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Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen
numbers in slip-flow regime: Application to plane boundaries
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The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow
regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions
must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-
type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly
in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by
the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation
and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result,
the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition,
applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing
slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second,
we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending
the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes
are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation
limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent
prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any
numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM
boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly
accommodate the steady Poiseuille channel flow solution, over distinct wall slippage conditions, namely, no-slip,
first-order slip, and second-order slip. The modeling of channel walls is discussed at both lattice-aligned and
non-mesh-aligned configurations: the first case illustrates the numerical slip due to the incorrect modeling of
slippage coefficients, whereas the second case adds the effect of spurious boundary layers created by the deficient
accommodation of bulk solution. Finally, the slip-flow solutions predicted by LBM schemes are further evaluated
for the Knudsen’s paradox problem. As conclusion, this work establishes the parabolic accuracy of slip velocity
schemes as the necessary condition for the consistent LBM modeling of the slip-flow regime.
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I. INTRODUCTION

The classical hydrodynamic theory [1] is built on the
assumption of a clear separation between two scales: one
measuring the fluid intrinsic “molecularity,” expressed by the
mean-free path of molecules λ, and the other expressing the
length scale of the flow process in study, determined by a
characteristic geometrical length scale, such as the system
size H . Their ratio defines the Knudsen number Kn = λ/H .
It is commonly accepted [2–5] that the continuum-flow
assumption holds up to Kn ≈ 0.001. For Kn � 0.001 the
Navier-Stokes equations together with the no-slip boundary
condition provide an accurate physical framework to describe
fluid flows. However, with the increase of Kn the continuum-
flow regime breaks down and the first nonequilibrium effect is
manifested in the description of the fluid-wall interactions: the
so-called slip-flow regime (0.001 < Kn < 0.1). In this case,
although the continuum Navier-Stokes framework remains
valid in bulk, at the solid boundaries the no-slip velocity
condition is replaced by a slip one. This theoretical perspective
concedes the accommodation of hydrodynamic solutions on
slip boundaries, without any boundary layer modification.
This contrasts with the subsequent nonequilibrium stage: the
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transition-flow regime (0.1 < Kn < 10). Here, the fluid-wall
nonequilibrium effects are no longer localized at the solid
boundaries, but extend over a non-negligible portion of the
bulk domain. These regions are called Knudsen boundary
layers and tend to distort the velocity profile in a non-negligible
way, being relevant in the context of transition flows.

This work focuses on low-speed, isothermal flows at
finite Kn numbers, pertaining to the slip-flow regime. Such
flow characteristics are commonly found in microfluidic
applications, as described in [6–10] and references therein.
This class of flows follows a hydrodynamic description in
bulk, governed by Stokes equations:

�∇ · �u = 0, �F − �∇P + νρ0∇2 �u = 0, (1)

with �u the fluid velocity, P the pressure, and �F an external
body force. A single-component fluid system is considered,
which is characterized by density ρ0 and kinematic viscosity
ν. At boundaries, the model that describes the fluid-wall
interaction assumes the second-order slip velocity boundary
condition [11,12], whose nondimensional formulation for
planar walls reads as

ut |wall − Uw = −C1Kn ∂nut |wall − C2Kn2∂ 2
n ut

∣∣
wall. (2)

Above, ut denotes the tangential component of the fluid
velocity, Uw is the wall velocity, the derivatives of the velocity
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are taken in the outward direction of the wall normal (denoted
by subscript n), and C1 and C2 refer to slippage coefficients,
determined through different approaches (see Table I and the
comprehensive reviews [11,13,14]). The formulation of Eq. (2)
is built upon the following three aspects. First, Eq. (2) has a
self-consistent structure, which is evident by the recovering
of the no-slip condition ut |wall = Uw at the formal limit
Kn → 0 [whereas the first-order slip-flow model [15] is also
restored as the first-order Kn expansion in Eq. (2)]. Second,
the form of Eq. (2) only considers flows with constant slip
velocity, i.e., where no variations occur along the wall surface,
only gradients along the normal direction exist. Third, the
application of Eq. (2) is limited to planar surfaces. For curved
walls the consistent formulation of the slip velocity condition
must consider additional terms, related to the surface curvature
[3,11,14,16–18]. This case will be addressed in a future
publication.

Compared to the first-order theory, originally formulated by
Maxwell [15] (and independently by Navier [25] following a
different reasoning), the inclusion of a second-order term (re-
lated with the flow curvature) in the slip velocity condition con-
stitutes a significant improvement in the description of moder-
ately rarefied gas flows. Indeed, this framework appears to pro-
vide, at least in the average sense, robust predictions in a variety
of flow problems of practical interest, well beyond Kn ≈ 0.1,
the theoretically expected slip-flow validity limit [12,14]. For
example, the Knudsen’s paradox [2,12,13], i.e., the nonmono-
tonic Kn dependence of the mass flux in steady Poiseuille
flow, featuring a minimum well within the transition regime,
can be captured in the frame of the second-order slip-flow
theory. Its applicability may even extend up to Kn ≈ 2 with
more elaborate second-order slip models, e.g., [20]. We refer
to [3,4,11–14], for more details on the strengths and limitations
of the slip-flow theory. Here, we assume that Eq. (2) is valid and
the specific values of coefficients C1 and C2 are available, e.g.,
from Table I or from comprehensive databases as in [3,11,13],
and they accurately describe the physics at hand. Taking for
granted such hypotheses, our focus is dedicated to the specific
challenges posed by the discretization of Eq. (2). Mathemati-

cally, the problem can be stated as the numerical implementa-
tion of a Robin-type boundary condition for the tangential ve-
locity. The objective is that the discrete representation of such a
slip velocity model, and in particular its coefficients, do not get
modified by numerical errors, so that simulations are consistent
with the physical slip condition imposed. This question is im-
portant since slip-flow theory offers incomparable advantages
from the computational perspective. Given that it operates
over continuum-based equations, this approach is substantially
more economical than kinetic-based or molecular models,
e.g., [26]. For that reason, various numerical methods to solve
the Navier-Stokes equations with slip velocity boundary con-
ditions have been developed. Examples are the finite volume
method [27,28], finite difference method [29,30], or finite
element method [31–33]. Still, the numerical approximation
of the slip velocity condition in the frame of these traditional
computational fluid dynamics (CFD) techniques is not a trivial
task, particularly in complex geometries, e.g., [14,28,33,34].
Such a difficulty justifies the interest in alternative and
competitive numerical formulations [34,35]. Here, we devote
our attention to the lattice Boltzmann method (LBM).

The LBM [36–39] has been regarded, almost ever since
its introduction, as a very promising approach to describe
“beyond-hydrodynamics” phenomena [36,39,40]. As of today,
the ability of the LBM equation to capture nonequilibrium
phenomena at large Kn remains an active topic of research,
e.g., [41–44] and references therein. Yet, so far, the more basic
question on the performance of the LBM equation in the slip-
flow regime has not been completely answered. At the moment,
the vast majority of works addressing this topic, e.g., [45–56]
(with the possible exception of [57]), have explored the
relation between the LBM equation and the continuous
Boltzmann-BGK equation [40,58,59]. In the derivation of
LBM boundary schemes, such studies have considered either
LBM discrete analogs of the Maxwell-Boltzmann [44,60,61]
or other related kinetic-based boundary models [45,47,62].
Unfortunately, these LBM versions of kinetic boundary
schemes are affected by critical limitations, most notably,
by introducing a purely numerical slip that interferes with

TABLE I. Examples of C1 and C2 slippage coefficients determined through different approaches; a more complete list can be found
in [14]. The parameter σv is the tangential momentum accommodation coefficient (TMAC). For most surfaces σv ∈ [0.6,1] [14], where σv = 1
corresponds to fully diffusive walls. In this work, we take σv = 1, but other σv values have no impact on conclusions. Note the last two
models present Kn-dependent coefficients. Wu (2008) [19] model depends on fW , defined as fW = min [ 1

Kn ,1]. Wang et al. (2017) [20] model
has been computed in this work through Eq. (11) with (B1) and (B2) of [20], the Ei denotes the exponential integral function defined as
Ei(x) = − ∫ +∞

−x
t−1 exp(−t)dt .

