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In this paper, to predict the dynamics behaviors of flow and mass transfer with adsorption phenomena in porous
media at the representative elementary volume (REV) scale, a multiple-relaxation-time (MRT) lattice Boltzmann
(LB) model for the convection-diffusion equation is developed to solve the transfer problem with an unsteady
source term in porous media. Utilizing the Chapman-Enskog analysis, the modified MRT-LB model can recover
the macroscopic governing equations at the REV scale. The coupled MRT-LB model for momentum and mass
transfer is validated by comparing with the finite-difference method and the analytical solution. Moreover, using
the MRT-LB method coupled with the linear driving force model, the fluid transfer and adsorption behaviors
of the carbon dioxide in a porous fixed bed are explored. The breakthrough curve of adsorption from MRT-LB
simulation is compared with the experimental data and the finite-element solution, and the transient concentration
distributions of the carbon dioxide along the porous fixed bed are elaborated upon in detail. In addition, the
MRT-LB simulation results show that the appearance time of the breakthrough point in the breakthrough curve
is advanced as the mass transfer resistance in the linear driving force model increases; however, the saturation
point is prolonged inversely.
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I. INTRODUCTION

The problem of flow and mass transfer with adsorption
and desorption phenomena in porous media is ubiquitous and
significant in many fields of science and engineering, including
carbon capture and storage technology [1], environmental
pollution improvement [2], and chemical engineering [3]. To
fully understand this process, an appropriate mathematical
model is necessary for the theoretical description and will
help to optimize the flow and mass transfer with adsorption
processes in the equipment (such as a porous adsorbent bed)
[4]. In general, to predict the complete dynamical behaviors
in porous media, a coupling mathematical model, includ-
ing momentum-, mass-, and energy-conservation equations,
needs to be constructed simultaneously [5]. In addition, for
describing the effect of the adsorption behaviors on the mass
transfer process, an appropriate mass transfer kinetic model of
adsorption should be incorporated into the mass-conservation
equation as a source term [6–8]. It is worth noting that the
solving processes of this coupling model are tedious and
time consuming [9]. In this context, the development of a
simplified and efficient numerical model for predicting the
flow and adsorption processes in porous media has attracted
much attention in recent years.

As a promising mesoscopic numerical method, the lattice
Boltzmann (LB) model has some significant advantages over
the conventional numerical methods in modeling complex
physics in fluids, such as its role as a linear convective operator,
its high efficiency for parallel performance, and its excellent
applicability to cases with complicated boundary conditions
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[10–12]. Consequently, the LB model has rapidly emerged
as a powerful numerical tool in studies involving simulations
of momentum-, heat-, and mass-transport problems [13–20],
including transport phenomena in porous media. Generally,
the LB simulation in porous media involves microscale
(pore scale), and mesoscale (representative elementary volume
scale, “REV” scale) [13], where the relationship between the
two scales is illustrated in Fig. 1. At the microscopic pore scale,
the geometric structure of porous media is described in detail,
while, at the mesoscopic REV scale, the geometric structure is
simplified by an elementary cell using the volume-averaging
method. Due to the briefness of boundary schemes to handle
the complex morphology of a porous matrix, a series of pore
scale LB models have been proposed to study the adsorbate’s
mass-transport and adsorption behaviors in the pore structures
of porous media, which were constructed by the regular
particles or the stochastic irregular solid matrix [21–28]. By
using these LB simulations at the pore scale, the transient fluid
velocity and the adsorbate concentration profiles in the pore
structures were presented in detail, and the effect mechanism
of pore structure characteristics on the dynamic adsorption
performance was elaborated upon to provide guidance for
the design and optimization of adsorption systems on the
microscale. Nevertheless, the present pore scale studies need
to describe the detailed geometric information of porous
structures; thus the size of the computation domain cannot
be too large due to the limited computer resources [29].

In contrast, because the geometric structure of porous
media is ignored, the REV scale numerical study can over-
come the limitation of computation domain at the pore
scale, and hence can be used for systems with the large
computation domain [30]. In recent years, the REV LB
model, as a computationally efficient numerical method [31],
has been successfully used in the simulation of flow and
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FIG. 1. Schematic of relationship between the pore scale and the
REV scale.

heat transfer in porous media [32–34]. Moreover, to address
some inherent shortcomings of the single-relaxation-time LB
model, such as the numerical inaccuracy and the instability
problems, the multiple-relaxation-time (MRT) LB model, as an
effective improving scheme [35], has been employed to solve
the transfer problems in porous media at the REV scale more
accurately [13,36]. However, to the best of our knowledge,
little work has been reported on the application of the LB
model coupled with a mass transfer kinetic model of adsorption
in solving mass transfer with adsorption problems in porous
media at the REV scale.

Hence the present work aims at developing an MRT-LB
model to explore the flow, mass transfer, and adsorption
behaviors in porous media at the REV scale. This model
includes an MRT-LB model for the fluid flow and an MRT-LB
model for the mass transfer with adsorption. In Sec. II, the
macroscopic governing equations of fluid flow, mass transfer,
and adsorption processes in porous media are first presented.
In Sec. III A, an existing MRT-LB model for momentum
transfer in porous media is introduced to solve the fluid flow
in porous media at the REV scale. In Sec. III B, based on the
work of the LB model for the convection-diffusion equation
(CDE) in nonporous media [37,38], an MRT-LB model is
developed to simulate the mass transfer with an unsteady
source term in porous media at the REV scale. In Sec. IV,
the combined MRT-LB model is validated by comparing it
with the finite-difference method and the analytical solution.
Then, the linear driving force (LDF) model, as a widely used
mass transfer kinetics model of adsorption process [39–43], is
considered as an unsteady source term in the LB model for the
CDE to describe the adsorption behavior of the adsorbate. The
above modified MRT-LB model is used to simulate the carbon
dioxide flow, mass transfer, and adsorption processes in a
porous fixed bed of activated carbon, and the numerical results
are compared with the experimental data and the finite-element
solution. Finally, some conclusions are given in Sec. V.

