
PHYSICAL REVIEW E 96, 013314 (2017)

Lattice gas with molecular dynamics collision operator
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We introduce a lattice gas implementation that is based on coarse-graining a molecular dynamics (MD)
simulation. Such a lattice gas is similar to standard lattice gases, but its collision operator is informed by an
underlying MD simulation. This can be considered an optimal lattice gas implementation because it allows for
the representation of any system that can be simulated with MD. We show here that equilibrium behavior of the
popular lattice Boltzmann algorithm is consistent with this optimal lattice gas. This comparison allows us to make
a more accurate identification of the expressions for temperature and pressure in lattice Boltzmann simulations,
which turn out to be related not only to the physical temperature and pressure but also to the lattice discretization.
We show that for any spatial discretization, we need to choose a particular temporal discretization to recover the
lattice Boltzmann equilibrium.
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I. INTRODUCTION

Lattice Boltzmann methods are an important computational
tool that is most commonly employed to simulate hydrody-
namic systems [1], and it has been adapted to address many
complex phenomena from turbulence [2,3] over multiphase
and multicomponet flow [4–8] to pore-scale simulations of
porous media [9,10] and simulations of immersed boundaries
[11,12]. It derives its power from an underlying mesoscopic
description that ensures exact mass and momentum conser-
vation. The exact physical meaning of the lattice Boltzmann
densities, however, remains poorly understood.

The lattice Boltzmann method was derived as a theoretical
tool for the analysis of lattice gas methods [13]. Lattice gas
methods consist of particles moving on a lattice with velocities
that connect neighboring sites. After the particles have moved
a stochastic collision step rearranges the particles. If these
collisions conserve both the number of particles and the total
momentum, there will be a hydrodynamics limit for mass
and momentum conservation equation. The introduction of
a hexagonal instead of a square lattice by Frisch, Hasslacher,
and Pomeau [14] recovered the necessary isotropy to allow
the momentum equation to be related to the Navier-Stokes
equation. These lattice gas models had some deficiencies,
one unfavorable feature was a large and essentially uncon-
trolled amount of noise that required a significant amount
of averaging. To derive the Navier-Stokes equations from
the lattice gas dynamics a theoretical ensemble average was
performed, leading to a lattice Boltzmann representation.
Higuera then proposed to simulate the ensemble averaged
lattice Boltzmann evolution equation directly, and thereby
avoid the need to average results of the lattice gas equation
[15,16]. The collision operation of this first lattice Boltzmann
method could be mapped one-to-one to the lattice gas and
shared some of the positive features of the lattice gas, like
the existence of an H-theorem with unconditional stability,
and also some of its deficiencies like velocity dependent
viscosities.

*alexander.wagner@ndsu.edu; www.ndsu.edu/pubweb/∼carswagn

It was then realized that there existed much more freedom
in the choice of the collision operator, and in particular the
relaxation towards a local equilibrium function, often called
the Bhatnagar-Gross-Krook (BGK) approach, allowed the full
recovery of the Navier-Stokes equation to second order [17].

At this time a second approach to derive the lattice
Boltzmann equation directly from the continuous Boltzmann
equation with a BGK collision operator gained popularity [6].
Over the years several different local equilibrium distributions
have been proposed, and currently the most popular method
is a standard form of a second order expansion in terms of
velocities.

Typically these lattice Boltzmann methods are validated
by their ability to recover the Navier-Stokes equation. Here,
however, we want to establish a relation to an underlying
Molecular Dynamics simulation. For any Molecular Dynamics
simulation, we can bin the particles into lattice cells corre-
sponding to the lattice Boltzmann lattice. We can then observe
where the particles in cell x migrate to after a time �t ,
and associate these particles with a lattice velocity vector
vi = x(t) − x(t + �t). These particles will collect at their
new lattice cells. After another timestep �t these particles
are redistributed to new lattice sites, and can be associated
with new lattice velocities. We call this representation of
the MD simulation molecular-dynamics-lattice-gas (MDLG).
This redistribution can be understood to be an effective
MDLG-collision operator. In some very fundamental sense
this is the collision operator that the lattice Boltzmann
approach is trying to mimic. The purpose of this paper is
to understand the physical meanting of the lattice Boltzmann
densities in terms of this fundamental MDLG representation.

The paper is organized as follows: we first introduce a
general idea of a lattice gas and then derive a new lattice
gas which consists of a coarse-graining of an underlying MD
simulation. We then apply this general idea to a specific MD
simulation of a Lennard-Jones gas in two dimensions. We
analyze the equilibrium properties of the associated MDLG
method and show that we are able to predict its mathematical
form analytically. We then introduce the lattice Boltzmann
method and compare the equilibrium properties of the MDLG
method to the lattice Boltzmann equilibrium. We show that
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there are particular choices for the coarse-graining time and
space discretization that lead to equilibria that are compatible
with the lattice Boltzmann results.

II. LATTICE GAS

At its very basis a lattice gas consists of particles, all located
on lattice points, that move with lattice velocities vi . What we
mean by lattice velocity is that if x is a lattice point, then so
is x + vi . There are ni(x,t) particles at time t at position x

moving with velocity vi . The evolution consists of two steps.
A collision step that redistributes the particles at the lattice
point x to different velocities:

n∗
i (x,t) = ni(x,t) + �i({nj (x,t)}), (1)

where the collision operator �i is a function of all the particles
and their velocities that are located at lattice point x at time t .
This collision operator will ensure that none of the locally
conserved quantities are changed in the collision process.
These locally conserved quantities will vary, depending on
the desired physical system that one wants to model. In
the majority of cases, one will ensure mass and momentum
conservation. Early lattice gases restricted the number of
particles to at most one per velocity vi at a lattice site,
and the velocity vectors all had the same length, ensuring
that mass and energy conservation were synonymous. Each
conserved quantity will lead to a corresponding hydrodynamic
equation. Most applications focused on the fluid flow, and the
key hydrodynamic equations to recover were the continuity
and Navier-Stokes equations. Energy conservation is often
abandoned in favor of an isothermal condition for many
practical applications. Local mass and momentum densities
are defined as

ρ =
∑

i

ni, (2)

ρuα =
∑

i

viαni, (3)

and the conservation of these quantities then implies∑
i

�i = 0, (4)

∑
i

viα�i = 0. (5)

For the new kind of lattice gas collision operator proposed
in Sec. III we will see that mass conservation of Eq. (4) is
indeed fulfilled, but the momentum conservation of Eq. (5) is
not strictly obeyed. Because the new algorithm is based on
MD, however, the algorithm conserves momentum rigorously.
Its representation of momentum through Eq. (3), however, is
inexact.