References C1 C2 Approach

Maxwell (1987) [15] 2−σv

σv
0 Elementary kinetic theory

Cercignani (1990) [21] 1.1466 2−σv

σv
0.9756 Linearized Boltzmann-BGK

Hadjiconstantinou (2003) [22] 1.11 2−σv

σv
0.61 Hard sphere model

Lockerby et al. (2004) [23] 2−σv

σv
0.145–0.19 Maxwell-Burnett model

Struchtrup and Torrilhon (2008) [24] 2−σv

σv
0.531 R13-based model

Wu (2008) [19] 2
3

[
3−σvf 3

W

σv
− 3(1−f 2

W
)

2Kn

]
2
3

[
f 4

W + 2
Kn2 (1 − f 2

W )
]

Advanced kinetic theory

Wang et al. (2017) [20]

2σvKn(Kn2+Kn−1)

−2 exp ( 1
Kn )[Kn3(σv−2)+σvEi(− 1

Kn )]
3σvKn

{
(Kn−1)Kn

+ exp ( 1
Kn )[Kn2+Ei(− 1

Kn )]

}
Kn[−1+Kn(1+Kn)]

− exp ( 1
Kn )[2Kn4+Ei(− 1

Kn )]
4Kn2

{
(Kn−1)Kn

+ exp ( 1
Kn )[Kn2+Ei(− 1

Kn )]

} Advanced kinetic theory
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the physical slip condition. While the elimination of this
artifact was attempted in the past [49–51,54], specifically, for
the case of a (force-driven) Poiseuille flow in the slip-flow
regime, by calibrating the coefficient(s) in the kinetic LBM
boundary schemes to “absorb” the discrete lattice effects into
physical terms, still limitations subsist, even after calibration.
The reason is intrinsic to their formulation. Similarly to the
bounce-back (BB) rule as a no-slip model, these so-called
“kinetic” LBM boundary schemes are based on low-order
discretizations of the slip velocity condition. However, unlike
in the hydrodynamic case, where improvements over the
BB rule as no-slip boundary condition have been proposed,
e.g., [63,64], a general and consistent solution to handle the slip
condition has not been given yet, to the best of our knowledge.

The main objective of this work is, therefore, to improve
the limitations previously identified and to place LBM as a
consistent CFD tool for moderately rarefied gas flow problems
(which may possibly be extended over larger Kn values with
specific add ons as reviewed by [41]). Our starting point is the
recognition that the reflection-type boundary rules equipping
the LBM provide a rather natural groundwork to model the slip
velocity boundary condition, as given by Eq. (2). The reason
is that the prescription of both conditions shares a similar
structure in terms of Taylor series closure relation. Hence, the
LBM working principle can offer advantages over standard
CFD methods in this class of problems. For instance, the
LBM reflection-type boundary schemes can naturally handle
the velocity derivatives at the boundary without the necessity
of any explicit computations, e.g., through finite differences.
This feature simplifies its application to complex geometries
and may also improve the algorithm efficiency by reducing the
span of grid nodes required.

The inherent difficulty with the development of LBM
models is that conditions for the hydrodynamic variables (e.g.,
velocity, pressure, etc.) are determined by particle’s dynamical
rules, expressed at the mesoscopic level. Typically, the relation
between these two levels of description is not evident, de-
manding the use of multiscale analyses, such as the Chapman-
Enskog expansion [65,66]. Although, care should be taken
as the Chapman-Enskog expansion does not permit describing
the solution inside accommodation (Knudsen) layers [4]; in the
LBM context this issue has been addressed through alternative
theoretical perspectives [67–69], yet the study of such layers is
not pursued herein. In this work, we use the Chapman-Enskog
expansion to show that the consistent LBM modeling of the
slip velocity condition (of either first or second order) is intrin-
sically tied in with the order of accuracy of the LBM boundary
scheme, where the necessary condition amounts to the scheme
parabolic accuracy. Otherwise, the LBM boundary scheme
will unavoidably introduce numerical artifacts at the same
order of the physical slip coefficients. This interference will
disturb the effective slip velocity condition and in turn cause
the numerical slip at the boundary, which is the defect we wish
to avoid. As solution method, rather than persisting in deriving
LBM analogs of kinetic-based boundary schemes, we propose
a general LBM framework where the slip velocity condition
is implemented through the multireflection procedure [63,64].
Aside from guaranteeing the consistency of the slip velocity
model, the class of LBM boundary schemes constructed in this
work also supports arbitrary plane wall discretizations on the

LBM uniform mesh formulation, without any extra effort. The
importance of the correct wall discretization is perceived on
the accommodation of the bulk solution; whenever not suffi-
ciently accurate it leads to the creation of spurious boundary
layers, which may be confused with physical Knudsen layers.
We will illustrate both theses issues, i.e., the numerical wall slip
and the spurious boundary layers, for a Poiseuille flow in the
slip-flow regime, with the channel discretized in lattice-aligned
and lattice-inclined configurations.

The paper is organized as follows. Section II reviews
the LBM structure, with focus on the two-relaxation-time
(TRT) collision scheme. The first part addresses the evolution
equation of the LBM-TRT, and the second part discusses its
macroscopic limit. Section III derives the closure relation of
the second-order slip velocity condition supported by linkwise
LBM boundary schemes. Section IV critically discusses the
capabilities and limitations of existing “kinetic” LBM bound-
ary schemes. Section V proposes an alternative class of local
schemes that implement the slip condition consistently, with
the aid of specific calibration strategies. Section VI constructs
a generic class of two-point boundary schemes, based on
the multireflection framework, which consistently handle the
slip velocity condition, supporting it at arbitrary wall and
lattice distances and/or orientations. Section VII evaluates the
performance of such slip velocity LBM boundary schemes
taking as benchmark test the classical steady Poiseuille flow
problem. Section VIII reports on complementary simulation
results based on the Knudsen’s paradox problem. Section IX
concludes the study. At the end of the paper, two Appen-
dices are included. Appendix A briefly revises other LBM
collision operators with relevance to this study. Appendix B
demonstrates the equivalence between the schemes developed
in Sec. IV and the scheme proposed in [56].

II. LATTICE BOLTZMANN METHOD

A. Two-relaxation-time (TRT) scheme

The lattice Boltzmann method (LBM) [36,37,70–72] is
used to solve Eq. (1). The LBM working principle is based
on the tracking of populations fq(�x,t), defined on space �x and
time t , along a discrete velocity set (also called lattice), which
features one immobile �c0 = �0 and Qm = Q − 1 nonzero
velocity vectors �cq per grid node. The first Qm/2 velocity
vectors �cq are set diametrically opposite to the other Qm/2
vectors �cq̄ = −�cq , where the pair {�cq, �cq̄} is referred to as
a link. Here, we employ the d-dimensional lattice with Q

velocities given by d = 2 and Q = 9, called d2Q9 model [71].
The update of LBM evolves along a succession of streaming
[Eq. (3a)] and collision [Eq. (3b)] steps. For the collision
we adopt the TRT model [64] so that the LBM follows the
evolution equation:

fq(�x + �cq,t + 1) = f̃q(�x,t), q = 0,1, . . . ,Q − 1 (3a)

f̃q(�x,t) = [fq + g+
q + g−

q + S+
q + S−

q ](�x,t),

q = 0,1, . . . ,
Qm

2

f̃q̄(�x,t) = [fq̄ + g+
q − g−

q + S+
q − S−

q ](�x,t),

q = 1, . . . ,
Qm

2
. (3b)
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The term f̃q denotes the post-collision state of populations
fq . Other terms in Eq. (3b) are S±

q , which account for mass S+
q

and momentum S−
q sources, and g±

q = −s±(f ±
q − e±

q ), which
express post-collision nonequilibrium quantities. These latter
are given by (i) two values f ±

q = fq±fq̄

2 for each discrete-
velocity link {�cq, �cq̄}; (ii) two equilibrium values e±

q , which are
detailed below [see Eq. (4)]; and (iii) two relaxation parameters
s± ∈]0,2[ that define two eigenfunctions �± = ( 1

s± − 1
2 ),

whose product � = �+�− controls nondimensional steady-
state solutions [64,73]. In solving Eq. (1) the equilibrium
functions e±

q take a linear form, with e+
q describing mass

density ρ (or pressure P ) and e−
q designating momentum

density �j = ρ0 �u, where �u is the velocity and ρ0 a constant
density state [66,74]:

e+
q = Pq, Pq = tqP (ρ), e0 = ρ − 2

Qm/2∑
q=1

e+
q ,

e−
q = jq, jq = tq( �j · �cq) = tqρ0(�u · �cq). (4)