II. MACROSCOPIC GOVERNING EQUATIONS

For the fluid flow and mass transfer coupled with the
adsorption process in homogeneous, isotropic porous media,
the macroscopic momentum transfer at the REV scale, which
is governed by the generalized Navier-Stokes equations, can
be expressed as [31]

∇ · u = 0, (1)

∂u
∂t

+ (u · ∇)
(u

ε

)
= − 1

ρ0
∇(εp) + νe∇2u + F, (2)

where u and p denote the volume-averaged fluid velocity and
pressure, respectively; ρ0 is the mean fluid density; ε denotes
the porosity of the porous media; υe is the effective kinetic
viscosity; and F is the total body force.

Considering an adsorbate in the fluid, the governing
equation of the mass transfer of adsorbate can be written as
the CDE with a source term in porous media [44]:

ε
∂C

∂t
+ ∇(uC) = εD∇2C + R∗, (3)

where C is the adsorbate concentration in the fluid, D is the
effective diffusion coefficient of the adsorbate in porous media,
and R∗ is an unsteady source term that represents the rate of
mass transfer through adsorption by the absorbent particle of
the porous media. Based on the LDF model, R∗ is given by [9]

R∗ = (1 − ε)ρb

∂q̄

∂t
= (1 − ε)ρbKL(q∗ − q̄), (4)

where q̄ denotes the average amount adsorbed by the adsorbent
particle, q∗ represents the amount adsorbed at equilibrium
with the instantaneous adsorbate partial pressure, ρb is the
adsorbent particle density, and KL is the effective LDF mass
transfer coefficient.

In addition, the total body force of fluid F can be written as

F = −ευ

K
u − εFϕ√

K
|u|u + εa, (5)

where υ denotes the kinetic viscosity, K represents the
permeability, Fφ is the geometric function, and a is the external
force. Using Ergun’s relation, the geometric function and the
permeability of the porous media are given by

Fϕ = 1.75√
150ε3

, K = ε3d2
p

150(1 − ε)2 , (6)

where dp is the mean diameter of the adsorbent particles. The
key parameters of the fluid flow and adsorption process can be
characterized using several dimensionless numbers, including
the Darcy number Da, the Reynolds number Re, the Schmidt
number Sc, the Fourier number Fo, and the dimensionless
ratio K∗ of the LDF mass transfer coefficient to the diffusion
coefficient, which are defined as

Da = K

L2
, Re = LU

ν
, Sc = υ

D
,

Fo = Dτ

L2
, K∗ = KLL2

D
, (7)

where L and U are the characteristic length and velocity of
the system, respectively, and τ is the computation time for the
fluid flow and mass transfer process.

III. MRT-LBM FOR THE FLOW, MASS TRANSFER, AND
ADSORPTION PROCESSES IN POROUS MEDIA

A. MRT-LBM for momentum transfer in porous media

To simulate the fluid flow in porous media using the LB
method (LBM), an existing D2Q9 MRT-LB model [36] is
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adopted to solve the generalized Navier-Stokes equations, given as Eqs. (1) and (2). The evolution equation with a forcing term
can be expressed as

fi(x + eiδt,t + δt) − fi(x,t) = (M−1�M)ij
[
fj (x,t) − f

eq

j (x,t)
]+ M−1δt

(
I − �

2

)
S, (8)

where fi (x,t) denotes the volume-averaged density distribution function associated with the discrete velocity ei at position x
and time t ; δt is the time step; I is the unit matrix; M is a 9 × 9 orthogonal transformation matrix; � is a diagonal relaxation
matrix, which is related to the collision matrix; and the forcing term S is a nine-dimensional column vector:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

� = diag(γ0,γ1, . . . ,γ8), (10)

S = (S0,S1, . . . ,S8)T , (11)

where γi (0 < γi < 2) is the relaxation rate and Si is a component of S, which will be determined later. For the D2Q9 model, the
discrete velocity ei is given by

ei =

⎧⎪⎨
⎪⎩

(0,0) i = 0

c
{
cos

[
(i − 1)π

2

]
, sin

[
(i − 1)π

2

]}
i = 1,2,3,4√

2c
{
cos

[
(2i − 9)π

4

]
, sin

[
(2i − 9)π

4

]}
i = 5,6,7,8

, (12)

where c = δx/δt is the lattice speed with δx denoting the
lattice spacing step and δx is set equal to δt in this paper. The
equilibrium distribution function is expressed as

f
eq
i =

{
ρ0 − (1 − ω0) εp

c2
s

+ ρ0s0(u), i = 0
ωi

εp

c2
s

+ ρ0si(u), i = 1,2, . . . ,8 , (13)

where ωi is the weight coefficient of the D2Q9 model with
ω0 = 4/9, ωi = 1/9 for i = 1-4, ωi = 1/36 for i = 5 to 8,
cs = 1/

√
3 represents the lattice sound speed, and si(u) is

given by

si(u) = ωi

[
ei · u
c2
s

+ (ei · u)2

2εc4
s

− |u|2
2εc2

s

]
. (14)

In this LB model, the total body force of fluid F in Eq. (2)
is represented using the forcing term S. Based on the work of
Liu et al. [36], the components of S are chosen as

S0 = 0, S1 = 6ρ0u · F
ε

, S2 = −6ρ0u · F
ε

,

S3 = ρ0Fx,S4 = −ρ0Fx, S5 = ρ0Fy,S6 = −ρ0Fy, (15)

S7 = 2ρ0(uxFx − uyFy)

ε
, S8 = 2ρ0(uxFy + uyFx)

ε
.

