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For many technological applications of superconductors the performance of a material is determined by the
highest current it can carry losslessly—the critical current. In turn, the critical current can be controlled by adding
nonsuperconducting defects in the superconductor matrix. Here we report on systematic comparison of different
local and global optimization strategies to predict optimal structures of pinning centers leading to the highest
possible critical currents. We demonstrate performance of these methods for a superconductor with randomly
placed spherical, elliptical, and columnar defects.
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I. INTRODUCTION

The most important feature of superconductors for high-
performance applications [1] is its ability to carry large
currents with almost no dissipative loss. At the same time,
recent advances have made it possible to manufacture type-
II superconductor-based cables on industrial scales making
large-scale application possible [2,3]. The main dissipative
mechanism in these type-II superconductors stems from
the motion of magnetic vortices within the superconducting
matrix. These are normal elastic filaments, carrying quantized
magnetic fluxes [4], which appear in these superconductors in
magnetic fields larger than the first critical field—in contrast
to type-I superconductors, which lose their superconducting
properties once the magnetic field enters the material. The
highest amount of current that can be passed through a
superconductor without dissipation is known as the critical
current, which strongly depends on the vortex dynamics
and its interaction with nonsuperconducting defects. Strictly
speaking, the critical current in the presence of vortices is
always zero at finite temperatures due to thermal creep, but it
is conventionally defined as the current at which the dissipation
and voltage reaches some threshold value. At sufficiently large
currents the dissipation and associated heating of the super-
conductor will ultimately lead to the loss of superconductivity.

Despite all technological advances, typical critical currents
are still way below the theoretical limit and from an economic
point of view too low to be competitive with conventional
cables for large-distance energy transport. An obvious way
to improve the critical current in existing superconductors is
to impede the vortex motion more effectively. This can be
accomplished by placing defects, which can “pin” magnetic
vortices and thus prevent their motion [5,6], in a sophisticated
way. The entirety of all defects is also called the pinning
landscape (or pinscape), which in conjunction with intrinsic
material inhomogeneities and the sample geometry define the
critical current of a given sample.

This defines the task, which we consider in this work:
the optimization of the pinscape for highest possible critical
currents. More precisely, we concentrate on defects or pinning
centers, which can be controlled during the fabrication of
a sample, like self-assembled inclusions [7,8] or irradiation
defects [9–11]. The efficiency of the pinscape strongly depends

on the shape, size, and arrangement of individual pinning
centers. Indeed, bigger defects ensure a larger pinning force
but, at the same time, reduce the effective cross section of
the superconductor needed for current flow. The optimal pin-
scape also depends on the intended application, particularly on
the type of superconductor and on the value and the direction of
external magnetic fields. The question we address in this paper
is how one can find the best pinscape most effectively. This sys-
tematic prediction of optimal pinscapes for a given application
aims at replacing the traditional trial-and-error approach [9].

Here we test several optimization strategies allowing for a
systematic improvement of the critical current in superconduc-
tors. We compare the efficiency of a global method (particle
swarm optimization) and three local methods (Nelder-Mead
method, pattern search, and adaptive pattern search) for a
typical critical current optimization problem. The critical
current for a given pinscape is calculated using a GPU-
based iterative solver for the time-dependent Ginzburg-Landau
(TDGL) equation describing type-II superconductors [12].
This model correctly captures the vortex dynamics [5,6,13] in
superconductors in the vicinity of the critical temperature and
is capable of reproducing experimental critical currents for a
given pinscape [8,9,14–16]. In addition, we provide a detailed
analysis of these methods applied to several benchmark
functions for comparison.

The article is organized as follows. In Sec. II we formulate
the general optimization problem and describe the optimiza-
tion methods studied here. In Sec. III we present a detailed
comparison of the efficiency of the chosen optimization
strategies on benchmark functions and discuss results in
Sec. III D. In Sec. IV we briefly describe the TDGL model
for superconductors and define three physically relevant
optimization problems in Sec. V with discussion in Sec. VI.
Finally, we summarize our results in Sec. VII.

II. OPTIMIZATION METHODS AND PROBLEM
FORMULATION

Optimization methods are divided into two classes: local
and global methods. Examples of global search methods
include particle swarm optimization (PSO), cuckoo search,
simulated annealing, etc. We chose to focus on PSO because of
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its straightforward parallelizability. Simulated annealing and
cuckoo search were rejected because they are computationally
prohibitive in higher dimensional spaces as they do not
use any information about prior steps taken. However, PSO
uses global and individual information to make directed
movements in parameter space. We compare this global PSO
method to three local methods: pattern search (aka coordinate
descent), adaptive pattern search, and the Nelder-Mead method
(aka downhill simplex method). The pattern search and
Nelder-Mead methods are standard local methods, and their
analysis, convergence properties, and pitfalls have been widely
studied [17–23]. The adaptive pattern search method is a
recent improvement on the traditional pattern search [24].
These methods can be used in conjunction with some more
sophisticated methods, or routines, such as multilevel single
linkage, which begins with many different initial starting
points and collects them into multiple sets, which depend
on whether they are sufficiently close to a previously found
local optimum. If they are not close to any previously found
optimum, a local search is started [25,26]. The primary use
behind this type of routine is to terminate local searches,
which are falling into the basin of attraction of an optimum
point already found, which reduces the computation time
and number of function evaluations. As an alternative to this
method, one can create a global or local hybrid, where first a
global method (e.g., PSO) is used to search through parameter
space, and when a sufficient number of particles are within a
specified distance, we switch to a local method at the points
with greatest particle swarm densities.

The general optimization problem of a function f can be
formulated as

xopt = arg min
x∈�

{f (x)}, fopt = min
x∈�

{f (x)}, (1)

where x ∈ � is a set of parameters in parameter space �.
x defines all variable properties in the system, which in
turn, defines the objective function f (x). In the case of a
superconductor, the parameter set x can, e.g., determine the
pinscape of the system and the corresponding objective func-
tion is f (x) = −Jc(x), where Jc(x) is the critical current of the
superconductor with pinscape x. Note that the minimization
of this f (x) is equivalent to the maximization of Jc(x).