This collision is then followed by a streaming step,

ni(x + vi,t + 1) = n∗
i (x,t), (6)

where the particles move to the lattice site indicated by the
velocity index i; i.e., they move from x to x + vi . The full
evolution equation for these densities can then be written as

ni(x + vi,t + 1) = ni(x,t) + �i. (7)

FIG. 1. Sketch of the MDLG algorithm: a lattice (blue line) is
superimposed on the domain of the MD simulation. Particles in the
reciprocal lattice cells (indicated by the red boundaries) are associated
with the corresponding lattice point. Particles then get associated with
the ni for the vi , which corresponds to their lattice displacement in
the time interval �t .

Of course, to make this description complete we need to
define the collision operator. Originally, lattice gases were
defined such that there could be at most one particle for
each ni [14]. For the purpose of this paper, however, we will
make no such restriction. Instead we investigate a collision
operator that is defined by an underlying molecular dynamic
simulation.

III. LATTICE GAS WITH MOLECULAR DYNAMICS
COLLISION OPERATOR

In principle, most systems of interest for a lattice gas (LG)
simulation could be simulated using a molecular dynamics
(MD) approach as well. MD is a standard tool that follows
classical particle trajectories for particles interacting with a
pair-potential by numerically integrating Newton’s equation
of motion.

To construct a lattice gas method from a molecular
dynamics simulation, we overlay a lattice onto our MD
simulation. The number of particles in each reciprocal lattice
cell around the lattice position x then corresponds to the
lattice gas density ρ(x), as shown in Fig. 1. If we then
choose a time-step �t , we can observe where particles ending
up in cell x came from. The number of particles moving
from cell x − vi to cell x then corresponds to the lattice
gas occupation number ni(x,t). What is important to note is
that this resulting lattice gas model is fundamentally correct
in the sense that will obey the continuity and Navier-Stokes
equations simply because the molecular dynamics simulation
does so.
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The initial condition for a set of N particles in a finite
container with periodic boundary conditions is given by their
initial positions xi(0) and velocities vi(0). These particles then
interact through an interaction pair potential that we take here
to only depend on the distance between the two particles:
Vij = V (|xi(t) − xj (t)|). The MD simulation then provides
(to good accuracy) the trajectories xi(t), which solve Newton’s
second law:

dxi(t)

dt
= vi(t), (8)

dvi(t)

dt
= − ∂

∂xi

⎛
⎝1

2

∑
j �=i

Vij

⎞
⎠. (9)

We now superimpose a lattice onto the computational domain
of the MD simulation. For simplicity, we can imagine a cubic
lattice of lattice spacing �x, although any lattice will do here.
Let us define a function that determines if a particle resides in
a specific cell of the reciprocal lattice associated with a lattice
point x:

�x(x ′) =
{

1 xα < x ′
iα(t) � xα + �x ∀α ∈ {x,y,z}

0 otherwise. (10)

Next we pick a time step �t . We can now determine the
lattice displacement each particle originally residing in a lattice
point x experiences. The set of all such displacements makes
up the minimal set of lattice velocities vi for our lattice
gas method, and the number of particles associated with
this displacement makes up the lattice gas densities ni(x,t).
We define

ni(x,t) =
∑

j

�x[xj (t)]�x−vi
[xj (t − �t)]. (11)

This definition ensures that the particle numbers ni(x,t)
will undergo a streaming step given by Eq. (6). For
any given MD simulation we then know all ni(x,t).
From Eq. (7), we see that the collision operator is then
given by

�i = ni(x + vi,t + 1) − ni(x,t). (12)

This fully defines the MDLG algorithm, a lattice gas with
a collision operator that is defined through an underlying
MD simulation. In some sense, this is an ideal lattice gas
model that can handle even the most complex situations, i.e.,
anything that can be addressed by MD, correctly. The key
question is whether this collision operator can be reduced
to some stochastic collision operator that only depends on
the local ni(x,t). Clearly, this will only be the case for very
simple systems since the MDLB collision operator contains
information about temporal and spatial correlations of the
underlying MD algorithm and can, in principle, deal with
many complex phenomena like liquid-gas-solid coexistence,
large varieties of transport parameters, including phenomena
at high Knudsen, high Mach, and/or high Reynolds numbers,
which we don’t expect to be accessible to a simple lattice
gas algorithm of Eq. (7) with a local collision operator. Such
extensions will be the subject of future research but are outside
the scope of the current paper.