The relation P (ρ) assumes the equation of state P = c2
s ρ, with

c2
s ∈]0,1] a free parameter, further restricted by velocity-set de-

pendent stability conditions [75,76]. We adopt for tq isotropic
weights [71], e.g., {t (I )

q ,t (II )
q } = { 1

3 , 1
12 } in d2Q9. The source

term is implemented according to previous works [77–79], and
projected onto the TRT basis [64]. In this respect, we note the
existence of other equivalent source term formulations [64]. In
this study, we consider no mass source (nor symmetric force
corrections [79]), and the momentum source prescribes the
force density �F :

S+
q = 0, S−

q = s−�−Fq, Fq = tq( �F · �cq). (5)

The macroscopic fluid quantities are computed through zeroth-
and first-order moments of f +

q and f −
q , respectively:

ρ = f0 + 2
Qm/2∑
q=1

f +
q , �j = �J + 1

2
�F, �J = 2

Qm/2∑
q=1

f −
q �cq,

�F = 2
Qm/2∑
q=1

Fq �cq. (6)

To conclude, we note that although the TRT framework
will be primarily utilized in this work, our results apply
to other collision models. Such a generality is relevant
since a multitude of LBM collision operators have been
adopted to simulate gaseous flows in the slip-flow regime.
A far from exhaustive list of references includes for the
multiple relaxation time (MRT) [50,51,55,56,62,80], for the
regularized (REG) [80–87], and for the single relaxation time
[Bhatnagar-Gross-Krook (BGK)] [47–49,52,60,61,88–91]. In
Appendix A we briefly revise the working principle of these
three collision operators, together with their relation to TRT.
Also in Appendix A we introduce a new version of the
REG operator, labeled “symmetrized” REG (S-REG), which
corresponds to a subclass of the TRT scheme where the
antisymmetric modes (controlled by �−) are filtered out during
collision. This is in the spirit of the filtering out of higher-order
modes by original REG [81,82,92]. The REG and S-REG

TABLE II. Relation between the relaxation parameters supported
by the collision schemes used in this study: the generic TRT and its
subclasses S-REG and BGK. The relation between TRT and MRT is
discussed in Appendix A.

TRT REG/S-REG BGK

�+ 3ν 3ν 3ν

�− ∀ R+ 1
2 3ν

� ∀ R+ 3
2 ν 9ν2

operators share numerous similarities, which are pointed out
in Appendix A. For the purpose of the ensuing analysis, we
summarize in Table II the relaxation parameters supported by
the three collision operators that will be considered herein,
namely, TRT, REG/S-REG, and BGK. The MRT and the extra
degrees of collision are not explored in this work. The reason is
that, in this class of problems and for the purpose of accuracy,
only two relaxation modes appear to be relevant and those are
the TRT modes; such a result has been extensively reported in
literature, e.g., [50,51,55,56,62,80], and also confirmed by our
numerical tests (more details in Appendix A).

B. Macroscopic limit

The macroscopic limit of the LBM equations can be
determined through the second-order Chapman-Enskog anal-
ysis [65,66]. By “second order” we mean the truncation of
the expansion at O(ε3), where ε is the smallness parameter
of perturbation, taken as the ratio of the lattice unit and the
characteristic length scale H (expressed in simulation units),
i.e., ε = 1/H . We note that ε and the Knudsen number Kn
have different meanings. While ε is a grid scale parameter, Kn
is a nondimensional group that controls the physical regime.
Hence, with Kn fixed, the terms of higher order in ε should
be interpreted as truncation errors and the limit ε → 0 as the
zero mesh spacing.

For the perturbation analysis we employ the steady-state
Chapman-Enskog ansatz of [93], which provides a systematic
procedure to derive the full (infinite) solution of the series. On
this basis, the second-order expansion unfolds the steady-state
structure of the nonequilibrium post-collision quantities g±

q as
follows:

g±
q = ∂q(e∓

q − �∓∂qe
±
q ) − S±

q + O(ε3), (7)

where, after introducing Eqs. (4) and (5) into Eq. (7), each
individual component reads as

g+
q = ∂qjq,

g−
q = ∂qPq − �+∂2

q jq − s−�−Fq, (8)

with ∂k
q = (�cq · �∇)k for k � 1. In deriving Eq. (8) we assumed

(i) ∂2
qPq = 0, due to the Stokes flow condition, and (ii)

�F = const. Next, we invoke the exact mass and momentum
conservation principles, respectively,

Q−1∑
q=0

g+
q = 0, 2

Qm/2∑
q=1

�cqg
−
q = s− �F

2
. (9)
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Finally, we introduce Eq. (8) into Eq. (9) and compute the
velocity moments based on Eq. (6), with the help of lattice
constraints 2

∑Qm/2
q=1 tqcqαcqβ = δαβ and 6

∑Qm/2
q=1 tqc

2
qαc2

qβ =
1 + 2δαβ , where δαβ is the Kronecker delta. The outcome
provides the steady incompressible Stokes equations (1),
with kinematic viscosity ν = �+

3 . We remark that, up to
this second order, the recovered LBM macroscopic equations
only depend on �+. Therefore, from Table II one infers
that the different LBM collision models coincide within
this level of approximation. However, at higher orders, the
structure of the relaxation parameters, which appear as
coefficients in the spatial (truncation) corrections, depend on
� (cf. [73,76,93,94]). Thus, looking again at Table II, it is
concluded that the discrete macroscopic equations satisfied
by those LBM collision models are fundamentally different.
While the spatial truncation errors in BGK scale with � = 9ν2,
in REG they scale with � = 3

2ν whereas in TRT (and also
MRT) they are ν independent. These results are qualitatively
discussed in Appendix A. For a more rigorous discussion on
the role of � and the potential ν dependence of numerical
errors we refer to [73,76,93,94].

III. LATTICE BOLTZMANN CLOSURE RELATION
OF SECOND-ORDER SLIP VELOCITY MODEL

This section focuses on the closure relation of generic
linkwise LBM boundary schemes viewing the consistent
modeling of the slip-flow regime. Derivations are performed
for the second-order slip velocity model, where the first-order
slip and the no-slip conditions appear as particular cases.

A. Generic formulation of second-order slip velocity

Since we are interested in formulating the slip velocity
condition at arbitrarily oriented wall-lattice positions, the
subsequent analysis is performed on the two-dimensional
(2D) rotated Cartesian coordinate system �x ′ = {x ′,y ′}. This
reference frame �x ′ may rotate an angle θ with respect to the 2D
lattice-aligned fixed reference frame, denoted as �x = {x,y}.
The two frames relate as x ′ = x cos θ + y sin θ and y ′ =
−x sin θ + y cos θ , whereby the axes x ′ and y ′ align with the
tangent and the normal wall vectors, respectively. Based on this
convention, the wall normal unit vector �n′ is defined to point
outward the fluid domain, i.e., �n′ = −�1y ′ on a bottom wall
and �n′ = �1y ′ on a top wall; the wall tangential unit vector �t ′ is
defined as �t ′ = �1x ′ . Figure 1 illustrates the wall-lattice system
in aligned and inclined configurations. The fluid velocity
vector is �u ′ = {ux ′ ,uy ′ }. Although the subsequent analysis is
illustrated for a 2D case, the derivations presented below apply
similarly to three-dimensional (3D) domains.

