T ) that have
settled into a periodic cycle with period T , at training amplitude
γt = 0.05, and pressures p ≈ 0.04 (blue squares), p ≈ 0.004 (green
triangles), and p ≈ 0.0004 (red circles). Lines are a guide to the eye.
We also include results at p ≈ 0.004 at a higher training amplitude
of γt = 0.07 (open purple pentagons). The fraction of systems with
multicycle periods increases with decreasing p.

higher numbers of cycles T . That is, the system must undergo
multiple cycles of the applied shear before it returns to the
same configuration.

It has been suggested that period proliferation occurs with
increasing γt [14]. We do not observe this; when the training
amplitude is raised at a fixed pressure, the periodicity of the
absorbing states remains roughly the same, as shown in Fig. 4,
where two distributions for γt = 0.05 and γt = 0.07 are shown
(green triangles and purple pentagons) for a fixed pressure,
p ≈ 0.004. The two distributions are the same within the
simulation error, suggesting that it is primarily the pressure that
controls the periodicity increase, not the training amplitude.
We also checked that we had a similar distribution at an
even higher amplitude γt = 0.09 using 500 runs, although our
simulations did not all run long enough to find the absorbing
state [as expected from the rapidly increasing time τa shown
in Fig. 2(a)]. Therefore, we have two ways in which we may
lose the simplest mode of periodicity, T = 1: There can be
a proliferation of higher T periodicities as p → 0 and there
can be a diverging time τa to reach the absorbing state as
|γt − γ ∗

t | → 0.

Multicycle periods have been observed before in simula-
tions of systems near the jamming transition, either below
jamming [20] or near jamming in packings of frictional par-
ticles [16]. Our results show that the periodicity of absorbing
states can be tuned systematically by varying the pressure, or
equivalently, the distance from the jamming transition.

Note that at p ≈ 4 × 10−4, Fig. 3(d) shows that there are
approximately 50 rearrangements per cycle, when averaged
over all absorbing states studied. Some of these absorbing
states have T � 5, so that the system can visit 250–300 minima
before repeating itself.

Discussion. In summary, we have characterized changes
in the properties of absorbing states on approach to the
jamming point. Remarkably, the absorbing states are similar
in their statistics to the states visited during an initial shear
cycle: Absorbing states can have large rearrangements which
must precisely cancel to yield a periodic state. Lowering
the pressure does not appear to lower the probability of
finding an absorbing state. Even the time needed for the
system to fall into an absorbing state increases only gradually
with decreasing pressure. Instead, we find that the absorbing
states become more complicated. There is a proliferation of
multicycle, T > 1, absorbing states as the system approaches
the jamming transition. Multicycle absorbing states are also
observed in systems that approach the jamming transition from
the low-density side [20]. The possibility that the jamming
transition might correspond to the point of maximum period
proliferation is intriguing. The nature of the absorbing state
gives us indirect information about the energy landscape;
perhaps future studies will make this connection explicit.
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