The local number of particles in lattice cell x at time t is
give by

N (x,t) =
∑

j

�x[xj (t)]. (13)

This is consistent with the lattice gas definition of the local
density because

N (x,t) =
∑

i

ni(x,t) (14)

=
∑

i

∑
j

�x[xj (t)]�x−vi
[xj (t − �t)] (15)

=
∑

j

�x[xj (t)]. (16)

The last equality follows because∑
i

�x−vi
[xj (t − �t)] = 1; (17)

i.e., every particle will be found somewhere on the lattice.
Note that we have not yet restricted the velocity set. We will
use as many velocities as needed. Mass conservation of Eq. (4)
is clearly fulfilled, since ∑

i

�i (18)

=
∑

i

[ni(x + vi,t + 1) − ni(x,t)] (19)

=
∑

i

⎛
⎝∑

j

�x+vi
[xj (t + �t)]�x[xj (t)]

−
∑

k

�x[xk(t)]�x−vi
[xk(t − �t)]

)
(20)

= ρ(x,t) − ρ(x,t) (21)

= 0. (22)

The definition of momentum in the lattice gas sense is
typically defined as

N (x,t)u(x,t) =
∑

i

ni(x,t)vi. (23)

However, relating this to the underlying momentum of the
MD simulation is not exact, as can be seen in the example of a
single MD particle moving with a lesser velocity, which is not
a lattice velocity shown in Fig. 2. The correspondence could
be made exact if we were to introduced an average over all
possible placements of the lattice. Such an average would make
no difference to the global equilibrium distribution, which is
the main focus of the remaining paper. We therefore avoid this
additional complication for the current paper.

Similarly, momentum conservation of Eq. (5) is only exact
if we introduce an average over lattice placements:∑

i

viα�i �= 0, in general. (24)

Of course, this does not mean that there is a problem with
momentum conservation. Instead, the problem arises due to
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FIG. 2. Simple thought experiment for lattice gas representation
of a particle moving with a constant velocity. Clearly the lattice gas
definition of momentum will fluctuate as a function of time even
though the underlying MD momentum is conserved. Averaging over
all lattice placements, however, will recover the correct momentum.

the definition of momentum through measured mass transfer
between sites for a fixed lattice.

Despite the apparent lack of momentum conservation,
the MDLG collision rules are still correct, even without
the averaging, since the underlying MD simulation respects
momentum conservation. As such, the apparent violation
of momentum conservation of the MDLG model is benign.
We reserve a closer examination of this averaged lattice gas
implementation for a followup paper.

The key question is then whether the collision operator
[Eq. (12)] can take the form of Eq. (1), i.e., a stochastic
collision operator that only depends on the current local
occupation numbers nj (x,t). Since there is a whole ensemble
of MD simulations that is consistent with a set of nj (x,t), and
these different MD simulations will lead to different collision
terms, it is clear that there can be no exact mapping. However,
it is reasonable to hope that we will be able to construct
a stochastic lattice gas collision operator that is statistically
equivalent to the collision operators for the ensemble of
corresponding molecular dynamics simulations. Establishing
this is not a trivial task, and we will focus on the easier problem
of showing that these collision operators are consistent with the
equilibrium behavior of the lattice gas. In the next section, we
will present the lattice Boltzmann method, which conceptually
represents the ensemble average of a lattice gas method.
Given the complexity of the task, we focus in this paper
on examining for which, if any, discretizations the MDLG
and the standard lattice Boltzmann method give an equivalent
equilibrium behavior.

IV. MDLG FOR AN TWO-DIMENSIONAL
LENNARD-JONES GAS

As a test case we use for our underlying MD simula-
tions particles interacting with the standard Lennard-Jones
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FIG. 3. The numbering convention for the velocities vi in two
dimensions. The central point is 0 and corresponds to velocity v0 =
(0,0), and the other velocities are given by the connecting vector
between the central point and the lattice point in question.

interaction potential, which is given by

V (x) = 4ε

[(σ

x

)12
−

(σ

x

)6
]
. (25)

The interaction strength is controlled by ε and the spatial
scaling by σ . If m is the mass of a particle we can construct
the time scale

τ =
√

mσ 2

ε
. (26)

We performed a molecular dynamics simulation using
LAMMPS for 100 000 particles in a two-dimensional box
with the length of 1000σ , corresponding to a nominal
volume fraction of 0.0785 if we approximate the particles
as circles with diameter σ . The system was initialized with
a homogeneous distribution of particles with a kinetic energy
corresponding to a temperature of 50 in the LJ units defined
above. This corresponds to a gas at a high temperature, dense
enough so that there are a significant number of collisions.
The temperature is well above the critical temperature for
a liquid-gas coexistence of Tc = 1.3120(7) [18]. We ran a
simulation of an equilibrium system with a time step of
0.0001τ for 3 000 000 time steps, i.e., up to τ = 300. Early
time data of 1 000 000 time steps was discarded, to ensure that
we were only probing the equilibrium dynamics.

We then analyze the resulting MD trajectories to obtain
the resulting averaged MDLG occupation numbers ni(x,t)
from Eq. (11). We should note here that results for different
mean velocities U can be obtained simply be using a lattice
displaced by −U �t for the MDLG analysis. It is therefore
not necessary to rerun the MD simulations to examine different
mean velocities.

The first information to be gleaned from this is the
resulting velocity set for the vi . For small times �t , only
the nearest neighbors have nonnegligible contributions, but as
�t is increased more densities get populated. We identify the
velocities vi using the numbering scheme shown in Fig. 3.
So for �t → 0, only v0 − v8 will have contributions. These
velocities form a complete shell around the central point v0.
Most standard lattice Boltzmann methods work hard to make
due with this minimal velocity set. This comes at some cost,
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the most important one is that only one temperature, θ = 1/3
in lattice units, is allowable in lattice units to recover the
correct viscous stress tensor [see Eq. (57)]. For larger �t

particle will travel further and a larger velocity set is required.
The average occupation numbers are given by the global
equilibrium distribution. The next subsection discusses how
these equilibrium distribution can be obtained analytically.

A. Global equilibrium distribution

For a system in thermal equilibrium, sufficient averaging
will give an equilibrium distribution

f
eq
i =〈ni〉 (27)

=
∑

j

〈�x[xj (t)]�x−vi
[xj (t − �t)]〉. (28)

We can numerically approximate this equilibrium density by
averaging the values of the ni from Eq. (11) over the whole
lattice and for the duration of the simulation. For a given
MD simulation, the results will depend both on the lattice
spacing �x and on the time step �t . As mentioned above, the
MD simulations considered in this paper deal with fairly hot
gases, which should be reasonably well approximated by an
ideal gas.