Consider a plane wall and let �xw
′ be a boundary point

with local gradient �∇′ = {∂x ′ ,∂y ′ }. Let the wall be rigid (i.e.,
undeformable) and impermeable: �u ′(�xw

′) · �n′ = uy ′ (�xw
′) = 0,

and the tangential component of the fluid velocity at the
wall �u ′(�xw

′) · �t ′ = ux ′ (�xw
′) differ from the wall tangential

velocity �Uw
′ · �t ′ = Uw

′ (where Uw
′ = 0 for a resting wall)

by an amount proportional to (the normal component of) the
first- and second-order velocity gradients at the wall. This
jump condition corresponds to the second-order slip velocity

boundary model [13,14,35,95,96]:

[�u ′(�xw
′) − �Uw

′] · �t ′ = − C1λ �n′ · �∇′ �u ′|�xw
′ · �t ′

− C2λ
2 �n′ �n′ : �∇′ �∇′ �u ′|�xw

′ · �t ′. (10)

We note that Eq. (10) is the dimensional form of Eq. (2),
previously given in Sec. I. The two formulations are related
by Kn = λ/H , where λ and H refer to microscopic and
macroscopic reference length scales, respectively.

B. Linkwise formulation of second-order slip velocity

According to Eq. (10) the structure of the slip velocity
condition is described by the Taylor series of the fluid velocity
at the wall. Interestingly, a similar Taylor-type structure is
found in the closure relation of the reflection-type boundary
schemes used by LBM [63,64,67,94,97]. The difference
lies in the meaning of these expansions. While the slip
velocity condition (10) applies at the wall position �xw

′ with
the coefficients quantifying the degree of wall slippage, the
linkwise LBM boundary schemes [e.g., Eq. (20) for the bounce
back or Eq. (14) for the multireflection schemes] obey a closure
relation which applies at the boundary node position �xb

′ with
the coefficients quantifying its distance to the wall site �xw

′.
Therefore, the formulation of the slip velocity condition in the
LBM framework requires (i) to reexpress Eq. (10) at boundary
node �xb

′ and (ii) to modify the coefficients accordingly.
In order to transform Eq. (10) from �xw

′ to �xb
′, let us

introduce the wall cut-link distance δq defined by �xw
′ = �xb

′ +
δq �cq

′ (see Fig. 1), where �cq
′ = {cqx ′ ,cqy ′ } denotes the particle

velocity also expressed in the rotated frame. According to
the Chapman-Enskog analysis, the spatial derivative operator
scales as O(ε), and since our analysis excludes terms of O(ε3),
we expand each term in Eq. (10) up to the second differential
order:

�u ′(�xw
′) = �u (�xb

′ + δq �cq
′) � �u ′(�xb

′) + δq �cq
′ · �∇′ �u ′|�xb

′

+ δ2
q

2
�cq

′ �cq
′ : �∇′ �∇′ �u ′|�xb

′ + O(ε3),

�∇′ �u ′(�xw
′) = �∇′ �u ′(�xb

′ + δq �cq
′) � �∇′ �u ′|�xb

′

+ δq �cq
′ · �∇′ �∇′ �u ′|�xb

′ + O(ε3),

�∇′ �∇′ �u ′(�xw
′) = �∇′ �∇′ �u ′(�xb

′ + δq �cq
′) � �∇′ �∇′ �u ′|�xb

′ + O(ε3).
(11)

The expansions in Eq. (11) are introduced into Eq. (10), and
the terms of identical differential order are grouped as follows:

�u ′(�xb
′) + (δq �cq

′ + C1λ �n′) · �∇′ �u ′|�xb
′

+
(
δ2
q

2
�cq

′ �cq
′ + C1λ δq �cq

′ �n′ + C2λ
2 �n′ �n′

)
: �∇′ �∇′ �u ′|�xb

′ = �Uw
′.

(12)

Above, the dependence on �t ′ has been dropped taking
into account that �u ′(�xw

′) and �t ′ are parallel vectors since
�u ′(�xw

′) · �n′ = 0 due to the wall impermeability condition.
As a last step, we project Eq. (12) onto �cq

′. To denote the
lattice space projection, the following notation is introduced:
∂k
q = (�cq

′ · �∇ ′)k for k � 1, and 
q = (�cq
′ · �n′). The parameter
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FIG. 1. Discretization of wall on LBM uniform mesh: (a) lattice-aligned wall and (b) lattice-inclined wall.


q represents the projection of the outgoing particle velocity
�cq

′ on the outward unit normal vector to the wall �n′ (note,

q > 0 because both vectors point outward). Then, the result
is remapped onto the Cartesian fixed frame �x by the coordinate
transformation, e.g., jq = tqρ0(�u ′ · �cq

′) = tqρ0(�u · �cq). In the
end, we obtain the LBM closure relation for the second-order
slip velocity model, expressed by Eq. (13), and valid at an
arbitrary wall cut-link distance δq = (�xw − �xb)/�cq :

jq(�xb) + α+
q ∂qjq(�xb) + α−

q ∂2
q jq(�xb) = jq w(�xw),

α+
q = (δq + C1λq), α−

q =
(

δ2
q

2
+ C1λqδq + C2λ

2
q

)
, (13)

λq = λ


q

.

We note that in deriving Eq. (13) the following identities
have been used: �n′ · �∇ ′ψ = ( �n′ ·�n′

�cq
′·�n′ )∂qψ = 1


q
∂qψ and ∇′2ψ =

( �n′ ·�n′
(�cq

′ ·�n′)2 )∂2
qψ = 1


2
q
∂2
qψ , where ψ denotes an arbitrary quantity.

C. Self-consistency of Eq. (13) with respect to other
(lower-order) velocity boundary conditions

The self-consistent structure of the linkwise slip velocity
closure relation, given by Eq. (13), can be recognized with
respect to the following two limits. The first limit occurs when
the wall coincides with the boundary node location �xb = �xw,
i.e., δq = 0 in Eq. (13). This case recovers the original slip
velocity condition (10) projected onto particle velocity space
�cq . The second limit is identified when the continuum-flow
regime is met, i.e., setting λ = 0 (with H finite, so that Kn =
0). This corresponds to the zeroth-order (no-slip) limit. When
applied to Eq. (13), it leads to the familiar linkwise closure
relation for the no-slip condition employed in numerous past
studies, e.g., [63,64,67,94,97]:

jq(�xb) + α+
q ∂qjq(�xb) + α−

q ∂2
q jq(�xb) = jq w(�xw),

α+
q = δq, α−

q = δ2
q

2
. (14)

The first-order limit recovered from Eq. (13) reveals that, while
the “physical” first-order slip velocity condition only involves
first-order derivatives of the velocity solution [e.g., see Eq. (10)
with C1 �= 0 and C2 = 0], its transcription into the LBM frame
requires accounting for the coefficient of the Laplacian term
as well. This result comes clear by setting C2 = 0 in Eq. (13),

which leads to

jq(�xb) + α+
q ∂qjq(�xb) + α−

q ∂2
q jq(�xb) = jq w(�xw),

α+
q = (δq + C1λq), α−

q =
(

δ2
q

2
+ C1λqδq

)
, (15)

λq = λ


q

.