The macroscopic variables, including the volume-averaged
fluid velocity u and pressure p, are defined as [31]

u = v

l0 +
√

l2
0 + l1|v|

, (16)

p = c2
s

ε(1 − ω0)

[
8∑

i=0

eifi/ρ0 + ρ0s0(u)

]
, (17)

where v is a temporal velocity and l0 and l1 are two parameters
of the model, which are given by

v =
8∑

i=0

eifi/ρ0 + δt

2
εa, (18)

l0 = 1

2

(
1 + ε

δt

2

υ

K

)
, (19)

l1 = ε
δt

2

Fϕ√
K

. (20)

In addition, the effective kinetic viscosity υe is defined as

υe = c2
s

(
1

γ7
− 1

2

)
δt = c2

s

(
1

γ8
− 1

2

)
δt . (21)

Based on the Chapman-Enskog analysis [45], the continuity
equation (1) and the momentum equation (2) can be recovered
from this MRT-LB model.

B. MRT-LBM for the convection-diffusion
equation in porous media

In addition to the above MRT-LB model for the momentum
transfer in porous media, one other appropriate MRT-LB
model should be constructed to simulate the mass transfer
coupled with the adsorption process, as described in Eq. (3),
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which is a typical CDE in porous media. In recent years, a
series of LB models for the CDE [37,38,46] were developed
to investigate the mass transfer or heat transfer problems of
fluids, while there is relatively less work on MRT-LB models
for solving mass transfer with a source term in porous media.
To eliminate this research gap, inspired by the idea of Chai and
Zhao [37], we develop an MRT-LB model for the CDE with a
source term in porous media at the REV scale, and Eq. (3) can
be recovered from the modified model using Chapman-Enskog
analysis. The evolution equation of the MRT-LB model for the
CDE can be expressed as

gi(x + eiδt,t + δt) − gi(x,t) = �i + δtGi, (22)

where gi (x,t) is the discrete distribution function of a scalar
variable. For the mass transfer problem governed by the CDE,
the scalar variable represents the concentration variable C, and
gi (x,t) denotes the concentration distribution function, which
is different from fi (x,t) representing the density distribution
function. On the right-hand side of Eq. (22), the collision term
is given by

�i = −(M−1�M)ij
[
gj(x,t) − geq

j (x,t)
]
, (23)

where the equilibrium distribution is modified as

geq

j (x,t) = ωiC

[
ε + ei · u

c2
s

+ (ei · u)2

2εc4
s

− ei · u
2εc2

s

]
+ ηi

Cεp

c2
s ρ0

,

(24)

and ηi denotes the coefficients that are given by

ηi = ωi(i �= 0), η0 = −
∑
i�=0

ηi, (25)

where ηi is the weight coefficient of the D2Q9 model, with
η0 = −5/9, ηi = 1/9 for i = 1 to 4, and ηi = 1/36 for i = 5
to 8. The diagonal relaxation matrix is given by

� = diag(λ0,λ1, . . . ,λ8), (26)

where 0 < λi < 2. Considering the effect of the porosity of
the porous media, the source term of the MRT-LB model is
constructed as

Gi =
[

M−1

(
I − �

2

)
M
]

ijRj , (27)

Ri = ωi

[(
1 + ei · u

εc2
s

)
R + ei · (εp∇C/ρ0 + CF)

c2
s

]
, (28)

where R is the source term of the macroscopic CDE. Using
the transformation matrix M, the discrete concentration distri-
bution function and the equilibrium distribution function can
be projected onto their macroscopic variables in the moment
space:

m: = Mg, m(eq): = Mg(eq), (29)

where m = (m0,m1, . . . ,m8)T and m(eq) =
(m(eq) 0,m(eq) 1, . . . ,m(eq) 8)T . The scalar variable C can
be obtained using Eq. (30):

εC =
∑

i

gi + δt

2
R. (30)

Using the Chapman-Enskog analysis (the details are pre-
sented in Appendix A), Eq. (3) will be recovered from the
developed LB model. Hence this model can be used to solve
the mass transfer with absorption in porous media at the REV
scale, which is different from the previous MRT-LB model
for CDE in nonporous media [37]. In addition, based on the
nonequilibrium scheme [38], the flux can be calculated as
follows:

J = D

∑
i ci

[
gi − g

eq

i

]+ δt
2

(
CF + uR

ε

)
εδt
(

c2
s

λ3
+ p

2ρ0

) + Cu. (31)

It is noteworthy that the MRT-LB model is not only used to
investigate the mass transfer coupled with adsorption in porous
media, but also applied to study heat or mass transfer as the
convection-diffusion problem in porous media when the scalar
variable and the source term are adjusted appropriately.

C. Treatment of boundary and initial conditions

The boundary conditions are critical for the accurate
implementation of the LB model. In this paper, as a method
of second-order accuracy, the nonequilibrium extrapolation
scheme [47] is employed to treat the boundary conditions for
the MRT-LB model. For the LB model of the momentum
transfer, the distribution function at the boundary node xb can
be expressed as

fi(xb,t) = f
eq

i (xb,t) + [
fi(xf ,t) − f

eq

i (xf ,t)
]
, (32)

where xf denotes the nearest-neighbor fluid node of xb (xf =
xb + eiδt). For the velocity boundary condition, such as the
no-slip wall boundary, the unknown pressure value can be
substituted by the pressure at the nearest-neighbor fluid node,
and the equilibrium distribution function of the boundary node
in Eq. (32) can be calculated as follows:

f
eq
i (xb,t) =

⎧⎨
⎩ρ0 − (1 − ω0)

εp(xf ,t)
c2
s

+ ρ0s0[u(xb,t)], i = 0

ωi
εp(xf ,t)

c2
s

+ ρ0si[u(xb,t)], i = 1,2, . . . ,8
.