To theoretically calculate this expectation value we assume
that the particles are uniformly distributed, so only the
displacement during the time interval �t will enter the
averaging:

δx = x(t) − x(t − �t). (29)

The key for our averaging will then be the probability of finding
such a displacement P (δx), and this allows us to write the
average as

f
eq
i = ρeq

(�x)d

∫
dx

∫
d(δx)�x(x)�x−vi

(x − δx)P (δx)

= ρeq

(�x)d

∫
dx

∫
d(δx)�x(x)�x(x + vi − δx)P (δx)

= ρeq
∫

d(δx)P (δx)W (vi − δx)

= ρeq
∫

d(δx)P (δx + vi)W (δx), (30)

where W (x) is the d-dimensional wedge function defined as

W (x) =
d∏

α=1

Wα(x) (31)

=
d∏

α=1

(
1 − |xα|

�x

)
�

(
1 − |xα|

�x

)
, (32)

where � is the Heaviside function and α denotes cartesian
coordinate index.

For very short times �t , i.e., times shorter than the
mean free time between two collisions, particles sim-
ply undergo ballistic motion. The velocity distribution
of the particles is given by the Maxwell-Boltzmann

distribution,

P (v) = 1

(2πkBT )d/2
exp

(
− (v − u)2

2kBT

)
. (33)

With this, and neglecting any collisions between the particles,
we get for the mean-squared displacement in one dimension,

〈(δxα)2〉bal = kBT (�t)2. (34)

The probability distribution for the displacement is then
given by

P bal(δx) = 1

(2πkBT )d/2(�t)d
exp

[
− (δx − u�t)2

2kBT (�t)2

]
. (35)

For times much longer than the mean free time, particles
undergo multiple collisions and instead of following a ballistic
motion they will diffuse. If we call the self-diffusion constant
D, we then have

〈(δxα)2〉dif = 2D(�t). (36)

This implies that the probability of the displacement is
given by

P diff(δx) = 1

[4π (�t)D]d/2
exp

[
− (δx − u�t)2

4D(�t)

]
. (37)

Now, since both limiting displacements are given by Gaussian
distributions, it is reasonable to expect that the intermediate
probabilities are also well approximated by a Gaussian, and
if we know the mean-squared displacement in one dimension
〈(δxα)2〉 (and assume isotropy), we get for the probability

P (δx) = 1

[2π〈(δxα)2〉]d/2
exp

[
− (δx − u�t)2

2〈(δxα)2〉
]
. (38)

In all of these cases, the probability distribution factorizes

P (δx) =
d∏

α=1

Pα(δx), (39)

where

Pα(δx) = 1√
2π〈(δxα)2〉

exp

[
− (δxα − uα�t)2

2〈(δxα)2〉
]
, (40)

and we can write Eq. (30) as a product of Gaussian integrals:

f
eq
i = ρeq

d∏
α=1

∫
d(δxα)P (δxα + viα)Wα(δx). (41)

The solution is given by

f
eq
i

ρeq
=

d∏
α=1

f
eq
i,α, (42)

where

f
eq
i,α = N

(
e
− (ui,α−1)2

2a2 − 2e
− u2

i,α

2a2 + e
− (ui,α+1)2

2a2

)

+ ui,α − 1

2

[
erf

(
ui,α − 1√

2a

)
− erf

(
ui,α√

2a

)]

+ ui,α + 1

2

[
erf

(
ui,α + 1√

2a

)
− erf

(
ui,α√

2a

)]
, (43)
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where

a2 = 〈(δxα)2〉
(�x)2

, (44)

N = a√
2π

, (45)

ui,α = viα − uα. (46)

This is a lattice equilibrium distribution function derived
from first principles. At first glance it looks different than
other lattice equilibrium distributions, and we will examine its
relation to know equilibrium distribution functions below.

First we need to fully define the lattice equilibrium distribu-
tion. To do so we need to obtain the mean-square displacement
〈(δxα)2〉. In general, the mean-square displacement can be
measured in our MD simulations, but this would require us to
consider a whole function of �t as an input parameter. For our
simple ideal gas system, we can obtain a simpler dependence
on a single parameter by expressing it in terms of the velocity
correlation function as

〈(δxα)2〉 = 2
∫ t

0
dt ′ (t − t ′)〈vα(t ′)vα(0)〉. (47)

For gases this velocity correlation function is typically well
approximated by a simple exponential decay. There is also a
long-range 1/t contribution to the velocity correlation function
for our two-dimensional system, but for the times �t that are of
interest here, this divergent contribution does not yet contribute
noticeably:

〈vα(t)vα(0)〉 = kBT exp

(
− t

τ

)
. (48)

For our system we compare this prediction of an exponentially
decaying velocity correlation function to the measured corre-
lation function in Fig. 4(a). We see that for early times we see
good agreement with this prediction for τ = 0.5(0). We also
see the long time tail typical for a two-dimensional system,
which we ignore here. This is justified below [19–24].

Then the mean-squared displacement can be predicted
according to Eq. (47) as

〈(δxα)2〉 = 2kBT τ 2

(
e− t

τ + t

τ
− 1

)
. (49)

We show that this prediction recovers the measured mean-
squared displacement well in Fig. 4(b). Deviations resulting
from the long time tails of the velocity correlation function only
show up for later times and larger displacements considered
in this paper, which justifies our ignoring these long time tails
here.

This fully completes the definition of the MDLG equilib-
rium function in the case of gases. To verify our results we
compare a numerically measured equilibrium distribution with
the theoretically predicted one for different discretizations.
The results are shown in Fig. 5. The agreement between our
theoretical results and the experimental ones is excellent.

In the next section we introduce the lattice Boltzmann
method and then examine the relation of this MDLG equi-
librium function with existing lattice equilibrium distribution
functions derived for lattice Boltzmann methods.