Looking at the zeroth-, first-, and second-order slip closure
relations, respectively given by Eqs. (14), (15), and (13), it is
worthwhile to discuss the role of the second-order term, related
to the velocity Laplacian, as this term is often overlooked
in traditional LBM boundary schemes, e.g., [98–100]. For
the zeroth-order (no-slip) condition (14), the nonconsider-
ation of the Laplacian term, i.e., the sole prescription of
jq + δq∂qjq |�xb

= jq w(�xw), renders the scheme second-order

accurate since
δ2
q

2 ∂2
q jq ∼ O(ε2). This is the accuracy of most

no-slip schemes in LBM, e.g., [98–100]. However, this
accuracy degrades when the “slip order” increases. Already for
the first-order slip condition the importance of the Laplacian
term comes clear. Given that λ scales with H (with Kn fixed),
i.e., λ = Kn/ε ∼ O(ε−1), the neglect of the C1 dependence
at α−

q will render the accuracy of the slip boundary scheme
formally first order due to the order of magnitude of the
term C1λqδq∂

2
q jq ∼ O(ε). Evidently, in the modeling of the

C2 coefficient the importance of the velocity Laplacian term
becomes even more critical. Since λ2 = Kn2/ε2 ∼ O(ε−2), it
follows that C2λ

2
q∂

2
q jq ∼ O(1). This implies that any LBM slip

boundary scheme which is not designed to be parabolic exact,
as the multireflection schemes [63,64,94], becomes formally
zeroth-order accurate with respect to the second-order slip
condition. These conclusions will be confirmed by numerical
tests in Sec. VII.

IV. ANALYSIS OF EXISTING “KINETIC” SLIP
VELOCITY BOUNDARY SCHEMES

Based on the LBM closure relation given by Eq. (13), this
section analyzes some of most commonly used fluid-wall
interaction schemes to model the slip velocity boundary
condition in LBM. For the analysis purpose, we focus on the
lattice-aligned channel configuration, with walls parallel to
either horizontal or diagonal links. These geometries are de-
picted in Figs. 2(a) and 2(b), respectively. Our derivations are
performed on the rotated coordinate frame �x ′ = {x ′,y ′}. In this
frame, the flow is unidirectional �u = {ux ′ ,0} and respects the
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FIG. 2. Different flow-lattice configurations. (a) Discretization of horizontal channel (θ = 0) with effective channel width given by
H = Ny − 1 + 2δy , where Ny is number of computational cells and δy is wall to grid node vertical distance. (b) Discretization of diagonal
channel (θ = π/4). (c) Discretization of arbitrarily inclined channel [θ = tan−1( 1

2 )]. The effective channel width is determined as H ′ = H cos θ ,
where H stands for the lattice-aligned case.

following conditions: (i) time independency ∂tux ′ = 0, and (ii)
streamwise invariance ∂x ′ux ′ = 0. The flow is driven by either
a constant body force Fx ′ , a constant pressure gradient −∂x ′P ,
or by both. The channel walls are located at �xw

′ and move
with velocity �Uw

′ ( �Uw
′ = �0 for a resting wall). Note that the

rotating frame choice aims at identifying possible anisotropy
effects, for which we consider the two cases (i) θ = 0, where
the channel aligns with the lattice horizontal links [Fig. 2(a)]
and (ii) θ = π/4, where the channel aligns with the lattice
diagonal links [Fig. 2(b)]. The first case implies 
2

q = 
2 = 1,
whereas the second one yields 
2

q = 
2 = 1
2 . In the same way,

λq is represented as λ
 = λ/
, which implies that λ
 = λ

in horizontal or λ
 = √
2λ in diagonal channel. Likewise,

for lattice-aligned channels, the distance from the wall to the
boundary node is constant, which means δq reduces to δy ′ . The
derivations presented below apply over the nontrivial wall cut
links cqx ′cqy ′ �= 0 (since the other wall cut link c2

qy ′ satisfies
the trivial hydrostatic balance condition, e.g., [37]).

The analysis developed in this section focuses on
the LBM slip schemes formulated as a combination
of previously existing elementary reflection rules, such
as bounce back [80,82,87–91,101,102], specular reflec-
tion [45,47,103–105], and diffusive Maxwell’s reflection
kinetic model [51,60,61,106]. To this group of schemes
we call combination “kinetic” (CK) schemes. Here, the
following CK schemes are analyzed: the combined bounce-
back–specular-reflection (CBBSR) [45,47–51], the discrete
Maxwell’s diffuse-reflection (DMDR) [46,49,50,52,53], and
the diffuse bounce-back (DBB) [51,54,55].

While the CK schemes were originally designed to operate
at halfway walls, i.e., δy ′ = 1

2 , in this section we generalize
them to support arbitrary wall locations, i.e., δy ′ ∈ [0,1]
(though limited to lattice-aligned configurations as discussed
at the end of the section). This task has only been attempted
in [56] for the DBB rule, and this scheme is shown to be
equivalent to our general framework in Appendix B. With that
in mind, this section has the following threefold objective: (i) to

show how the theoretical framework developed here, to satisfy
Eq. (13), easily allows to determine the calibration parameters
of each CK scheme; (ii) to extend the general family of CK
schemes from δy ′ = 1

2 to δy ′ ∈ [0,1]; and (iii) to provide a
critical analysis on the operation and limitation of the CK
schemes.

Given that CBBSR, DMDR, and DBB schemes share an
equivalent structure [49–51], they will be analyzed within a
unified framework. This is represented through the common
update rule given by Eq. (16), with coefficients {A,B, C,D}
summarized in Table III, which differentiate each case:

fq̄(�xb,t + 1) =Af̃q(�xb,t) + Bf̃j (�xb,t)

+ Cf D
q̄ (�xb,t) + Djq̄ w(�xw,t). (16)

The first three terms on the right-hand side of Eq. (16)
refer to the following elementary rules. First, f̃q comes
from bounce back, where �cq̄ = −�cq . Second, f̃j comes from
local specular reflection, where cq̄n = −cjn and cq̄t = cjt

with the indices n and t denoting the normal and tangential
components of the vector. Third, f D

q̄ = K eq̄(�xw) comes from
diffusive Maxwell’s reflection kinetic model, where K =∑

(�ck ′− �Uw ′)·�n′>0 |(�ck
′− �Uw

′)·�n′|fk∑
(�ck ′− �Uw ′ )·�n′<0 |(�ck

′− �Uw
′)·�n′|ek

= 1 for a lattice-aligned plane wall;

the proof of this result can be found in the Appendix of [107]
or in Sec. IV D of [61].

The derivation of the steady-state closure relation satisfied
by Eq. (16) takes the following steps. First, we employ

the decompositions fq̄ = e+
q − e−

q − g+
q

s+ + g−
q

s− and f̃q =
e+
q + e−

q + (1 − 1
s+ )g+

q + (1 − 1
s− )g−

q + S−
q (and an equivalent

expansion procedure to f̃j ). Second, we substitute them into
Eq. (16), which leads to (1 − A − CK)e+

q − (1 + A −
CK)e−

q − ( 1
s+ + A(1 − 1

s+ ))g+
q + ( 1

s− + A(1 − 1
s− ))g−

q −
AS−

q − B(e+
j + e−

j + (1 − 1
s+ )g+

j + (1 − 1
s− )g−

j + S−
j ) −

Djq w = 0. Third, we turn explicit the content of e±
q , S−

q , and
g±

q , by invoking the second-order Chapman-Enskog results
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TABLE III. Coefficients of the boundary schemes for the generic update rule, given by Eq. (16),
considering CBBSR [45–51], DMRD [49,50,52,53], DBB [51,54–56]. The r calibration is a function of C1,
ν, λ
 = λ/
, and possibly δy′ .

CBBSR DMDR DBB

A r 0 r

B (1 − r) (1 − r) 0
C 0 r (1 − r)
D 2r 0 2r

r|δy′ = 1
2

[Eq. (18)] 3ν

3ν+C1λ


6ν

3ν+C1λ


3ν−C1λ


3ν+C1λ


r|∀ δy′ ∈[0,1] [Eq. (19)] 3ν

(3ν+C1λ
)+(δy′ −1/2)
6ν

(3ν+C1λ
)+(δy′ −1/2)

(3ν−C1λ
)−(δy′ −1/2)

(3ν+C1λ
)+(δy′ −1/2)

presented in Sec. II B. As the fourth and final step, we make
use of the fact that these boundary schemes accommodate
the bulk equation ∂x ′P − Fx ′ = �+

3
2 ρ0∂
2
y ′ux ′ . In the end, after

some algebra, it can be shown that the general update rule
of the CK schemes, given by Eq. (16), establishes at �xb for
the wall cut links cqx ′cqy ′ �= 0, the slip velocity condition
satisfying the steady-state closure relation

ux ′ ∓ α+∂y ′ux ′ + α−∂2
y ′ux ′ − σρ−1

0 ∂x ′P = �U ′
w,

α+ =
(

1

2
+ 6νσ

)
, α− =

(
3
2 − 1

3
2
� + 3νσ

)
, (17)

where the sign ± in α+ depends on whether a bottom
or top wall is considered. For each specific CK scheme
we have σ = 1−r

2r
in CBBSR [45–51], σ = 2−r

2r
in

DMDR [49,50,52,53], σ = 1−r
2(1+r) in DBB [51,54–56].