(33)

As such, the distribution function at the boundary node for
the CDE can be calculated as

gi(xb,t) = g
eq

i (xb,t) + [
gi(xf ,t) − g

eq

i (xf ,t)
]

(34)

For the Dirichlet boundary condition, the equilibrium
distribution function at the boundary node can be obtained
using Eq. (24). However, for the Neumann boundary condition,
the unknown scalar variable C(xb,t) should be estimated based
on the gradient of the scalar variable at the boundary node [36]:

C(xb,t) = 4C(xf ,t) − C(xff ,t) − 2� · ∇C(xb,t)

3
, (35)

where the xff denotes the nearest-neighbor fluid node of xf ,
and � = xf − xb = xff − xf , and the gradient of C(xb,t) is
obtained using the Fick law [Jb = −D∇C(xb,t)], where the
flux at the boundary Jb is known for the Neumann boundary
condition. In addition, at the initial time of the simulation,
the distribution function is obtained from its equilibrium

013313-4



MULTIPLE-RELAXATION-TIME LATTICE BOLTZMANN . . . PHYSICAL REVIEW E 96, 013313 (2017)

FIG. 2. Schematic of the Poiseuille flow in a 2D porous channel.

distribution function:

fi(x,t = 0) = f
eq

i (x,t = 0), gi(x,t = 0) = g
eq

i (x,t = 0).

(36)

IV. RESULTS AND DISCUSSION

A. Numerical tests for the MRT-LB model

In this section, the proposed method is evaluated on several
benchmarks, and the results are compared with those of the
finite-difference method and the analytical solution to validate
the proposed MRT-LB model for simulating the flow and
convection-diffusion problems with a source term in porous
media. In benchmark 1, the isothermal Poiseuille flow in
a two-dimensional (2D) porous channel is investigated to
demonstrate the effectiveness of the MRT-LBM for momen-
tum transfer. Then, considering the comparability for heat
transfer and mass transfer problems described by the CDE, the
applicability of the MRT-LBM for the CDE in porous media is
clarified by the simulation of thermal Poiseuille flow with heat
dissipation in benchmark 2. In addition, to examine the validity
of the MRT-LB simulation combined with the unsteady LDF
model, the unsteady mass diffusion process is studied using
the MRT-LBM for the CDE with an unsteady source term in
benchmark 3.

1. Poiseuille flow in a 2D porous channel

Guo and Zhao [31] simulated the Poiseuille flow in a
2D channel filled with porous media to confirm the validity
of the LBGK model for the flow field in porous media.
Similarly, the numerical results calculated by this adopted
MRT-LB momentum model are compared with the solutions
obtained using the finite-difference method (FDM) from Guo
and Zhao’s work.

The schematic of the Poiseuille flow in a 2D porous channel
is shown in Fig. 2. The height of the channel H is selected as the
characteristic length, and the fluid is driven using an external
force along the x-axis direction ax . The inlet and outlet of the
2D channel are set as the periodic boundary, and the no-slip
velocity boundary is employed at the top and bottom walls
using the nonequilibrium extrapolation scheme.

In this validation case, the porosity of the porous channel
ε is 0.1, the viscosity ratio υe/υ is set as 1, and the grid
size (L × H ) is 80 × 80. The relaxation rates are chosen as
γ0 = γ3 = γ5 = 1, γ1 = γ2 = 1.1, and γ4 = γ6 = 1.2, while
γ7 and γ8 are set to be 5/3. At the initial time (Fo = 0), the

FIG. 3. Velocity profiles of the Poiseuille flow for different
Reynolds and Darcy numbers. (a) Da = 10−5; (b) Re = 0.1.

velocity field in the computational domain is initialized as 0.
Using the MRT-LB for the momentum model, the velocity
distributions of the fully developed Poiseuille flow along the
y-axis direction are investigated under different Darcy num-
bers and Reynolds numbers, where the characteristic velocity
U0 in Reynolds number is the maximum velocity at the
centerline of the 2D porous channel without considering
the nonlinear Forchheimer drag force. Figure 3(a) shows the
dimensionless velocity distributions at a given Darcy number
Da = 10−5. It is found that the fluid peak velocity is reduced
when the Reynolds number Re varies from 0.01 to 100. This is
caused by the increased nonlinear drag force with increased Re.
For the different Reynolds numbers, the numerical results of
the MRT-LB model agree with the solutions of the FDM very
well. On the other hand, when the Darcy number Da varies
from 10−6 to 10−3 at a given Reynolds number (Re = 0.1),
the effect of the resistance of the porous media on the
Poiseuille flow is presented in Fig. 3(b), and the velocity
profiles predicted by the adopted LB model are in excellent
agreement with the solutions of the FDM.
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2. Thermal Poiseuille flow with heat dissipation

To validate the developed MRT-LBM for the CDE with a
source term, the thermal Poiseuille flow in a 2D channel with
heat dissipation is simulated based on Chai and Zhao’s work
[37]. Note that the scalar variable C in the CDE denotes the
temperature T provisionally, and the source term R represents
the viscous heat dissipation, which is defined as