0.1 1 10
Δt (τ)

1

10

100

1000
〈(

δx
α)2 〉

〈(δxα)2〉MD

〈(δxα)2〉〈vα(t)vα(0)〉

0 2 4 6 8 10
Δt (τ)

0.01

0.1

1

10

100
(a)

(b)
〈v

α(t)
v α(0

)〉

〈vα(t)vα(0)〉

50 e-2t

FIG. 4. (a) Measured velocity correlation function from MD
simulation data compared to the exponential fit. (b) Measured
mean-square displacement from MD simulation data compared to
the predicted value according to Eq. (47).

V. LATTICE BOLTZMANN

Lattice Boltzmann methods were derived as ensemble
averages of lattice Boltzmann methods. The variables in a
lattice Boltzmann method are distribution functions

fi = 〈ni〉neq, (50)

where the 〈· · · 〉neq represents a nonequilibrium ensemble
average over microscopic lattice gas states. Taking the same
ensemble average, the evolution equation for these lattice
Boltzmann densities derives from the underlying lattice gas

013314-6



LATTICE GAS WITH MOLECULAR DYNAMICS COLLISION . . . PHYSICAL REVIEW E 96, 013314 (2017)
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FIG. 5. Measured equilibrium distributions f
eq
i as a function

of the mean-squared displacement measure a from Eq. (44). They
are compared to the analytic solution given by Eq. (42). We find
excellent agreement between the predicted and measured equilibrium
distributions. The horizontal lines indicate the value of D2Q9 lattice
Boltzmann weights, and the green vertical line indicates the value of
a2 = 1/6 for which these weights agree with the MDLG results.

evolution Eq. (7),

fi(x + vi,t + 1) = fi(x,t) + �i, (51)

where the collision operator �i = 〈�i〉 is a deterministic
function of all the densities at lattice point x. We will
investigate later if this collision operator can be, at least
approximately and for some suitable discretization, cast
in the standard BGK form typically employed for lattice
Boltzmann simulations. This question is a crucial first step
if one wants to relate lattice Boltzmann to an explicit
molecular system, which will be represented by our MDLB
algorithm.

This standard LB collision operator is a first-order BGK
approximation and can be written as

�i =
∑

j

�ij

(
f 0

j − fj

)
, (52)

where f 0
j is a local equilibrium distribution that depends only

on the locally conserved quantities,

ρ =
∑

i

fi, (53)

ρuα =
∑

i

viαfi, (54)

although other collision operators are also being used
[25–28] and it is a longer term goal of the MDLG method
to help identify which of these collision operators are most
realistic.

To ensure that the lattice Boltzmann equation reproduces
the continuity and Navier-Stokes equations in the hydrody-
namic limit it is necessary that the equilibrium distribution
matches the first four (apart sometimes from a u3 term) velocity
moments of the Maxwell-Boltzmann distribution:∑

i

f 0
i = ρ, (55)

∑
i

(viα − uα)f 0
i = 0, (56)

∑
i

(viα − uα)(viβ − uβ)f 0
i = ρθδαβ, (57)

∑
i

(viα − uα)(viβ − uβ)(viγ − uγ )f 0
i = Qαβγ , (58)

where Qαβγ should be zero. For velocity sets including only
one shell, we have viα ∈ {−1,0,1}. For these velocity sets
these moments overconstrain the equilibrium distributions. In
particular we have v3

iα = viα , which couples the first and the
third moment. This is a key source of Galilean invariance
violations in lattice Boltzmann [29]. These moments can only
be reconciled for the special choice of

θ = 1/3 (59)

and the third-order tensor Qαβγ = ρuαuβuγ � 1, which is
assumed to be small because u < 0.1 in typical situations.
The equilibrium distribution is typically given in terms of
an expansion in terms of the local velocity u up to second
order as

f 0
i = ρwi

(
1 + viαuα

θ
+ 1

2

viαuαviβuβ

θ2
− 1

2

uαuα

θ

)
, (60)

where the weights wi depend on the velocity set and
summation over repeated Greek indices is implied. In this
article, we focus on the question whether this form of an
equilibrium distribution is compatible with a concrete MDLB
implementation.

This collision operator together with the local equilibrium
distribution implies mass and momentum conservation,∑

i

�i = 0, (61)

∑
i

viα�i = 0, (62)

which is consistent with the typical conditions for lattice gases
of Eqs. (4) and (5).

In the following, we will examine the MDLG method
for the example of a hot, dilute gas. For this lattice gas we
examine the resulting distribution functions and see under
which circumstances this lattice gas can reproduce (to some
approximation) the lattice Boltzmann method equilibrium
distribution Eq. (60).

VI. RELATION OF MDLG EQUILIBRIUM FUNCTIONS
TO LATTICE BOLTZMANN EQUILIBRIA

We are now in a position to predict for which set of param-
eters �x,�t , if any, we can recover the traditional form of
the lattice Boltzmann equilibrium from our MDLB algorithm.
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FIG. 6. Pairs of spatial and temporal discretizations (�x,�t) that
lead to equilibrium distributions of MDLG that are consistent with
the lattice Boltzmann equilibrium distribution f 0

i (ρ,0) = wi . Notice
the two scaling regimes of �t ∝ �x for the ballistic regime for small
times and the diffusive regime (�t)2 ∝ �x for large times.

Most lattice Boltzmann methods use a limited velocity set that
corresponds to a single shell in Fig. 3. For our two dimensions
this corresponds to nine velocities. The corresponding equilib-
rium distribution is typically given as a second-order polyno-
mial in the velocities, as we have presented earlier in Eq. (60).
For the two-dimensional D2Q9 lattice Boltzmann method, we
consider here the weights wi in Eq. (60) are given by

w0 = 4/9, (63)

w1−4 = 1/9, (64)

w5−8 = 1/36, (65)

where the velocity indices correspond to the numbering of
Fig. 3.