A. Particle swarm optimization

The PSO algorithm is a metaheuristic global optimization
algorithm [27,28]. Its convergence properties have been
studied in a simplified form, where a single particle was
used and the randomness in the algorithm was replaced by
its averaged value [29]. It performs well on all test problems
but is typically outshone by local methods when there was
only a single minimum. The utility of this method is best seen
on functions with multiple local optima; see Fig. 1(c). This
test function is relevant for problems having multiple local
extrema, such as the problem of periodically arranged pinning
centers in superconductors. In that case, many local maxima
of Jc exist at integer values of the ratio of number of pinning
centers to number of vortices [16].

The PSO has four main control parameters given by q = {S,
ω, φp, φg}, where S is the swarm size, ω the inertia of
the individual particle (its tendency to move in its current

direction), and φp and φg are the weights for the particle
to move towards its individual and the global optimum in
parameter space, respectively. The pseudocode for PSO is
presented in Listing 1.

Listing 1. Particle swarm optimization

1: input: Lower and upper limits, L and U
2: input: Parameters S, ω, φp, and φg

3: input: Parameters Kexit from [1,S] and Dexit

4: for i = 1, . . . , S do
5: Uniformly distributed particle position xi ← Un(L,U)
6: Particle velocity vi ← Un(L − U,U − L)
7: Particle best known position pi ← xi

8: end for
9: Best global position g = arg min

i
f (pi)

10: repeat
11: for i = 1, . . . , S do
12: rp ← Un(0,1), rg ← Un(0,1)
13: vi ← ωvi + φprp(pi − xi) + φgrg(g − xi)
14: xi ← xi + vi

15: if f (xi) < f (pi) then
16: pi ← xi

17: if f (pi) < f (g) then
18: g ← pi

19: end if
20: end if

21: Distance from global best position di ← ‖ xi − g

U − L
‖

2

22: end for
23: Sort d1, d2, . . ., dS in ascending order

24: d̄ ← 1

Kexit

Kexit∑
i=1

di

25: until d̄ < Dexit

26: output: g

The objective function is updated independently for each
particle, which makes PSO parallelizable. In this way, a
large architecture can make this method highly efficient for
multimodal surfaces, where a large swarm size can be way
more efficient in converging towards a global solution than
local methods.

The biggest challenge is in determining an appropriate exit
criterion for the routine. We use either of the following:

(1) The change, |f (gbest) − 〈f (g)〉M |, in the best found
objective function value, f (gbest), with f (g) averaged over
the last M iterations of PSO, 〈f (g)〉M or

(2) The average distance of the particle from the swarm
global best position K−1

exit

∑Kexit
i=1 ‖(xi − g)/(U − L)‖2, where

the sum is taken over Kexit particles with the best objective
values; see lines 21, 24, and 25 in Listing 1. A small variant
would be to use pi instead xi of each respective particle,
which would be less sensitive to the exploratory nature of
PSO (through the inertial term ωvi).

The first exit criterion avoids taking an unnecessary amount
of evaluations if there is no sufficient improvement (the method
could then be terminated, switched to a local method, or
restarted). The second was done to avoid cases where there
may be many local optimum and so a few particles get trapped
among them. This avoid premature stopping if many particles
are spread out in parameter space and the improvement in g
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FIG. 1. Examples of different test functions with one global minimum. (a) Sphere function, a simple multidimensional parabola. (b)
Rosenbrock function, a quartic multidimensional polynomial with shallow valley not along one of the coordinate axes. (c) Rastrigin function,
a periodic function with many local extrema.

is slow. We stop when a certain proportion of the swarm has
been attracted to the best found point. A higher proportion
means more evaluations but also a higher probability that
we converged to the correct optimum. Therefore, there is a
balance between speed and accuracy. In the testing on the
benchmark functions, we found no significant difference in
accuracy for Kexit > S/2, but a difference in speed. In the
simulations presented below we chose Kexit = 0.7S.

B. Pattern search

Pattern search is a straightforward method, which starting
from a random point, evaluates 2n + 1 points (including the
initial point) where n is the dimension of the parameter space,
by moving a distance along each dimension in the search space.
It then moves to the point which improves the function the
most. The method then evaluates 2n − 1 new points (it does
not need to reevaluate the point its on or the point it came
from). If no improvement is made, the step size is reduced.
Once the step size is below some threshold, it exits out of the
loop. Along with its simplicity comes its ability to converge
to nonstationary problems on some relatively simple problems
[30]. It has a particularly difficult time with functions with
coordinate systems which are highly correlated, e.g., roughly
speaking, the function gradient is not along any of the main
coordinate axes, such as the Rosenbrock function shown in
Fig. 1(b).

C. Adaptive pattern search

The adaptive pattern search method is a recent modification
of pattern search. The algorithm works similar to pattern
search, but while searching the parameter space, it adapts the
coordinate system to achieve faster convergence; see Listing
2 adapted from Ref. [24]. The presented adaptive encoding is
similar to principal component analysis (PCA). The covariance
matrix C and the transformation matrix B are updated using the
most successful μ points. The transformation matrix modifies
the coordinates to make them as uncorrelated as possible.
Unlike PCA which typically looks to reduce dimensionality
by retaining only eigenvectors corresponding to the largest
eigenvalues, adaptive encoding retains all components.