Now, we take a closer examination on the parameters
featuring in Eq. (17). For now, let us assume that ∂x ′P = 0.
In order to obtain the correct slip velocity condition, the
coefficients α± in Eq. (17) have to match those in Eq. (13).
That is possible by finding proper values for the two calibration
parameters: σ and � (or ν depending on the collision model
adopted, see Table II). First, let us address the σ calibration,
which will impact on the C1 prescription. The σ parameter
is determined by demanding a correct first-order coefficient,
which is found by equating α+ = ( 1

2 + 6νσ ) [Eq. (17)]
to α+ = (δy ′ + C1λ
) [Eq. (13)]. The simplest solution is
recovered for a halfway wall, e.g. [49–53],

σ = C1λ


6ν
for δy ′ = 1

2
, (18)

which otherwise generalizes to [56]

σ = (δy ′ − 1/2) + C1λ


6ν
for δy ′ ∈ [0,1]. (19)

With σ determined, the form of r follows immediately. The
relations between σ and r are given in the paragraph below
Eq. (17), whereby r parametrizes the coefficients appearing in
Eq. (16). Table III summarizes the r calibrations for the three
CK schemes. We highlight that the calibration of σ (or r) is
collision model independent.

Second, let us address the � calibration, which further
controls C2. Upon establishing σ (to determine C1), the
� parameter is derived by demanding a correct second-
order coefficient, found by equating α− = ( 3
2−1

3
2 � + 3νσ )

[Eq. (17)] to α− = (
δ2
y′
2 + C1λ
δy ′ + C2λ

2

) [Eq. (13)]. Given

that � is a collision-dependent parameter, its calibration will
vary accordingly. Table IV summarizes the � solutions, for
both halfway δy ′ = 1

2 and generic δy ′ ∈ [0,1] wall locations.
To conclude this section, we elaborate on specific defects

inherent to CK schemes. The list of remarks enumerated
below set the motivation to construct the improved LBM slip
boundary schemes, presented in Secs. V and VI.

Remark 1. The usage of a viscosity and mean-
free-path relationship, given by ν = ξλ where ξ ∈ R+,
is a very popular approach within this problem class,
e.g., [41,49,50,54,88,105,108–111]. While the proportionality

factor ξ = 1
3

√
6
π

was advocated as the “consistent choice”
in [49,54,111], other values have been reported, e.g.,
[88,108,109]. In this regard, two notes are in order. First, in the
slip-flow regime where ν is determined by hydrodynamics in
bulk, any positive value of ξ is valid, providing its structure is
consistently included in the boundary scheme calibration (this
is not hard to infer from the direct substitution in Tables III
and IV). Second, the advantage of adopting a relationship of
the kind ν = ξλ is limited to δy ′ = 1

2 . In this case, it permits
removing the ν dependence from the calibration of σ . This is
confirmed by inserting ν = ξλ into Eq. (18), which simplifies
to σ = C1

6
ξ
. However, with viscosity-dependent collision

operators, such as REG or BGK, a viscosity relationship of
the kind ν(λ) is inconsistent since it will conflict with the
viscosity �(ν) calibration on the α− coefficient.

Remark 2. Although the presence of ∂x ′P in Eq. (17)
has been ignored in the above analysis, we note that these
schemes are inconsistent for pressure-driven flows. One can
confirm this defect in a simple Poiseuille flow developing
in the slip-flow regime, and simultaneously driven by a
body force and a pressure gradient. Consider a channel

TABLE IV. The � calibration for the generic update rule,
given by Eq. (16), determined for different collision opera-
tors.We note that α̃− = ( 3
2

3
2−1
)( 1

8 + C2λ
2

) for δy′ = 1

2 and α̃− =
( 3
2

3
2−1
)( 1

2 (δ2
y′ − δy′ + 1

2 ) + C1λ
(δy′ − 1
2 ) + C2λ

2

) for δy′ ∈ [0,1].

TRT REG/S-REG BGK

ν ∀ R+ 2
3 α̃− 1

9

√
α̃−

� α̃− 3
2 ν 9ν2
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with the following properties: width H , walls parallel to the
horizontal lattice links 
2 = 1, and cutting links halfway
δy = 1

2 . Further, assume the calibration of r and � to
satisfy Tables III and IV, respectively. Even respecting these
“ideal” conditions, the LBM solution rather than predicting
u(exact)

x (y) = (Fx−∂xP )
8ρ0ν

(H 2 − 4y2 + 4C1λH + 8C2λ
2) (details

of this solution are given in Sec. VII A), it erroneously predicts
ux(y) = u(exact)

x (y) + ∂xP

6ρ0ν
C1λ, where this last term is the direct

consequence of ∂x ′P in Eq. (17) (details of this solution are
given in Sec. VII B). As explained in Sec. VII, the removal of
this pressure spurious term is possible in channel flows through
a specific � calibration. However, its form differs depending
on whether a force- or pressure-driven flow is simulated. Such
a duality is clearly a drawback of CK schemes.

Remark 3. While we have extended the working principle of
these CK schemes to support generic wall locations δy ′ ∈ [0,1],
their applicability remains limited to lattice-aligned walls,
contrary to what is implied in [56]. The cause for this limitation
is the calibration of r and �, and that can be understood as
follows. In order to handle arbitrary wall-lattice orientations,
one has to consider the wall cut-link distance δq , a parameter
that varies from link to link [cf. Fig. 1(b)]. However, the
consideration of such a linkwise varying parameter δq (instead
of the linkwise constant one δy ′ ) implies that, in the calibration
of r and �, the tuning of the relaxation parameters needs
to proceed in the same linkwise manner, i.e., in the spirit of
the MRT-L model [73]. It follows that anisotropic collision
operators, although preserving the mass balance, do not
support the necessary symmetry constraints of the momentum
equation in the standard lattices of LBM [73,93].

Remark 4. In any case, if we take δy ′ to handle arbitrary
wall-lattice orientations, a way to determine this parameter is
to measure the distance from the boundary node to the wall
along its normal direction, and then to set this value for all wall
cut links q. This was probably the strategy followed in [56]
(which we will adopt throughout the rest of this work when
referring to [56]). Yet, even using this approximation, these
CK schemes hold critical limitations at arbitrary δy ′ ∈ [0,1].
According to Table III, we see that the calibration parameter
r , which parametrizes the coefficients in Eq. (16), turns out to
be singular if (3ν − C1λ
) + (δy ′ − 1/2) = 0. For example,
close to the no-slip limit (where C1λ
 � 1), this singularity
is found at δy ′ = 1 − τ , a result conceivable to happen in a
typical parameter range. Although no reference was given to
this defect in the original contribution [56], it is possible to
identify it in Eq. (29) of [56]. In fact, Appendix B proves
that our DBB solutions for r and �, respectively, given in
Tables III and IV, recover the solutions given in Eq. (29)
of [56].

Remark 5. On top of the above limitations, the prescription
of the slip velocity condition established by any of the
aforementioned “kinetic” schemes is impacted by angular-
dependent errors. The anisotropy effect plaguing Eq. (17) is
identified in the α− coefficient and is given by (3
2 − 1)/3
2.
Its functional form is identical to the no-slip BB rule [Eq. (20)]
since this kind of artifact is intrinsic to low-order boundary
schemes [63,94,97,103,112]. Even in the simplest lattice-
aligned case, it renders the � calibration dependent on the
wall orientation (a result not considered in [56]). For example,
with the TRT collision and δy ′ = 1

2 , as given in Table IV, we

have � = 3
2 ( 1

8 + C2λ
2) in a horizontal channel (
2 = 1) and

� = 3( 1
8 + 2C2λ

2) in a diagonal channel (
2 = 1
2 ).