In Fig. 5 we show the lattice Boltzmann weights wi as
horizontal lines. To match the MDLG and LB equilibria we
require

f
eq
i (a2)/ρeq = wi. (66)

This is an over-determined system of equations.
Fortuitously the solutions for the three distinct wi for a

D2Q9 lattice Boltzmann give the same value for a2 ≈ 1/6 to
very good approximation. This is shown as the green vertical
line in Fig. 5.

This suggests that matching lattice Boltzmann and MD
simulations would likely benefit from using the conditions
where the f

eq
i match up, and the methodology explained above

would give guidance on the appropriate time step �t for a given
spatial discretization �x. Given a �x can numerically solve
Eq. (66) for �t for a system with zero mean momentum. This is
shown in Fig. 6. We find that there is close agreement between

0 0.1 0.2 0.3 0.4 0.5
ux

0

0.1

0.2

0.3

0.4

0.5

ω
i

ω0
MD

ω0
LB

ω0
th

FIG. 7. Dependence of the equilibrium distribution function
on an imposed velocity U for �x = 100 σ and �t = 34.16 τ ,
corresponding to the green line in Fig. 5(b). The prediction of Eq. (42)
(solid lines) agrees perfectly with the measured averages of the
ni (symbols). These results are compared to the lattice Boltzmann
equilibrium distribution for D2Q9 (dashed lines). We find good
agreement between the MDLG equilibrium distribution and the LB
equilibrium distribution for velocities below about 0.2.

the solutions for different velocities vi . Corresponding to the
transition from ballistic to diffusive regime around �t = τ that
we saw in Fig. 4(b) we also see a transition here from a �t ∝ t

regime for �t � 1 to a �t ∝ t2 regime for �t � 1. We expect
this relation that gives �t in terms of �x to be valuable when
one tries to generate a coarse-graining transition between an
MD and LG region in a multiscale numerical method.

So far we have only matched the equilibrium distribution
at zero velocity. The theory contains the mean velocity as u

in Eq. (43). For the measurements we could set up different
simulations for mean velocities using the algorithm described
above in Eq. (11). It is more practical, however, to move the
Grid instead or equivalently use Galilean transformed particle
positions of x̂i(t) = xi(t) + ut instead. Using this approach to
find the equilibrium distribution for different mean velocities
u we show our comparison between the measured discrete
equilibria [Eq. (11)], their theoretical prediction [Eq. (42)],
and the lattice Boltzmann equilibrium distribution [Eq. (60)]
in Fig. 7. For small velocities |u| < 0.1 we find good agreement
between all three densities. This is the relevant range, as
lattice Boltzmann is only considered reliable for small enough
velocities. The agreement between the measured and predicted
MDLG equilibrium distributions continues to be excellent
throughout the whole regime. Note, that the agreement would
continue to be excellent for larger velocities. We would only
need to adapt the velocity set we consider as velocities with
magnitude larger than 0.5 are the same as velocities with
magnitude larger than 0.5 plus an additional integer lattice
displacement.
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Moments of the equilibrium distribution

The key property of the equilibrium distribution in kinetic
theory are the velocity moments. For the derivation of the
Navier-Stokes equation moments up to third order are required.
It is therefore helpful to examine the moments of the discrete
MDLG equilibrium distribution, compare them to the expected
moment for a lattice Boltzmann equilibrium distribution and
examine how these moments relate to the continuous velocity
distribution function for the MD simulation.

Let us spend a moment considering these different concepts,
since they are not usually clearly separated in a LB derivation.
Firstly we have the velocity distribution of the MD simulation,
given by Eq. (33). The moments of this velocity distribution
are usually used as a rational for constructing LB equilibrium
distributions such that the relevant moments of the discrete
LB equilibrium distribution function match those of the con-
tinuous Maxwell Boltzmann distribution. This is the rational
behind the moment Eqs. (55)–(58) for the lattice Boltzmann
equilibrium function.

The moments of the discrete MDLG method are not a priori
constrained to obey such a constraint, and indeed we don’t
expect such an agreement for two reasons. First the underlying
displacement probabilities [Eq. (38)] are in general different
from the displacement probabilities [Eq. (35)] directly related
to the Maxwell-Boltzmann distribution [Eq. (33)]. Second
there is no reason to believe that the averaging procedure of
Eq. (41) will preserve the moments in general.

Now let us consider the first three velocity moments
specifically. The zeroth moment relates to the total mass.
Since the algorithm conserves mass exactly we expect
all three approaches to agree on this moment. Indeed,
as we saw in Eq. (22) mass is clearly conserved, and
consequently this moment will agree for all of the above
approach.

The first moment relates to the local momentum. Even if
the MDLG approach does not locally conserve the momen-
tum, the averaged momentum of the equilibrium distribution
remains exact. This simply follows from the fact that this
discrete moment corresponds to the net mass flow through
the lattice. Even though this flow can be inexact at any
instance in time (since particles may not cross a boundary
despite the fact that they are moving) on average the count
of particles crossing boundaries has to give the exact mass
current.