Apart from the adaptive encoding, adaptive pattern search
is very similar to pattern search. Suppose, we have an

Listing 2. Adaptive encoding

1: input: Parameters μ, σ , ks, and ku

2: input: μ best points x1, . . ., xμ

3: if Initialize then

4: wi ← 1

μ
, cp ← 1√

n
, c1 ← 1

2n
, and cμ ← 1

2n
5: p ← 0
6: C ← I; B ← I

7: m ←
μ∑

i=1
xiwi

8: else
9: m− ← m

10: m ←
μ∑

i=1
xiwi

11: z0 ←
√

n

‖B−1(m − m−)‖ (m − m−)

12: for i = 1, . . . , μ do

13: zi ←
√

n

‖B−1(xi − m−)‖ (xi − m−)

14: end for
15: p ← (1 − cp)p + √

cp(2 − cp)z0

16: Cμ ←
μ∑

i=1
wiziz

T
i

17: C ← (1 − c1 − cμ)C + c1ppT + cμCμ

18: BHDDBH ← eigendecomposition(C)
19: B ← BHD
20: end if
21: output: p, B, C

n-dimensional optimization problem, it initially searches in
each coordinate direction, independently recording the new
optimal as it progresses (in contrast to the generic pattern
search we employed, which is not done sequentially). Then
it keeps the best μ points, μ < 2n + 1, and Listing 2 is
called. This transformation is updated after each sweep of all
n dimensions (2n − 1 points) and applied in the next iteration.
There are four parameters q = {μ, σ , ks, ku} which control
the success and efficiency of this method: μ is the number
of points used in the adaptive encoding function call, σ is
the initial step size, and ks (ku) are the increase (decrease) of
the step size upon successful (unsuccessful) improvement of
the function value. The convergence rate was observed to be
most sensitive to the parameter μ. The utility of this method
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is best seen when applied to the Rosenbrock function, where
pattern search needs over 20 000 iterations to converge in
a two-dimensional (2D) parameter space, while the adaptive
pattern search method typically converged in less than 1000
iterations.

The key for the method’s improved performance on
Rosenbrock-type functions is the adaptive encoding part of the
algorithm. At this point we remark that the adaptive pattern
search is typically a more efficient or performing method
compared to the generic pattern search, but comparison to
the latter offers a useful way to measure the overall shape of
the optimal solution. We can logically deduce from the ratio
of performance between these two methods, that if adaptive
pattern search is orders of magnitude better than pattern search,
then this implies that the parameters of interest are highly
correlated.

D. Nelder-Mead method

The Nelder-Mead method (or downhill simplex) was
chosen for its relative simple structure and its independence on
the choice of the chosen coordinate system (it does not move
along each dimension sequentially). This is most easily seen in
comparing the method against the Rosenbrock function. This
method utilizes simplexes, which are polytopes with n + 1
points (or vertices) in n dimensions (i.e., triangles for n = 2,
or tetrahedrons in n = 3).

Over time, many variants of Nelder-Mead have been
conceived [31–33]. Following Ref. [33], Listing 3 describes the
general Nelder-Mead method. Here we used standard values

Listing 3. Nelder-Mead method

1: input: Lower and upper limits, L and U
2: input: Parameters α, γ , ρ, and σ

3: Vertices x1, . . . xn+1 ← Un+1(L,U)
4: repeat
5: Order the vertices f (x1) ≤ f (x2) ≤ . . . ≤ f (xn+1)

6: Centroid of n best points x0 ← 1

n

n∑
i=1

xi

7: Reflected point xr ← x0 + α(x0 − xn+1)
8: if f (x1) ≤ f (xr) < f (xn) then
9: xn+1 ← xr

10: else if f (xr) < f (x1), then
11: Expanded point xe ← x0 + γ (xr − x0)
12: if f (xe) < f (xr) then
13: xn+1 ← xe

14: else
15: xn+1 ← xr

16: end if
17: else
18: Contracted point xc ← x0 + ρ(xn+1 − x0)
19: if f (xc) < f (xn+1) then
20: xn+1 ← xc

21: else
22: xi ← x1 + σ (xi − x1) for all i > 1
23: end if
24: end if
25: until V(x1, . . ., xn+1) < ε

26: output: x1

for parameters α = 1, γ = 2, ρ = 1/2, and σ = 1/2. The exit
criteria in line 25 is satisfied when the points are within a
certain distance and is defined by the “volume”

V(x1, . . . , xn+1) = |det(V)|
n! 
n

,

where 
 = min ‖xi − xj‖ and matrix V = (ẋ1, . . ., ẋn) con-
sists of n vectors ẋi = xi+1 − x1. This choice of the exit criteria
was justified in Ref. [33].

III. TESTING ON BENCHMARK FUNCTIONS

The above mentioned optimization methods are tested
on the three benchmark functions shown in Fig. 1: the
sphere function, the Rosenbrock function, and the Rastrigin
function. These were chosen for their similarity to previously
obtained critical-current surfaces in superconductors for low-
dimensional sets of parameters. We expect scenarios where
either a single optimum or multiple local with one global
extrema exists. As a particular and practical example, the
behavior of the solvers on the Rosenbrock function is related to
the optimization of a pinscape consisting of spherical defects
with two parameters being the number and diameter of the
defects. In this case, it turns out that the Rosenbrock-type Jc

surface can be removed by replacing the number of defects by
the volume fraction. In general, however, one cannot be sure
that an appropriate transformation exists or can even be found.

The study was broken up as follows: optimal parameters
for the PSO and adaptive pattern search are obtained using the
three benchmark functions. These were found by overlaying
each respective optimization routine with PSO. For example,
adaptive pattern search has tuning parameters q = {μ, ks, ku,
σ }; see Sec. II C. The nested PSO algorithm then searches
through this parameter space in an attempt to find the optimal
parameters for the algorithm. We initially considered the
function

Ēf (q) = 1

M

M∑
i=1

Ef,i(q), (2)

where Ef,i is the number of function evaluations required to
find the global optimum for a function f , q are the parameters
used for the optimization routine, and M are the total number
of simulations which successfully found the global optimum.
However, this is not the most useful measure as it does not
take into account the rate at which the algorithm successfully
finds the global optimum. Indeed, defining rf (q) as the rate
at which a correct solution is found (to within a specified
tolerance) for a set of the method parameters q. Then it may
turn out that Ēf (q1) < Ēf (q2), but rf (q1) 	 rf (q2) for some
certain q1 and q2. It then may happen that we would require
many more runs for q1 so that q2 was actually the better
choice. Therefore, we make a refinement to Eq. (2) and obtain
the optimal parameters qopt for each optimization method by
solving the following auxiliary optimization problem:

qopt = arg min
q

{Ff,α(q)}, (3a)