Remark 6. Despite all defects, we note the existence of
attempts [48,56,80] to extend these “kinetic” schemes to
support generic lattice-wall discretizations, e.g., as sketched
in Fig. 1(b), based on the interpolation of the CK schemes
discussed above, such as CBBSR [48,80] or DBB [56]. It turns
out that the construction of such interpolation-based strategies
in the modeling of the slip velocity condition requires partic-
ular attention, specifically in the consideration of the discrete
effects in r and � within the interpolation coefficients [56].
This is a nontrivial task and, as previously explained, may
not even be possible to be satisfied in general wall-lattice
configurations. The recognition of these limitations motivated
us to follow an alternative “nonkinetic” route, based on the
multireflection framework, in order to construct consistent
LBM slip schemes, which will be addressed in Secs. V and VI.

Comment on bounce back (BB) as slip velocity
boundary scheme

As previously mentioned, the general update rule of CK
scheme (16) reduces to the bounce-back (BB) rule when setting
A = 1, D = 2, and B = C = 0, which gives fq̄(�xb,t + 1) =
f̃q(�xb,t) + 2jq̄ w(�xw,t). In the same fashion, the BB closure
relation follows as a particular case of the closure relation of
the general CK schemes by setting σ = 0 in α± coefficients
of Eq. (17). Its form is given by Eq. (20), where we refer
to [63,64,67,94,112,113] or the textbook [37] for a step by
step derivation of the BB closure relation. Below, the sign ∓
in α+ depends on whether a bottom or top wall is considered:

ux ′ ∓ α+∂y ′ux ′ + α−∂2
y ′ux ′ = Uw

′,

α+ = 1

2
, α− = 3
2 − 1

3
2
�. (20)

Although the BB rule was originally developed to model
no-slip walls, its utilization as slip model can be found in
numerous works: from early contributions [82,88–91] to more
recent efforts [80,87,101,102]. As of today, the slip velocity
condition satisfied by BB remains the subject of continuous de-
bate, where its validity has been either advocated [80,102,114]
or refuted [51,115–117]. The reason is that, even though the
BB closure relation may recover the correct slip coefficients
[Eq. (13)] via the single tuning parameter � [which controls α−
as shown in Eq. (20)], the underlying calibration procedure is
artificial (because it will depend on grid resolution to indirectly
alter α+, an issue with no parallel for no-slip walls at δy ′ = 1

2 )
and it lacks generality (because this kind of � calibration
is only successful for lattice-aligned channels, although this
limitation is also present in the no-slip case). An additional
aspect is that the � calibration is collision model dependent,
as summarized in Table V. In this context, we note that
the BB calibrations presented in Table V assume a halfway
wall location, i.e., δy ′ = 1

2 . While it is possible to extend
these calibrations to arbitrary δy ′ ∈ [0,1], this practice is not
explored here. At last, we note that, similarly to the no-slip
case [112], the utilization of the BB rule as slip model holds
the (second-order) anisotropy defects, which are identified
through the 
2 terms in α− of Eq. (20).
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TABLE V. Calibration of the BB rule [Eq. (20)] to match
Eq. (13) for a lattice-aligned (horizontal or diagonal) channel flow
with δy′ = 1

2 . The calibration differs along the three families of
collision operators: TRT, REG/S-REG, and BGK schemes. Note that
α̃− = (

3
2

3
2−1

)(
1
8 + 1

2 C1λ
H + C2λ
2



)
, with λ
 = λ/
.

TRT REG/S-REG BGK

ν ∀R+ 2
3 α̃− 1

3

√
α̃−

� α̃− 3
2 ν 9ν2

V. LINEAR SLIP VELOCITY BOUNDARY
SCHEMES AND THEIR CALIBRATION

This section introduces a class of linear linkwise slip
velocity boundary schemes. They are designed to follow a
closure relation in accordance to Eq. (13). These linear slip
schemes have the advantage of operating locally, i.e., on a
single node, but the disadvantage of retaining some calibration
requirements and/or operation limitations. While both these
negative aspects are shared with the “kinetic” schemes dis-
cussed in Sec. IV, the interest behind our proposed “one-point”
slip schemes is that they provide a simpler framework to search
for possible improvements, which will be explored at the end
of the section via specific calibration strategies.

The linear (LI) scheme considered herein follows the
works [64,67], originally formulated for no-slip wall condi-
tions. Here, we extend them to the slip-flow regime. The LI
scheme operates on the boundary node �xb, where �xb + �cq is a
solid node, according to the update rule

fq̄(�xb,t + 1) = κ1f̃q(�xb,t) + κ̄−1f̃q̄(�xb,t) + κ0fq(�xb,t + 1)

+ Fp.c.
q (�xb,t) − α(u)jq w(�xw,t), (21)

where {κ1,κ̄−1,κ0} denote interpolation coefficients given in
Table VI. In order to keep the implementation local, the
κ0 population is evaluated after the propagation step. The
other terms in Eq. (21) have the following meaning: F

p.c.
q =

(1 − κ1)g−
q is a local post-collision correction and jq w =

tqρ0( �Uw · �cq) prescribes the wall momentum (vanishing for
a resting wall). The prefactor α(u) plays a parametrization role
in the scheme structure [64].

Table VI summarizes the parameters featuring in the
three LI interpolation strategies considered herein, namely,
central linear interpolation (CLI), upwind and downwind

TABLE VI. Coefficients of linear link-wise slip velocity bound-
ary schemes (LI-slip) for Eq. (21) with α+

q = (δq + C1λq ). The
operation limits in each scheme are: α+

q � 0 in CLI slip, 0 � α+
q � 1

2

in MGULI slip, and α+
q � 1

2 in MGDLI slip. The post-collision
correction is F p.c.

q = (1 − κ1)g−
q (thereby, in CLI slip F p.c.

q = 0).

CLI slip MGULI slip MGDLI slip

κ1 1 2α+
q

1
2α+

q

κ0
1−2α+

q

1+2α+
q

1 − κ1 0

κ̄−1 −κ0 0 1 − κ1

α(u) 4
1+2α+

q
2 1

α+
q

linear interpolation (MGULI and MGDLI); they are denoted
with the suffix “slip” to differentiate them from the standard
no-slip schemes [64]. The two are matched at the no-slip
velocity limit. In fact, the new LI slip schemes can be derived
from the original LI no slip by substituting the parameter δq in
the no-slip case by α+

q to reproduce the slip case, e.g., compare
Table VI in this work against Table 3 in [64] or Table 4 in [94].
In terms of characteristics we note that, while CLI slip, MGULI
slip and MGDLI slip are expected to differ in a number of
properties (e.g., in transient solutions, staggered invariants,
convergence and stability characteristics), they share identical
steady-state solutions. Overall, the class of linear slip schemes
satisfy the following steady-state closure relation:

jq(�xb) + α+
q ∂qjq(�xb) + α−

q ∂2
q jq(�xb) = jq w(�xw),

α+
q = (δq + C1λq), α−

q = 3
2
q − 1

3
2
q

�, λq = λ


q

. (22)

Compared to the target closure relation [Eq. (13)] we notice
that the α+

q coefficient in Eq. (22) is correctly imposed.
However, the α−

q coefficient displays the same deficient
structure identified in BB [Eq. (20)]. The calibration of the
α−

q coefficient is therefore mandatory. Below, we suggest two
calibration strategies to fix this limitation and set the linear-slip
schemes consistent with Eq. (13). It is important to note that
these strategies are only applicable to the particular case of
streamwise invariant channel flows. For more general flows,
a linkwise boundary scheme supporting a structural parabolic
accuracy must be used, which will be the subject of Sec. VI.