R = 2ν

Cν

(S : S), (37)

where

S = [∇u + (∇u)T ]/2, (38)

and Cν denotes the specific heat at constant volume. As the
thermal Poiseuille flow includes the temperature field, the
temperature at the top wall and at the bottom wall are set as
T0 = 1.1 and T1 = 0.1, respectively. The periodic temperature
boundary is employed at the inlet and outlet of the 2D channel.
In addition, the momentum transfer is achieved using the above
MRT-LBM for the momentum transfer, and the boundary
conditions have been described in the above subsection, and
the grid size (L × H ) is also 80 × 80. As a steady problem, we
can consider the numerical results to have reached the steady
state when the following condition is satisfied:∑

x |T (x,t) − T (x,t − δt)|∑
x T (x,t)

< 1.0 × 10−8. (39)

In the first stage, the effect of porosity is neglected (ε =
1), and the fluid is driven by an external force along the
x-axis direction ax . The temperature and heat flux profiles are
calculated using the proposed MRT-LB model as the Prandtl
number Pr = ν/D = 1 and the defined Froude number Fr =
U 2

max/axH = 14.7, where Umax denotes the maximum velocity
at the centerline of the 2D channel.

In the numerical results as shown in Fig. 4, the dimension-
less temperature �T is defined as �T = (T − T1)/(T0 − T1),
and the dimensionless heat flux J∗ is defined as

J∗ = J · H

D(T0 − T1)
. (40)

It is found that the dimensionless temperature and the
dimensionless heat flux are enhanced by the increasing heat
dissipation indicated by the Eckert number (Ec), and Ec =
U 2

max/[Cv(T0 − T1)]. When the Eckert number varies from 10
to 100, we can see that the numerical results agree well with
the analytical solutions, which are clarified in Appendix B, and
the maximum error in the temperature between the numerical
and analytical solutions is less than 1% at Ec = 100.

In what follows, the proposed MRT-LBM for the CDE
is applied to simulate the thermal Poiseuille flow in a 2D
porous channel. For the Poiseuille flow conditions identical to
those presented in Fig. 3(b) (ε = 0.1, Re = 0.1), the constant
temperatures T0 = 1.1 and T1 = 0.1 are employed at the top
wall and bottom wall, respectively. If the source term is
not considered, the profiles of temperature and heat flux,
as the Darcy number Da varies from 10−6 to 10−3, can be
calculated using the FDM. The comparative results between
the MRT-LBM and the FDM are shown in Fig. 5. Due to
the absence of effects of heat dissipation and convection, the

FIG. 4. Comparisons between MRT-LB results and analytical
solutions of the thermal Poiseuille flow. (a) Temperature; (b) flux
J ∗

x ; (c) flux J ∗
y .

profiles of dimensionless temperature vary linearly from 0 to 1,
governed by Fick’s law. However, the profiles of dimensionless
heat flux along the x axis are significantly different for different
Da numbers, which is caused by the varying distribution
of velocity with the different permeability. In addition, the
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FIG. 5. Comparisons between MRT-LB results and FDM so-
lutions of the thermal Poiseuille flow in 2D porous channel.
(a) Temperature; (b) flux J ∗

x .

numerical results from the proposed MRT-LB model are in
excellent agreement with the solutions of the FDM.

3. Mass diffusion with an unsteady state source term

In this subsection, the MRT-LB model is used to calculate
the CDE coupled with an unsteady state source term, which
is similar to the source term of Eq. (3), governed by the
LDF model. To validate the MRT-LB model with an unsteady
source term through comparison with an analytical method,
the fluid flow is ignored in this case (Re = 0), and a constant
concentration C0 = 0 is employed at the top wall and bottom
wall of the 2D porous channel (ε = 0.1), as shown in Fig. 2.
It is important to note that the scalar variable C of the CDE
denotes the concentration hereafter. The mass source term R

is defined as

R = km(C1 − C), (41)

where km is a mass transfer coefficient, C1 is a constant
concentration C1 = 1, and C is the transient concentration in
the computational domain, which is set as C0 at the initial time
τ = 0. The grid size for this numerical simulation (L × H ) is
60 × 60, and the dimensionless concentration �C is defined as
�C = (C − C0)/(C1 − C0). As simulation results, the profiles
of the dimensionless transient concentration with different
dimensionless mass transfer coefficients are plotted in Fig. 6.
It is obvious that the concentration increases with increasing
dimensionless time due to the mass source term. When the
dimensionless mass transfer coefficient k∗

m(k∗
m = kmH 2/D)

rises from 0.72 to 36, the time to reach the steady state
is reduced, and the equilibrium concentration is closer to
the constant concentration C1. Moreover, for the different
dimensionless mass transfer coefficients and the dimensionless
time, the numerical results from the MRT-LB model are
consistent with the analytical solutions, which are explained
in Appendix C.

B. MRT-LB simulation of carbon dioxide flow, mass transfer,
and adsorption in a porous fixed bed

Based on the above validation work for the MRT-LB model,
the proposed model is applied to simulate the transfer and
adsorption processes of carbon dioxide from nitrogen as a
carrier gas in a porous fixed bed of activated carbon. Due
to the independent adsorption behaviors of carbon dioxide
and nitrogen [48], carbon dioxide is considered as a single
adsorbate in this work. To simplify the problem, the porous
fixed bed is viewed as a 2D channel with length L, as shown in
Fig. 7. The boundary conditions of the Navier-Stokes equations
for the flow of gas mixtures are identical to those described for
the Poiseuille flow in Sec. IV A. Meanwhile, the concentration
of carbon dioxide at the inlet of the channel is set as C0 and is
given by Eq. (42):

uCf = uC0 − εD∇xC, (42)

where Cf denotes the feed concentration, which is a constant.
Moreover, the concentration gradient at the outlet is set to
zero, and nonpermeable boundaries (the mass flux is zero) are
employed at the top and bottom walls. Unless otherwise stated,
the nonequilibrium extrapolation scheme is adopted to treat
these boundary conditions of the CDE for the mass transfer of
carbon dioxide. At the initial time, the concentration of carbon
dioxide is equal to zero in the fixed bed.