Ff,α(q) = Nf,α(q)Ēf (q), (3b)

Nf,α(q) = log(1 − α)

log[1 − rf (q)]
, (3c)
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TABLE I. Optimal PSO parameters qopt = {S, ω, φp, φg} and
Ff,α(qopt) for the sphere function.

n {S ω φp φg} Ff,α

2 5 0.22 0.93 1.93 84.7
3 5 0.36 1.35 1.68 131.3
4 8 0.23 0.80 1.96 183.7
5 10 0.18 0.99 1.96 235.5
6 9 0.36 1.55 1.55 290.5
7 12 0.27 1.18 1.75 348.4

where Nf,α is the number of iterations needed to be at least
α sure that we have found the global solution and Ēf (q)
was defined by Eq. (2). In this work, we used α = 0.99.
The dimensionality in the function was absorbed into the
optimization problem, and an analysis of the problem
dimensionality and number of iterations was tested.

We sampled 103 different starting configurations x, where
xi ∈ [−10,10] for the algorithms and then ran the nested PSO
algorithm 10 times for each dimension and each benchmark
function. The best parameters were recorded. Once these
were obtained, we tested all the algorithms mentioned using
the same starting points (when possible) and compared the
performance. The algorithms each had a maximum iteration
number of 103n2 where n = |�| [the exception being PSO,
where we used max(103n2,100S) to ensure at least 100
possible iterations of PSO] is the dimension of the original
optimization problem (1) and would exit out of the loop with
a tolerance of 10−3n2.

A. Sphere function

The sphere function shown in Fig. 1(a) is defined by

f (x) =
n∑

i=1

x2
i . (4)

Tables I and II show a tabulated view of the effectiveness of the
chosen methods to find the extremum of this function in the
given number of iterations. The function is very simple and the
coordinates are uncorrelated. Thus, a wide range of parameters
actually turned out to be similarly effective. A comparison of
the method’s performances is presented in Fig. 2 by using
100 random initial starting configurations and employing
Eq. (3).

TABLE II. Optimal adaptive pattern search parameters qopt =
{μ, σ , ks, ku} and Ff,α(qopt) for the sphere function.

n {μ σ ks ku} Ff,α

2 1 0.21 1.00 0.24 44.3
3 2 0.22 1.00 0.33 64.0
4 4 0.12 1.00 0.29 82.0
5 2 0.36 1.00 0.29 99.5
6 3 0.21 1.00 0.33 114.9
7 13 0.25 1.00 0.33 128.7
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FIG. 2. A comparison of each methods efficiency as a function
of dimension for the sphere function.

B. Rosenbrock function

The Rosenbrock function shown in Fig. 1(b) is a standard
test for optimization methods and is given by

f (x) =
n−1∑
i=1

[
100

(
xi+1 − x2

i

)2 + (1 − xi)
2
]
. (5)

Optimization of this function demonstrates the utility of
coordinate independent local search methods (like Nelder-
Mead or adaptive pattern search). This is due to the fact that the
minimum is contained inside a parabolic valley which requires
constant shrinking of the step size for pattern search to make
progress. Consider the 2D case:

f (x,y) = 100(y − x2)2 + (1 − x)2.

A change of variables to the (u,v) plane given by u = 1 − x

and v = y − x2 leads to elliptical level sets g(u,v) = u2 +
100v2, which is much more favorable to coordinate-dependent
methods. In practice it is usually difficult or impossible to find
the appropriate transform converting to elliptical level sets.
Nevertheless, this gives a useful test of the morphology of
the surface of Jc by comparing iterations between coordinate-
dependent and coordinate-independent methods.

Tables III and IV show the effectiveness of the PSO and
adaptive pattern search methods to minimize the Rosenbrock
function in a given number of iterations. As we can see, the
PSO method is much slower than Nelder-Mead and adaptive

TABLE III. Optimal PSO parameters qopt = {S, ω, φp, φg},
Ff,α(qopt), rf (qopt), and Nf,α(qopt) for the Rosenbrock function.

n {S ω φp φg} Ff,α rf Nf,α

2 28 0.25 −0.21 1.58 823 0.99 1
3 34 0.29 −0.15 1.73 2942 0.95 2
4 40 0.35 −0.17 1.59 9352 0.73 4
5 49 0.28 −0.21 1.67 15650 0.61 5
6 61 0.30 −0.20 1.70 22339 0.56 6
7 73 0.27 −0.19 1.68 39277 0.53 7
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TABLE IV. Optimal adaptive pattern search parameters qopt =
{μ, σ , ks, ku}, Ff,α(qopt), rf (qopt), and Nf,α(qopt) for the Rosenbrock
function.

n {μ σ ks ku} Ff,α rf Nf,α

2 2 0.28 1.67 0.43 227 1.00 1
3 3 0.15 1.48 0.46 392 1.00 1
4 4 0.22 1.81 0.38 781 0.94 2
5 5 0.14 1.71 0.45 1384 0.92 2
6 6 0.37 1.96 0.36 1775 0.93 2
7 7 0.10 2.77 0.34 2993 0.92 2

pattern search. A comparison of the each methods efficiency
as a function of dimension is given in Fig. 3. The optimization
of parameters for PSO revealed that the dimensionality and
swarm size are (perhaps not surprisingly) correlated. As the
dimensionality increases, the optimal swarm size (holding
other parameters fixed) increases. To verify this, we sampled
100 random starting points for swarm sizes between 10 and
200; the results are shown in Fig. 4.