Let us next consider the second moment. This second
moment in the lattice Boltzmann approach [Eq. (57)] is related
ideal gas equation of state p = ρθ . We calculate the second
moment of our discrete MDLG equilibrium distribution,

�αβ(a,u) =
∑

i f
eq
i (viα − uα)(viβ − uβ)

ρeqa2
. (67)

For an equilibrium distribution that obeys the lattice Boltz-
mann moment [Eq. (57)] with a temperature θ = a2 this
expression would give exactly one. For the MDLG equilibrium
distribution this second moment is shown in Fig. 8. This shows
that the discrete second moment does only agree with the
MD temperature for large a2 � 1. As we see in Fig. 5 this
corresponds to a situation where the populated set of velocities

0.0001 0.001 0.01 0.1 1 4
a2

1

10

100

1000

 Ψ
xx

Ψxx

θ/a2

0.1 1_
6

0.2 0.3
1.5

2

2.5

3

FIG. 8. The normalized second moment of Eq. (67) as a function
of the second moment a2 from Eq. (44) of the mean-squared
displacement probability. The value of � is shown for different 11
different values of ux between 0 and 0.5. The values for ux = 0
correspond to the bottom points of the graph. For a Galilean-Invariant
discrete equilibrium distribution moment the value of � should be
independent of u. This is compared to a standard lattice Boltzmann
second moment with θ = 1/3.

encompasses several shells in Fig. 3. For lower values of a2

we find that the second moment diverges. The reason lies in
the way we define the discrete equilibrium distribution. Even
for very small 〈(δx)2〉, corresponding to very small �t , we
will identify a fraction of particles that happen to cross from
one lattice point to the next and are therefore assigned a lattice
velocity vi of order one. This appearance of apparent large
displacements causes the divergence of the discrete second
moment. This effect is significantly enhanced by imposed
velocites u.

For a2 < 0.1 we see that we get significantly diverg-
ing values of � for different velocities u. This implies
that this discrete second moment is not Galilean invari-
ant. It is important to note that despite such violations
of Galilean invariance of the discrete moments the full
MDLG algorithm does not suffer from a Galilean invariance
problem. Instead this is an indication that the collision
operator Eq. (12) must exactly compensate this apparent
Galilean invariance violation. For lattice Boltzmann methods
one typically tries to avoid Galilean invariance violations
by ensuring that both the local equilibrium distributions
and the collision operator independently obey Galilean
invariance.

For the lattice Boltzmann method we expect this second
moment to be �αβ = θ/a2δαβ . As we saw above [see Eq. (59)],
lattice Boltzmann methods that have a velocity set consisting
of a single shell in velocity space require θ = 1/3. This value
of θ is consistent with the moment of the MDLG equilibrium
for a value of a2 ≈ 1/6. We find θ ≈ 2a2 = 〈(δx)2〉/(�x)2.
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FIG. 9. Third velocity moment given by Eq. (68) for an unre-
stricted velocity set and a velocity set restricted to only a single shell
of velocities for 10 equally spaced velocities ux between 0 and 0.001.

This corresponds to about the lowest value for a2 where �

does not strongly depend on u and would therefore violate
Galilean invariance.

The condition that θ = 1/3 came out of a consideration for
the third moment for a minimal velocity set with vix = v3

ix .
We can define a third moment as

�αβγ =
∑

i f
eq
i (viα − uα)(viβ − uβ)(viγ − uγ )

ρeqa3
. (68)

We examine the behavior of �xxx in Fig. 9. In fact, this third
moment should be zero, and for sufficiently large a it converges
to zero exponentially. However, if we artificially restrict our
velocity set to a single shell, neglecting the small densities
for discrete velocities outside the first shell, we find that there
is a collapse of �xxx to zero for the same a2 ≈ 1/6 that we
found in Fig. 8. For the full velocity set, however, nothing
special occurs at a2 = 1/6. This initially surprised us because
we see in Fig. 5 that the densities associated with the second
shell are still a factor of 30 smaller than the densities of the
first shell and might therefore be taken to be negligible. The
second shell velocities that are about a factor 2 larger than
the first shell velocities, so these densities get multiplied by a
factor of 23, which allows these densities to contribute enough
that we now have

∑
i

f
eq
i vix �=

∑
i

f
eq
i v3

ix, (69)

and they are different enough that the cancellation of terms
that is supposed to lead to for �xxx = 0 at a2 = 1/6 no longer
exists. Instead �xxx monotonously approaches zero.

0 0.5 11_
3

1_
6

a2

0

0.5

1

1_
3

θ

θ2
θ3

a2

FIG. 10. Two manifestations of the temperature θ from the second
and third moments, given by Eqs. (70) and (71). We show the moments
for the full velocity set and moments for a velocity set restricted to
the first shell (thinner lines). For the restricted velocity set we only
see agreement between the two moments for θ = 1/3 corresponding
to a2 = 1/6.

The second and third moments of the distribution functions
both relate to the lattice Boltzmann temperature of Eq. (57).
We can derive two expressions for the temperature:

θ2 = a2�xx, (70)

θ3 = 1

3ρeq
∂ux

∑
i

f
eq
i (ρeq,u)(vix)3. (71)

The dependence of these two quantities on the mean-square
displacement is shown in Fig. 10. We see that these two
definitions only agree with each other for large a2, where
agreement is facilitated by utilizing a large set velocity for the
discretization of f

eq
i . For small a2, and therefore a minimal

velocity set, we get θ3 = 1/3, for the same reason that was
discussed before, i.e., vix = v3

ix .
If we artificially restrict the velocity set to a single shell

(e.g., 9 velocities in our two-dimensional example) we affect
both definitions of the LB temperature. In this case, the
agreement for large a2 disappears, and we have exactly one
point for θ = 1/3 corresponding to a2 = 1/6 for which both
expressions for the temperature agree. This corresponds to
the special point in Fig. 9, where the results for the one-shell
velocity set become independent of u (for small enough u).

This suggests that there is a serendipitous agreement
between the MDLG equilibrium distribution and the standard
LB equilibrium distribution for one-shell velocity sets. It
allows us to recover velocity moments up to order 3, which
is exactly the order required by kinetic theory to recover the
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continuity and Navier-Stokes equations. As seen in Figs. 8
and 9, this value is just large enough to avoid apparent
Galilean-invariance violations in the moments of the MDLG
equilibrium distribution and just small enough so that the
values of the fi for velocities with viα > 1 are small enough not
to contribute considerably to the moments of the equilibrium
distributions. These effects can only be noticed for the third
moment, where they conspire to induce agreement between
the measures of temperature implied by the second and third
moments, as seen in Fig. 10.