In addition, to utilize the LDF model for the adsorption
behavior of carbon dioxide as a source term in the CDE,
the amount adsorbed at equilibrium, described by Eq. (A22),
should be determined using the isotherm Toth equation for
single-component adsorption [48,49]:

q∗ = qmKeqpc

[1 + (Keqpc)φ]
1/φ

, (43)

where qm is the maximum adsorbed concentration; ϕ is the
heterogeneity parameter; pc is the partial pressure of carbon
dioxide, which is obtained from the concentration of carbon
dioxide as an ideal gas; and the equilibrium adsorption constant
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FIG. 6. Comparisons between MRT-LB results and analytical
solutions of the mass diffusion with an unsteady state source term.
(a) k∗

m = 0.72; (b) k∗
m = 7.2; (c) k∗

m = 36.

FIG. 7. Schematic of the transfer and adsorption of carbon
dioxide in a porous fixed bed.

Keq is determined by Eq. (44):

Keq = K0
eq exp

(−�H

R0T

)
, (44)

where −�H is the adsorption enthalpy and R0 is the gas
constant. According to the work of Dantas et al. [44,48], the
parameters in Eqs. (43) and (44) are given in Table I.

Since the fluid transfer process occurs in a long 2D
porous channel, the effect of the concentration distribution
along the width direction can be neglected. Therefore, the
flow and adsorption studied in this work can be regarded
approximately as a one-dimensional transport process along
the length direction, and the length L of the channel acts as the
characteristic length. For comparison with the experimental
and finite-element method results at temperature T = 423 K
from the literature [44], the physical and transport properties
of the fluid and porous fixed bed are determined using a series
of dimensionless numbers, which are listed in Table II.

The transient concentration at the outlet of the porous fixed
bed is plotted in Fig. 8 as a typical breakthrough curve. It
is found that the concentration of the outlet remains constant
at zero until the time of the breakthrough point is reached,
which indicates that the influent carbon dioxide is completely
adsorbed by the porous fixed bed at the early stages of the
adsorption process. Then the transient concentration of the
outlet rises to the feed concentration sharply until the time
when the saturation point is reached, which indicates the ad-
sorption process has been completed. For the most part, the LB
model result for the outlet well agreed with the experimental
data and the finite-element solution from the literature [44].
The comparison result shows that this developed LB model,
as an efficient mesoscopic numerical method, can be used to
simulate the flow, mass transfer, and adsorption process in
porous adsorbent equipment at the REV scale.

Furthermore, the mole flux distribution and transient con-
centration along the length direction are shown in Fig. 9, where
the dimensionless mole flux is defined as

J ∗ = JxL/(Cf · D). (45)

TABLE I. Parameters of Toth model.

Parameters Units Value

qm mol/kg 10.05
� 0.678
−�H kJ/mol 21.84
K0

eq bar−1 7.62
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TABLE II. Physical and transport properties of fluid and porous
fixed bed.

Dimensionless numbers Value

ε 0.52
Re 9
Sc 2.51
K∗ 93.6
Da 2 × 10−6

At the early stages of the adsorption process (Fo = 0.08),
because most of the carbon dioxide is adsorbed by the porous
adsorbent bed, the mole flux gradually decreases along the
length direction, and the transient concentration at the tail
of the channel remains constant at zero before the time at
which the breakthrough point is reached. During the unsteady
adsorption process of carbon dioxide, the porous adsorbent
bed is saturated starting from the inlet of the channel, and the
mole flux along the length direction rises to the value of the
inlet flux. On the other hand, the region in which transient
concentration remains at zero diminishes gradually with the
increasing adsorption time. The region eventually vanishes
when the carbon dioxide is reached at the position of the outlet.
After that, the concentration at the outlet increases sharply with
increase in Fo, as shown in Fig. 8, until the feed concentration
is reached, which indicates the adsorption process has been
completed.

The LDF mass transfer coefficient K∗ is a key parameter
determined by the mass transfer resistance of microscopic
adsorbent particles. When K∗ is defined to be 9.36 and other
parameters are the same as in Table II, the breakthrough curve
of the output is calculated as shown in Fig. 10. Compared
to the breakthrough curve for K∗ = 93.6, the appearance
time of the breakthrough point is reduced at lower LDF
mass transfer coefficient, while the time until the saturation
point is reached is significantly prolonged. This result shows
that the LDF mass transfer coefficient plays a considerable
role in the flow and adsorption processes. When the mass
transfer coefficient rate of the adsorbent particles decreases,

FIG. 8. Breakthrough curves of adsorption process.

FIG. 9. Numerical results of the mole flux distribution and
transient concentration along length direction. (a) Mole flux; (b)
transient concentration.

FIG. 10. Effect of LDF mass transfer coefficient on breakthrough
curves.
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the influent carbon dioxide is unable to be adsorbed adequately
by the adsorbent bed due to a higher mass transfer resistance;
therefore, the residual carbon dioxide flow to the outlet will
lead to faster appearance of the breakthrough point than that
of the breakthrough curve with the higher LDF mass transfer
coefficient. On the other hand, owing to the constant total
adsorption capacity of adsorbent bed, the completion time
of the adsorption process is extended with the decreasing
adsorption efficiency of the adsorbent particles; as a result,
the appearance time of the saturation point is prolonged at the
higher mass transfer resistance.