C. Rastrigin function

The third test function we consider here, is the Rastrigin
function [see Fig. 1(c)], which is the sum of a sphere function
and periodic oscillations, having multiple minima. This type
of objective function is similar to the objective function of
superconductors having periodic pinscapes. It is defined by

f (x) = 10n +
n∑

i=1

[
x2

i − 10 cos(2πxi)
]
. (6)

This is where PSO performs particularly well compared to
the local search methods. Table V shows its effectiveness to
solve the Rastrigin function optimization problem in the given
number of iterations. The local methods do a comparatively
poor job as can be seen in Table VI and Fig. 5. The optimal
swarm size also grows rapidly with increasing dimensionality,
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FIG. 3. A comparison of each methods efficiency as a function
of dimension for the Rosenbrock function.
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FIG. 4. The optimal swarm size, S, of the particle swam opti-
mization on the Rosenbrock function as a function of dimension n

while holding the other parameters fixed {ω, φp, φg} = {0.3, −0.2,
1.7}.
and we sampled 100 random starting points for swarm sizes
between 50 and 1000; the results are shown in Fig. 6.

D. Results of benchmark function optimizations

The optimization of parameters for adaptive pattern search
and PSO has led to some interesting results. First, the nested
PSO algorithm finds many different “good” choices for the
parameters needed. This is to be expected, since each problem
is unique, and it would be surprising if multiple sets of
parameters did not yield similar results. What was surprising
is the sensitivity of the parameters to small deviations from
optima that were obtained on Rastrigin’s function. A good
example would be in a particular optimization run of adaptive
pattern search’s parameters for n = 6. We found that the set
{μ, σ , ks, ku} = {6, 0.3, 6.59, 0.29} was the best for that
particular run found with 2 × 105 function evaluations needed.
Just changing one of these parameters slightly to {6, 0.3, 6.59,
0.39} needs 4.25 × 105 function evaluations.

This sensitivity was not observed in the other two bench-
mark functions, meaning that the sensitivity of these param-
eters for the optimization routines are highly dependent on
the type of function, being particularly sensitive to functions
with multiple optima. At the other end of this spectrum, it
was observed that many different sets of parameter values led
to a minimal amount of evaluations. Essentially, there was

TABLE V. Optimal PSO parameters qopt = {S, ω, φp, φg},
Ff,α(qopt), rf (qopt), and Nf,α(qopt) for the Rastrigin function.

n {S ω φp φg} Ff,α rf Nf,α

2 50 0.25 2.00 1.00 934 1.00 1
3 145 0.58 2.08 0.89 4514 1.00 1
4 265 0.58 2.21 0.75 10953 1.00 1
5 365 0.48 2.22 0.77 20410 1.00 1
6 650 0.5 2.25 0.67 43939 0.998 1
7 945 0.51 2.29 0.65 81779 0.993 1
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TABLE VI. Optimal adaptive search parameters qopt = {S, ω, φp,
φg}, Ff,α(qopt), rf (qopt), and Nf,α(qopt) for the Rastrigin function.

n {μ σ ks ku} Ff,α rf Nf,α

2 3 0.25 1.79 0.33 1051 0.22 19
3 1 0.37 1.94 0.31 7972 0.04 113
4 1 0.39 1.69 0.29 27017 0.01 327
5 2 0.62 1.00 0.45 132134 0.004 1149
6 6 0.3 6.59 0.29 197052 0.003 1532
7 7 0.41 5.93 0.11 584564 0.001 4603

not a large difference between the best observed set, which
is reported in Tables I and II, and other choices. From this
we can conclude that surfaces with uncorrelated dimensional
space and with a small number of optima are more likely to be
insensitive to the choice of parameters and hence do not need
to be tuned for the particular problem.

The Rastrigin function is particularly useful in analyzing
the effect multiple optima have on local methods. One can
find the number of extrema as a function of dimension size
n. The derivative of the Rastrigin function in each respective
coordinate is set to 0 and is given by xi + 10π sin(2πxi) = 0.
We recall that the bounds for our benchmark functions are
xi ∈ [−10,10]. It is easy to see that due to symmetry, we need
to consider only xi > 0. We further note that solutions are
not possible for xi > 10π , and for each oscillation period,
one obtains two extrema. Since the period is 1, this implies 10
minima (20 extremum which by symmetry has 10 maxima and
10 minima) within the above bounds. Furthermore, symmetry
implies 10 more in the negative direction plus the obvious
xi = 0 (global) minimum, which results in 21 minima total. It
then follows that the number of minima in our problem for n

dimensions is 20n + 1 ≈ 20n.
Another useful metric of an optimization routine is the

probability that a found optimum is the global optimum.
For this we can consider any local method which is run R

times, and suppose the method has an equal probability to
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FIG. 6. The optimal swarm size, S, of the particle swam opti-
mization on the Rastrigin function as a function of dimension n while
holding the other parameters fixed (ω, φp, φg) = (0.4, 2.0, 1.0).

converge to any of the m minima (in general this need not be
true). We also assume m � 1, and we want to be α = 0.99
sure we have found the global solution. This would require
R ≈ 4.6m [or R = O(m)]. Thus the number of local runs
should scale approximately linearly with increasing minima.
With just n = 2 for the Rastrigin function, for example, would
imply that a local method would need to be run R ≈ 2000
times to be 99% sure we have converged to the global solution.
Again, it is important to note that this number assumed each
extremum was equally likely, that is, each of their respective
basins of attractions were the same size. This assumption in
general is not true, but it provides an insight into how many
runs of a local method would be needed to be confident that the
routine has found the global optimum. For example, suppose a
local method converges in 50 evaluations on average to a local
extremum. In two dimensions this would require on average
close to 100 000 total evaluations of the objective function.
Compare this with the number needed for PSO. In reality
this turns out to be an overestimation, the total number of
evaluations for local methods are far lower, but this analysis
provides some insight as to why they suffer at this level and
how the number of evaluations will scale with increasing
number of optimums.

In contrast, PSO and other global methods are more robust
to the number of local optima as can be seen by comparing
Figs. 3 and 5, the number of function evaluations is on the
same order for both Rosenbrock and Rastrigin functions. A
possible reason why PSO behaves similarly for Rosenbrock
and Rastrigin is because there is only a “1D path” towards
the minimum for Rosenbrock, while the sphere function has a
50% chance to lower the objective in each direction. Therefore,
particles are as likely to become stuck in the Rosenbrock valley
as they are in a Rastrigin local minimum.