VII. CONSISTENT DISCRETIZATIONS

Up to now we have seen how the moments of the
equilibrium distribution depend on a2 which is a measure
of the mean-squared displacement. We saw that the discrete
moments of f

eq
i differ from the continuous moments of the

Maxwell-Boltzmann distribution even in the ballistic regime.
The underlying reason for this disagreements result from two
conspiring effects. First, we only know the position of our
particles to lie somewhere within their assigned lattice cell.
This uncertainty enters the definition of the f

eq
i in Eq. (30).

Second, we use a discrete second moment. Here we show how
both of these give an offset of 1/12 in a2 giving rise to a total
shift of 1/6 observed in the previous numerical results.

For simplicity let us consider large times away from the
ballistic regime. This occurs without loss of generality if our
assumption of a Gaussian distribution in Eq. (38) remains
correct. We can then assume the motion of the particles is
entirely diffusive with some diffusion constant D:

∂tρ(x,t) = D∂2
xρ(x,t). (72)

If we had known the position of the particle initially, i.e.,
ρc(x,0) = δ(x), then the particle probability density would
evolve as

ρc(x,t) = 1√
4πDt

e− x2

4Dt , (73)

which has a second moment of

1√
4πDt

∫ ∞

−∞
x2e− x2

4Dt dx = 2Dt. (74)

If we only know that at time t = 0 the particle is inside a lattice
cell centered around the origin with width �x, then the density
ρ as a function of time is given by

ρd (x,t) = 1

2�x

[
erf

(
x + �x/2

2
√

Dt

)
− erf

(
x − �x/2

2
√

Dt

)]
,

(75)

which for t → 0 gives a density that is 1/�x inside the interval
[−�x,�x] and zero outside it. This probability distribution
then spreads out and approaches a Gaussian at late times. The
second moment of the position is then given by

∫ ∞

−∞
x2ρd (x,t)dx = 2Dt + (�x)2

12
, (76)
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FIG. 11. The difference of the discrete second moment m2 of
Eq. (78) minus a2 converges quickly to a constant 1/6.

i.e., a simple offset of (�x)2/12 that does not depend on time.
We can identify

a2 = 2Dt

(�x)2
(77)

from the definition of Eq. (44). We then we see that the
results are expected to be shifted by 1/12. However, in Fig. 10
we clearly see that this only represents half of the observed
shift 1/6.

The second effect relates to discretizing the position into
displacement bins. We now calculate the discrete second
moment [normalized by (�x)2] as

m2 =
∞∑

i=−∞
i2

∫ i�x+ �x
2

i�x− �x
2

ρd (x,t) dx. (78)

In Fig. 11, we show that this discrete moment quickly
converges to a2 + 1/6. We clearly see that the missing
additional offset of 1/12 that we observed in Fig. 10 is the
result of taking the discrete moment.

This shows that there are two effects of discretization.
First, the initially broader distribution of particles confined
to a lattice site rather than a point shifts the second mo-
ment by exactly 1/12. The second effect of discretization
is more complicated, particularly for small a2. But for
a2 > 0.2 this effect quickly converges to another offset in
a2 of 1/12. Together they make up the offset of 1/6,
seen repeatedly in our numerical results of Figs. 5, 8, 9,
and 10.

VIII. OUTLOOK

In this paper, we have introduced a new tool for comparing
the results of molecular dynamics simulations with those of
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coarse-grained lattice gas or lattice Boltzmann methods. It
consists of reinterpreting the MD results as a lattice gas which
we call the MDLG. The dynamics of this special kind of lattice
gas is entirely given by the MD simulation, and therefore will
be able to give a coarse-grained picture for any results that are
obtainable with MD simulations.

The approach bears a superficial similarity with the direct
simulation Monte Carlo (DSMC) method, a particle-based
method where a grid is placed on the lattice and two-particle
collisions are performed between random particles within
one cell [30,31]. This similarity has been remarked upon by
both reviewers of this article. It has been shown that DSMC
will simulate the Boltzmann equation, and by extension also
reproduce the Navier-Stokes equation using kinetic theory
arguments similar to those typically used when analyzing
the lattice Boltzmann method [32,33]. This coarse-graining
approach to the MD method leads to an approximate approach
that is much faster than any hypothetical MD implementation.
The MDLG approach, however, is fundamentally different.
Since it relies on an underlying MD simulation there are
no savings in computational time, and since it continues to
track the exact MD result it does not loose accuracy apart
from the information lost by projecting onto lattice densities.
The key aspect of the MDLG method is that it reproduces an
exactly correct lattice gas method which can then be used to
compare it to other, efficient, LG or LB methods and validate
(or invalidate) their behavior by direct comparison. We believe
that this is an important new tool that allows us to analyze an
LG or LB method directly rather than go through the usual

indirect method of recovering the hydrodynamic equations
through some kinetic theory approach.

In this paper, we focus entirely on the averaged equilibrium
behavior and show that there exists a close connection between
the equilibria of lattice Boltzmann methods and the equilib-
rium for the MDLG method, when applied to a hot dilute
gas. We were able to determine this equilibrium distribution
analytically and were able to verify this analytical solution with
the results of the MDLG method. Importantly there is a sur-
prisingly good agreement between our equilibrium distribution
and the standard lattice Boltzmann result for carefully chosen
(and analytically known) pairs of time and space discretiza-
tions �t and �x. We were able to understand the observed
offset of 1/6 in the dimensionless measure of the mean squared
displacement a2 in terms of our discretization procedure.

This opens the way for a more careful analysis of the fun-
damental underpinnings of lattice gas and lattice Boltzmann
methods. We intend to utilize our MDLG method to investigate
the fundamental properties of the collision operator, including
its fluctuating properties. Further down the line we hope to
investigate how the behavior of liquids alters the behavior of
the MDLG method and examine if MDLG can also be matched
with lattice Boltzmann methods. We anticipate that this method
will also be instrumental in putting lattice Boltzmann methods
for nonideal and multicomponent systems on a firmer footing.
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