V. CONCLUSION

In this paper, we modified an MRT-LB model for the
CDE to solve the transfer problem with an unsteady source
term in porous media at the REV scale, and the correct
macroscopic equations can be recovered using the Chapman-
Enskog analysis. According to the comparison with the results
obtained using the finite-difference method and the analytical
solutions, the present MRT-LB model can be applied to
calculate the momentum transfer and solve the convection-
diffusion problem in porous media. The validated MRT-LB
algorithm, which is coupled with the LDF model, was used

to analyze the carbon dioxide flow and adsorption behaviors
in a porous fixed bed. The breakthrough curve of adsorption
from MRT-LB simulation is compared with the experimental
data and the finite-element solution, and the comparison result
shows that this LB model can be used to simulate the flow,
mass transfer, and adsorption process in porous adsorbent
equipment at the REV scale. Then the transient concentration
distributions of the carbon dioxide along the porous fixed bed
are elaborated in detail. In addition, numerical results show
that the LDF mass transfer coefficient plays a considerable
role in the flow and adsorption processes. As the mass transfer
resistance of the adsorbent particles increases, the appearance
time of the breakthrough point is advanced; in contrast, the
appearance time of the saturation point is prolonged.
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APPENDIX A: CHAPMAN-ENSKOG ANALYSIS ON MRT-LBM FOR CDE

The Chapman–Enskog analysis is employed to derive the macroscopic equation from the MRT-LB model for CDE. The
distribution function, the derivatives of time and space, and the source term can be expanded as

gi = g(0)
i + δg(1)

i + δ2g(2)
i + · · · , (A1a)

∂t = δ∂t1 + δ2∂t2, (A1b)

∂α = δ∂α1, (A1c)

R = δR1, F = δF1. (A1d)

Using the Taylor expansion, Eq. (A1) can be substituted into the evolution equation Eq. (22); thus the evolution equations of
zero, first, and second order are written as

δ0 : g(0)
i = geq

i , (A2a)

δ1:(∂t1 + ci∇1)g(0)
i = − 1

δt
(M−1�M)ij g(1)

j +
[

M−1

(
I − �

2

)
M
]

ijR1,j , (A2b)

δ2 : ∂t2g
(0)
i + (∂t1 + ci∇1)g(1)

i + δt

2
(∂t1 + ci∇1)2g(0)

i = − 1

δt
(M−1�M)ij g(2)

j , (A2c)

where

R1,i = ωi

[(
1 + ei · u

εc2
s

)
Ri + ei · (εp∇1C/ρ0 + CF1)

c2
s

]
. (A3)

If the distribution functions are rewritten as macroscopic variables in the moment space by multiplying the transformation
matrix M, the system of equations (A2) in the moment space are modified as

δ0:m(0) = meq, (A4a)

δ1:D1m(0) = − 1

δt
�m(1) +

(
I − �

2

)
MR1, (A4b)

δ2:∂t2 m(0) + D1

(
I − �

2

)
m(1) + δt

2
D

1

(
I − �

2

)
MR1 = − 1

δt
�m(2), (A4c)
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where

D1 = ∂t1I + M∂α1diag(e0,α,e1,α, . . . ,e8,α)M−1, (A5)

and R1 = (R1,0,R1,1, . . . ,R1,8)T . Using Eqs. (24), (30), and (A2a), Eqs. (A6) and (A7) can be derived as follows [46]:

∑
i

g(0)
i =

∑
i

geq

i =
∑

i

gi + δt

2
R = εC, (A6)

∑
i

g(1)
i = −δt

2
R1. (A7)

Thus the first term in Eq. (A4b) can be expanded as

∂t1(εC) + ∂x1(Cux) + ∂y1(Cuy) = R1. (A8)

Analogously, based on Eqs. (24), (A3), and (A6)), the fourth and sixth terms in Eq. (A4b) can be calculated as

∂t1(Cux) + ∂x1
[
C
(
εc2

s + εp/ρ0 + u2
x
/ε
)]+ ∂y1(Cuxuy/ε) = −λ3

δt
m

(1)
3 +

(
1 − λ3

2

)(
ε

p

ρ0
∂x1C + CFx1 + ux

R1

ε

)
, (A9a)

∂t1(Cuy) + ∂y1
[
C
(
εc2

s + εp/ρ0 + u2
y
/ε
)]+ ∂x1(Cuxuy/ε) = −λ5

δt
m

(1)
5 +

(
1 − λ5

2

)(
ε

p

ρ0
∂y1C + CFy1 + uy

R1

ε

)
. (A9b)

It is noted that the following relationship can be derived using Eqs. (9), (12), and (29):

m
(1)
3 =

∑
i

ei,xg
(1)
i , m

(1)
5 =

∑
i

ei,yg
(1)
i . (A10)

According to Eqs. (A6), (A7), and (A10), the first term of Eq. (A4c) can be derived as

∂t2(εC) + ∂x1

{(
1 − λ3

2

)[
m

(1)
3 + δt

2

(
ε

p

ρ0
∂x1C + CFx1 + ux

R1

ε

)]}

+∂y1

{(
1 − λ5

2

)[
m

(1)
5 + δt

2

(
ε

p

ρ0
∂y1C + CFy1 + uy

R1

ε

)]}
= 0. (A11)