The PSO optimal parameters also provide some insight
into the nature of the function. It helps to first interpret
what each parameter does. Increasing S obviously leads to
a greater chance of finding the best solution; the cost is an
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increase in function evaluations. The inertial weight ω < 1 is
not a coincidence. As the particles approach the global best,
vi ← ωvi and this has a fixed point at vi = 0. The φp and φg are
quantities which affect the exploratory nature of the algorithm
and the weight associated with the global information that the
swarm provides to each individual particle. As φg → 0 each of
the particles behave more independently and their movement
becomes more individualized. As φp → 0, one essentially tells
each particle to only trust the group on the correct direction to
go.

Armed with this interpretation, one can understand some of
the results from the tables in Sec. III. The sphere function and
Rosenbrock both have few minima (the sphere has only one,
and the Rosenbrock has no more than two for n ≤ 7). Therefore
we expect φg ≥ φp. However, the results are different in
Table V, which shows φp increasing and φg decreasing as
n (number of optima) increases. This makes sense for multiple
optima, since the swarm should behave more independently
and not get caught among the many local optima. On the other
hand, for φg = 0 it would take very long to converge (e.g.,
simulated annealing).

IV. MODEL FOR THE CRITICAL CURRENT
IN SUPERCONDUCTORS

Here we define the objective function for the optimization
problem in superconductors mentioned before. For the descrip-
tion of the vortex dynamics in strong type-II superconductors,
we use the TDGL equation for the superconducting order
parameter ψ = ψ(r,t),

(∂t + iμ)ψ = ε(r)ψ − |ψ |2ψ + (∇ − iA)2ψ + ζ (r,t), (7)

which is solved numerically. Here μ = μ(r,t) is the chemical
potential and A is the vector potential associated with an
external magnetic field B as B = ∇ × A. The temperature-
induced noise is simulated using a δ-correlated Langevin term
ζ (r,t) (in this work we use noise of approximately 1 K). The
unit of length is given by the superconducting coherence length
ξ , the unit of magnetic field by the upper critical field Hc2,
and the corresponding unit of current is J0 (in this unit, the
depairing current is given by Jdp = 2/

√
27). See Ref. [12] for

the details of TDGL model implementation and physical units.
The current density is given by the expression

J = Im[ψ∗(∇ − iA)ψ] − ∇μ. (8)

To determine the critical current value—the maximal
current, which can flow through the superconductor without
dissipation—we use a finite-electrical-field criterion. Specif-
ically, we choose a certain small external electric field,
Ec = 10−4, which measures the dissipation and adjust the
applied external current, J , to reach this electrical-field or
dissipation level on average during the simulation. The time-
averaged value of external current over a steady state gives the
critical current, Jc = 〈J 〉.

The critical current in the presence of an external magnetic
field is mostly defined by the pattern of nonsuperconducting
defects, including their sizes, shapes, and spatial distribution,
which prevents vortices from moving under the influence of
the Lorentz force, fL = J × B.

The pinscape is characterized by a set of parameters x,
which corresponds to the objective function

f (x) = −Jc(x) (9)

used in optimization problem (1). Each element x of the pa-
rameter space � describes the pinscape in the superconductor,
e.g. the shape of each defect and their spatial distribution. The
optimal configuration of the defects xopt corresponds to the
minimization of the objective function, fopt = f (xopt).

Knowledge of the shape and behavior of the function Jc(x)
is not known a priori. In addition if we consider, for example,
a random placement of defects in the domain, each realization
can yield slightly different values for Jc—for the same x (if it
does not describe the positions of all defects explicitly), such
that averaging is required. In that case one can expect, as the
number of random simulations tends to infinity, Jc approaches
a “true” value due to self-averaging. For a finite number
of trials it leads, however, to a noisy Jc surface. This can
create difficulties for local methods to converge to the global
solution. A modification of the local methods to multilevel
starting points helps to overcome the noise in these types of
problems.

To obtain the critical current Jc(x), we solve the TDGL
equation in the domain of interest with a specified parameter
set x. Each evaluation of Jc is relatively expensive (typically,
a few GPU-hours), but can be performed independently for
different x. In order to reduce noise in Jc, one can (1) average
it over several realizations of random positions of defects
and/or (2) increase the system size. Both techniques naturally
increase the computation time of Jc. The final value defines
the objective function for the optimization problem.

V. OPTIMIZATION OF THE CRITICAL CURRENT

The objective function in Eq. (9) is then used to solve
the general optimization problem for the pinscape defined in
Eq. (1). Typical pinscapes with like defects are described by
parameter spaces � having n = 2 to 8 dimensions. Here we
consider three particular and important cases for n = 2, 3, 4
to analyze the described optimization strategies. For practical
applications also the robustness of an optimum is important,
since, e.g., the size and shape of defects cannot be controlled
exactly in an experiment. Therefore, the found optimal critical
current should be relatively insensitive to small perturbations
in the optimal pinscape xopt. In the examples studied here, this
condition is fulfilled.

For the simulations needed to obtain the critical current for
a given pinscape, we use a 3D superconducting sample with
dimensions 64 × 64 × 64 in units of coherence length ξ with
(quasi-)periodic boundary conditions. The external current J

is applied in the x direction, perpendicular to the magnetic
field B in the z direction. All defects are modeled by local
variation of the critical temperature, such that defects are
regions being in the normal state. To this end the system is
discretized by a regular cubic grid with grid resolution of
half a coherence length. As demonstrated in earlier works
[8,9], this resolution is sufficient to capture the involved
physical processes correctly. A pattern generator then creates
the pinscape according to the defining parameter set x, by
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FIG. 7. Pinscapes for optimization. (a) Randomly placed spherical inclusions for problem (10a). (b) Spheroidal inclusions for problem
(10b). (c) Mixture of spherical and columnar inclusions for problem (10c).

assigning each grid point either to the superconductor or to the
defect, distinguished by a high or low local Tc value. Defect
regions with low Tc values typically consist of many connected
grid point.

First, we consider randomly placed spherical defects (typi-
cally self-assembled inclusions in real sample) in a 3D system.
All inclusions have the same diameter, such that the parameter
space for this problem is defined by the defect density ρs within
the sample and their diameter Ds. As mentioned before, this
set of parameters is not unique, such that the same pinscape
could be described by a different x (e.g., the diameter and total
number of defects). This two-parameter pinscape problem was
considered recently in Ref. [34] by sampling of the parameter
space, which was possible in that case.

Another example of a two-parameter problem would be
a system with two kinds of defects having fixed shape, e.g.,
a superconductor having columnar defects of fixed diameter
imprinted (typically introduced by high-energy heavy-ion
irradiation in a real sample), which already had intrinsic
(usually chemically grown) nano-rod pinning centers [9].
In this case the parameter space will be defined by the
concentration ρc of columnar defects and the concentration
ρn of the intrinsic nano-rod defects, i.e., x = (ρc,ρn).

For the first problem we consider here, the pinscape is
defined by

x = (ρs,Ds), Ns =
⌊

6LxLyLzρs

πD3
s

⌋
, (10a)

where Ns is the number of identical spherical inclusions
to be placed randomly [see Fig. 7(a)] and �·� denotes the
integer rounding function. In the second, three-parameter
(3D) optimization problem shown in Fig. 7(b) we replace the
spherical defects by spheroidal defects, which have a different
diameter in the z direction than in the xy plane; i.e., it is
described by two different diameters—Dxy in the xy plane
and Dz in the z direction. In this case the pinscape is defined
by

x = (ρe,Dxy,Dz), Ne =
⌊

4LxLyLzρe

πκD2
xyD̃z

⌋
, (10b)

where D̃z = min{Dz,Lz} and κ = 1 − D̃2
z /3D2

z ; the former
definitions take into account periodic boundary conditions
in the z direction, when the z diameter grows beyond the
simulation cuboid. In the final, four-parameter (4D) problem,
we consider two types of defects described by a single
parameter and their respective volume fractions, namely,
spherical and columnar (cylindrical) inclusions; see Fig. 7(c).

The respective pinscape control parameters are then ρs, Ds for
spheres and ρc, Dc for columns,

x = (ρs,Ds,ρc,Dc), Nc =
⌊

4LxLyρs

πD2
xy

⌋
, (10c)

where Ns was defined in Eq. (10a). In the following we discuss
the results for these three optimization problems as well as the
benchmark function optimizations.

VI. RESULTS OF CRITICAL CURRENT OPTIMIZATIONS

Figures 8–10 show the optimization “paths” for all four
optimization methods for the 2D [Eq. (10a) with parameter
space dimension n = 2], 3D [Eq. (10b) with n = 3], and 4D
[Eq. (10c) with n = 4] problems, respectively. These plots
show the values of the currently best critical current and
the associated parameter set x as function of number of
evaluations of the objective function (solid lines). If a new
optimal value is found it is marked by circles, while all other
evaluations (with objective values above the current minimum)
are marked by gray dots. The optimal values are shown by
dashed horizontal lines. Note that the pattern search algorithm
is not sequential, meaning that a minimum is calculated only
after a certain number of evaluations (up to 2n + 1), which
defines an iteration of the method. The iterations are marked
by vertical dotted lines in the plots. If the number of evaluations
per iteration is less that 2n + 1, the remaining objective values
were calculated before and are just looked up in a database.
Iterations are shaded according to the step sizes in parameter
space. The optimization results are summarized in Table VII.
In the 2D case for randomly placed spherical inclusions, the
optimal values reproduce the ones of Ref. [34] at magnetic
field B = 0.1Hc2. In the 3D case for spheroidal inclusions,
the optimal pinscape corresponds to an infinite size in the z

direction (larger than the system size), i.e., when the spheroids
have “evolved” to columnar inclusion, and the optimal value of
the critical current is increased by ∼50%. In the 4D case, for
a combination of the columnar and spherical defects, the 3D
result is confirmed, since the volume fraction for the spheres
vanish and the best pinscape turns out to be consisting of
columnar defects in the z direction only. The diameter and
volume fraction of the best columnar defects in the 3D and 4D
cases are accordingly the same.

As mentioned before, in order to obtain a good critical
current value for randomly placed inclusions, either a large
number of random realizations or much larger systems are
needed. While the latter is easier to run, we chose the former
for performance reasons, such that a single objective function
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FIG. 8. Optimization procedure for the two-parameter (2D) problem (10a) with monodisperse spherical defects characterized by the volume
fraction ρs occupied by them and their diameter Ds. Critical current Jc and optimization parameters are shown as a function of number of
objective function evaluations for (a) pattern search, (b) adaptive pattern search, (c) Nelder-Mead method, and (d) particle swarm optimization.
The 2D optimization problem has an objective function close to a sphere type (4) [34]. Thus one can expect that all methods converge to
the same optimum marked by horizontal dashed line. However, due to sample fluctuations there are still visible differences in the optimal
parameters which need much longer times to resolve. Vertical dotted lines in panel (a) separate different iterations; darker background color
corresponds to smaller step size. PSO exit criterion causes over 300 additional evaluations for marginal improvement.

evaluation requires averaging the critical current over many
pinscapes, described by the same x. However, even with a

TABLE VII. Optimal parameters of the pinscape for maximal
critical current in the superconductor.

n x = {ρs Ds} Jc [J0] Jc [Jdp]

2 0.22 3.5 0.0235 0.061

n x = {ρ Dxy Dz} Jc [J0] Jc [Jdp]

3 0.20 3.0 ∞ 0.035 0.091

n x = {ρs Ds ρc Dc} Jc [J0] Jc [Jdp]

4 0.00 — 0.20 3.0 0.035 0.091

large number of realizations, the critical current as a function
of x can still be quite noisy. In the worst case this leads to
local methods failing to reach the optimal solution. In contrast
to that, global methods like PSO are much more resistant to
noise in the objective function.