It is obvious that Eq. (A9) can be rewritten as

m
(1)
3 + δt

2

(
ε

p

ρ0

∂x1C + CFx1 + ux

R1

ε

)

= − δt

λ3

[
∂t1(Cux) + ∂x1

(
εCc2

s + Cεp

ρ0
+ Cu2

x

ε

)
+ ∂y1

(
Cuxuy

ε

)
−
(

εp

ρ0
∂x1C + CFx1 + ux

R1

ε

)]

= − δt

λ3

[
ux∂t1C + C

(
∂t1ux + ux

ε
∂x1ux + uy

ε
∂y1ux + ∂x1εp

ρ0

)

+ux

ε
(∂x1Cux + ∂y1Cuy) + ∂x1

(
εCc2

s

)−
(

CFx1 + ux

R1

ε

)]
,

(A12)

m
(1)
5 + δt

2

(
ε

p

ρ0
∂y1C + CFy1 + uy

R1

ε

)

= − δt

λ5

[
∂t1(Cuy) + ∂y1

(
εCc2

s + Cεp

ρ0
+ Cu2

y

ε

)
+ ∂x1

(
Cuxuy

ε

)
−
(

εp

ρ0
∂y1C + CFy1 + uy

R1

ε

)]

= − δt

λ5

[
uy∂t1C + C

(
∂t1uy + uy

ε
∂y1uy + ux

ε
∂x1uy + ∂y1εp

ρ0

)

+uy

ε
(∂y1Cuy + ∂x1Cux) + ∂y1

(
εCc2

s

)−
(

CFy1 + uy

R1

ε

)]
. (A13)
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If Eq. (A8) is substituted into the right side of Eqs. (A12) and (A13), we can get that

m
(1)
3 + δt

2

(
ε

p

ρ0

∂x1C + CFx1 + ux

R1

ε

)
= − δt

λ3

[
C

(
∂t1ux + ux

ε
∂x1ux + uy

ε
∂y1ux + ∂x1εp

ρ0
− Fx1

)
+ ∂x1

(
εCc2

s

)]
, (A14)

m
(1)
5 + δt

2

(
ε

p

ρ0
∂y1C + CFy1 + uy

R1

ε

)
= ∇ δt

λ5

[
C

(
∂t1uy + ux

ε
∂x1uy + uy

ε
∂y1uy + ∂y1εp

ρ0
− Fy1

)
+ ∂y1

(
εCc2

s

)]
. (A15)

On the other hand, based on Chapman-Enskog analysis of the LBM momentum model in porous media, the first-order
Navier-Stokes equation is expressed as

∂t1u + (u · ∇1)
(u

ε

)
= − 1

ρ0
∇1(εp) + F1. (A16)

Comparing Eq. (A16) with the right side of Eqs. (A14) and (A15), it is easy to obtain that

m
(1)
3 + δt

2

(
ε

p

ρ0
∂x1C + CFx1 + ux

R1

ε

)
= − δt

λ3
∂x1
(
εCc2

s

)
, (A17)

m
(1)
5 + δt

2

(
ε

p

ρ0
∂y1C + CFy1 + uy

R1

ε

)
= − δt

λ5
∂y1
(
εCc2

s

)
. (A18)

Therefore, according to Eqs. (A17) and (A18), Eq. (A11) can be rewritten as

∂t2(εC) + ∂x1

[(
1

2
− 1

λ3

)
εc2

s ∂x1C

]
+ ∂y1

[(
1

2
− 1

λ5

)
εc2

s ∂y1C

]
= 0. (A19)

Utilizing Eqs. (A8) and (A19), the macroscopic CDE can be obtained:

ε
∂C

∂t
+ ∇(uC) = εD∇2C + R, (A20)

where the diffusion coefficient D is given by

D = c2
s

(
1

λ3
− 1

2

)
δt = c2

s

(
1

λ5
− 1

2

)
δt. (A21)

In general, the source term R in Eq. (A20) represents a universal source or sink term in CDE. For mass transfer and adsorption
processes in porous media, the source term R is used to describe the adsorption behaviors caused by the adsorbent particles,
which is determined by the LDF model:

R = R∗ = (1 − ε)ρbKL(q∗ − q̄). (A22)

It is obvious that the developed LB model will be recovered as Eq. (3).

APPENDIX B: ANALYTICAL SOLUTIONS OF THERMAL POISEUILLE FLOW

Based on the research results from the literature [37], the analytical solutions of velocity and temperature along the y axis and
the heat flux (Jx,Jy) can be obtained as

uy = 4Umax
y

H

(
1 − y

H

)
, (B1)

T − T1

T0 − T1
= y

H
+ Pr Ec

3

[
1 −

(
1 − 2y

H

)4
]
, (B2)

Jx = 4Umax
y

H

(
1 − y

H

)
T , (B3a)

Jy = −D
(T0 − T1)

H

[
1 + 8 Pr Ec

3

(
1 − 2y

H

)3
]
. (B3b)
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APPENDIX C: ANALYTICAL SOLUTION OF UNSTEADY MASS DIFFUSION

If the fluid flow is not considered, the CDE as Eq. (3) will be converted into an unsteady diffusion equation with a source
term. Using the method of variable separation, the transient concentration along the y axis can be expressed as

C(τ,y) =
∞∑

n=1

�n(τ ) sin
nπ

H
y, (C1)

where

�n(τ ) =
∫ τ

0
ψn · e−D[( nπ

H
)2+ km

ε
](τ−t)dt, (C2a)

and

ψn = 2

H

∫ H

0

km

ε
C1 sin

(nπ

H
y
)
dy, (C2b)

where the computation time τ can be integrated into the dimensionless time Fo number.
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