First, let us analyze the two parameter optimization more
closely (see Fig. 8). All optimization methods converge to
the same optimal pinscape. However, the optimization “paths”
are quite different as one could expect: although all methods
reach a critical current value close to the optimum after about
10–20 evaluations—indicating a robust, relatively flat peak in
parameter space, the actual optimal configuration takes quite a
while to be reached: It takes about twice as many evaluations
for the local methods and an order of magnitude more for
the global PSO method. Note that defining an appropriate exit
criterion for the optimization can be challenging, since the
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FIG. 9. Optimization procedure for the three-parameter (3D) problem (10b) with spheroidal defects characterized by the occupied volume
fraction ρe as well as defect diameter in Dxy in xy plane along applied current and diameter in Dz in the z direction along applied magnetic
field. Critical current Jc and optimization parameters are shown as a function of number of objective function evaluations for (a) pattern search,
(b) adaptive pattern search, (c) Nelder-Mead method, and (d) particle swarm optimization. Optimal diameter in the z direction is larger then
system size Lz = 64 for all methods, which indicates that in the bulk sample optimal z-diameter Dz is infinite and spheroidal defects transform
into columnar defects along the z axis.

improvement in the critical current can be marginal, while the
configuration can still change noticeably, as is clearly seen in
the Nelder-Mead path.

Increasing the parameter space to three dimensions, (Fig. 9),
shows that all methods need more evaluations as expected
(scaling roughly linear with the dimension), and again the local
methods reach a close to optimal critical current significantly

faster than PSO. However, one can see that the local methods
already start to have convergence problems, which is most
likely a result of the noise in the objective function. The
figure shows that the adaptive pattern search is a bit more
efficient dealing with this noise than simple coordinate decent.
However, in this case all methods still reach a configuration
close to the optimal one.

013318-11



GREGORY KIMMEL, IVAN A. SADOVSKYY, AND ANDREAS GLATZ PHYSICAL REVIEW E 96, 013318 (2017)

FIG. 10. Optimization procedure for the four-parameter (4D) problem (10c) with mixed pinscape containing spherical particles
(characterized by volume fraction ρs and diameter in Ds) columnar defects along the z axis (volume fraction ρc and diameter in Dc).
Critical current Jc and optimization parameters are shown as a function of number of objective function evaluations for (a) pattern search,
(b) adaptive pattern search, (c) Nelder-Mead method, and (d) particle swarm optimization. PSO and adaptive pattern search converge to the
pinscape containing columnar defects only.

An obvious observation is that increasing the parameter
space cannot lower the optimal value of the objective function.
Indeed, the chosen examples are in a sense supersets of each
other with higher dimensionality of �, such that the best Jc

value either increases or remains the same. When going over
from the 3D to 4D optimization problem, we kept the result
for the optimal z diameter of the defects, i.e., that the optimal
defects are cylinders, but added back spherical defects to the
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system. In the 4D case one could then imagine three different
scenarios for the global optimal configuration: coexistence of
both defect types, only cylindrical defects remain, or only
spherical are optimal. Due to the results of the 3D problem,
the latter is rather unlikely, since vortices and columnar defects
are well aligned and the pinning potential of the defects are
therefore “optimal.”

As seen from Fig. 10, the local methods converge to
different optimal solutions. The coexistence scenario appears
to be a good pinscape. However, the largest Jc value is
still below the cylinder-only solution. One can expect that
the optimal configuration is dependent on the angle between
applied magnetic field and the main axis of the cylindrical
defects. If they deviate from the parallel setup we studied
here, the coexistence of spherical and columnar defects might
be optimal, but it is clear that at a 90◦ angle between field
and columns only spherical defects would “survive” in an
optimization problem (for isotropic superconductors).

When we compare our results for the Jc optimization to
the studied test functions before, we can conclude that the
Jc surface for the chosen parameters is roughly uncorrelated,
since the number of evaluations required for adaptive pattern
search and pattern search to converge are nearly the same.

Overall, we see that the PSO algorithm works reliable
in all cases, at the cost of about 10 times more evaluations
needed to reach the optimum, where often many evaluations,
on the order 102–103, are yielding only a marginal gain in the
objective function (<1%). The local methods start to fail in
higher dimensional parameter spaces, most likely due to noise
in the objective function. As mentioned before, combining the
local searches with a global method can potentially reduce
the overall number of evaluations. Another way to mitigate
this problem is to use more realizations or larger system sizes,
which should smooth out the error from the random placement
of defects.

Another benefit of using a global method such as PSO is that
it consistently finds a better solution than the local methods.
In higher dimensional spaces n � 4, taking a larger swarm
size S becomes necessary to ensure convergence. The local
methods, however, converge faster. But in any case there is no
guarantee that the found configuration is the optimum. One
could only estimate a probability that the found result is close
to the optimal one.

Finally, we remark that larger oscillations in the optimiza-
tion paths for the local methods in higher dimensions suggest
a flatter global maximum of Jc or a more robust critical
current when one deviates from the optimal configuring. This
is particularly important for practical applications.

VII. CONCLUSIONS

We have tested various methods for optimization problems
and determined that particle swarm optimization and adaptive
pattern search performed the best on the benchmark functions
as well as in the physical optimization problem presented.
Particle swarm optimization in particular does a relatively
good job at handling the noisy surface of the objective
function, but takes a long time to converge, where a significant
amount of time is used for marginal improvement. This is
a result of the difficulty to define an exit criterion. On the
other side, adaptive pattern search can get caught in local
extrema, which are either physical or a result of the noise.
However, the number of evaluations are often much less (on
the order of 7–10 times). As mentioned before, a multilevel
local method could be used to mitigate this, which should make
an adaptive pattern search competitive with particle swarm
optimization. Although we presented only some results for
the pinscape optimization in superconductors, our studies of
different optimization strategies can be important for a variety
of different physical systems where the evaluation of the
objective function is expensive, e.g., requiring first principle
calculations or molecular dynamics simulations.
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