A. Calibrating the TRT free collision parameter �

The first strategy consists of setting � = (
3
2

q

3
2
q−1 )α̃−

q , where

α̃−
q = (

δ2
q

2 + C1λqδq + C2λ
2
q), so that α̃−

q has the same form
of α−

q in Eq. (13). This effectively makes Eq. (22) to match
Eq. (13). Yet, for the reasons explained in Remark 3 of
Sec. IV, we recall that � must be held linkwise constant, which
implies the linkwise varying parameters featuring in � must
be constant as well, i.e., δq = δy and 
q = 
. This explains
why the effective use of any �-based strategy is limited to
lattice-aligned plane boundaries (differently from what seems
to be suggested in [56]).

B. Calibrating the effective wall to boundary-node
linkwise distance

The second strategy maintains � as a free parameter and
adopts the redefinition δq → δ̃q . The idea is the following:
rather than considering δq in the original formulas as the
parameter that measures the linkwise distance from �xb to
the wall location �xw (see Fig. 2), we replace it by δ̃q = rq −

1
(rq−Hq/2) (α̃

−
q − 3
2

q−1
3
2

q
�), where α̃−

q = (
r2
q

2 + C1λqrq + C2λ
2
q)

and rq measures the linkwise distance from the lattice-
projected boundary node xqb = �xb/
q to the lattice-projected
wall point Hq = H/
q , whereby rq = xqb + Hq/2. For more
details on the meaning of these parameters, we refer to [67]
(specifically, to see the comprehensive example given in
Sec. 2.4.1 of [67]). The advantage of this second strategy is that
it is not limited to lattice-aligned configurations. Interestingly,
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it enables the local LI scheme to support exact Poiseuille
flow solutions in the slip-flow regime for arbitrarily oriented
channels, ∀ �. This constitutes an affordable way to simulate
microchannel gaseous flows in the slip-flow regime (although
limited to channel-like geometries).

VI. PARABOLIC SLIP VELOCITY BOUNDARY SCHEMES

This section introduces a class of parabolic linkwise slip
velocity boundary schemes, whose closure relation exactly
reproduces Eq. (13). Furthermore, the schemes here proposed
support non-mesh-aligned walls for general planar configura-
tions, without any calibration requirement, i.e., only physical
parameters are used as input. To formulate these parabolic-slip
schemes we adopt the multireflection (MR) [63,64,94,113]
framework. The downside of this procedure is that it operates
nonlocally according to a two-node implementation. Nonethe-
less, we note that alternative routes exist to do the same task
locally, e.g., [97], although at the expense of an increased
complexity in formulation.

The methodology to construct MR schemes is explained
in a series of works, e.g., [63,64]. We refer to them for
details on the derivation of MR schemes. Succinctly, the
idea consists of determining a suitable linear combination of
post-collision quantities (whose structure is detailed below), so
that the microscopic closure relation reproduced by the LBM
boundary scheme (e.g., determined via Chapman-Enskog
analysis) approximates, in the Taylor-series sense, the intended
macroscopic boundary condition, up to some prescribed order,
here taken as O(ε3). In the present case, the closure relation
of the boundary condition to be sought is given by Eq. (13).

The general class of MR schemes here considered is based
on the works [64,67], originally formulated for no-slip wall
conditions, which we extend to the slip-flow regime. The MR
scheme operates in a linkwise fashion on the pair of grid
nodes {�xb,�xb − �cq}, where �xb + �cq is a solid node, based on
the update rule

fq̄(�xb,t + 1) = κ1f̃q(�xb,t) + κ̄−1f̃q̄(�xb,t) + κ0fq(�xb,t + 1)

+ κ−1fq(�xb − �cq,t + 1) + κ̄−2f̃q̄(�xb − �cq,t)

+ Fp.c.
q (�xb,t) − α(u)jq w(�xw,t), (23)

where {κ1,κ0,κ̄−1,κ−1,κ̄−2} denote interpolation coefficients
given in Table VII. Note that, in order to reduce the span
of grid nodes from three to two, the κ0 and κ−1 populations
are evaluated after the propagation step. The meaning of the
parameters F

p.c.
q , jq w, and α(u) in Eq. (23) was explained in

Sec. V; they have the same meaning here, although possessing
different content.

Table VII summarizes the solution for {κ1,κ0,κ̄−1,κ−1,κ̄−2},
α(u), and F

p.c.
q in the general MR(k) family and the two

particular cases MR1 and MGMR(C) subfamilies for the
slip regime. Note that k is a general parameter that can be
set to recover MR1 or MGMR(C) schemes as follows: k =
(− 1

2 + α+
q + α−

q ) in MR1 and k = (− 1
2 + α+

q + α−
q − C�−)

in MGMR(C), where C and �− are both free tunable. The role
of these free parameters views primarily stability purposes.
The similarities and differences among them are explained in
more details in [64,67]. As pointed out in Sec. V, even though
coefficients may differ, since they fulfill a similar steady

TABLE VII. Coefficients of parabolic multi-reflection link-
wise slip velocity boundary schemes (MR-slip) for Eq. (23) with

α+
q = (δq + C1λq ) and α−

q = (
δ2
q

2 + C1λqδq + C2λ
2
q ), where α+

q � 0
and α−

q � 0 as operation limits for all schemes. The post-collision
correction is F p.c.

q = α(u)�−(g−
q − Fq ).

MR(k) slip MR1 slip MGMR(C) slip

κ1
2α+

q +2α−
q −k

1+k
1

1+2α+
q +2α−

q +2C�−

1+2α+
q +2α−

q −2C�−

κ0

3
2 −3α+

q −4α−
q +2k

1+k

1−2α+
q −4α−

q

1+2α+
q +2α−

q

1−2α+
q −4α−

q −4C�−

1+2α+
q +2α−

q −2C�−

κ̄−1

1
2 −α+

q +2k

1+k
−κ0

−1+2α+
q +4α−

q −4C�−

1+2α+
q +2α−

q −2C�−

κ−1
− 1

2 +α+
q +2α−

q −k

1+k

2α−
q

1+2α+
q +2α−

q

2α−
q +2C�−

1+2α+
q +2α−

q −2C�−

κ̄−2
− 1

2 +α+
q −k

1+k
−κ−1

−2α−
q +2C�−

1+2α+
q +2α−

q −2C�−

α(u) 2
1+k

4
1+2α+

q +2α−
q

4
1+2α+

q +2α−
q −2C�−

closure relation (13), they yield identical steady solutions [up
to O(ε3) accuracy in the Chapman-Enskog expansion]. Once
again, we note that the parabolic-slip schemes derived herein
are self-consistent, meaning that they recover the original
parabolic no-slip schemes [63,64] at the no-slip velocity limit.
As a matter of fact, we point out that these MR slip schemes
are readily derived from the original MR no-slip ones [63,64]
by performing the following model transformations: δq → α+

q

and δ2
q → 2α−

q ; a confirmation of this equivalency follows by
comparing Table VII of this work against Table 3 of [64].

VII. BENCHMARK RESULTS: STEADY POISEUILLE
GAS FLOW IN SLIP-FLOW REGIME

The steady Poiseuille gas flow, developing in the slip-flow
regime, will be used as benchmark to numerically validate the
performance of the LBM slip boundary schemes introduced
in Secs. IV, V, and VI. Typically, the study of this problem is
focused on two features: (i) the wall slip on the velocity profile
and (ii) the minimum in the mass flow rate as function of Kn,
the so-called Knudsen’s paradox. This section focuses on the
quality and the accuracy of the numerical velocity profiles.

For simulations we adopt specific values for the pair
of slippage coefficients C1 and C2 (although we note that
other C1 and C2 values do not affect conclusions, as will
be illustrated at the end of Sec VIII). The zeroth-order
(no-slip) condition considers C1 = C2 = 0. The first-order slip
velocity model adopts Maxwell’s slip theory [15], which sets
C1 = 1.0 and C2 = 0. The second-order slip velocity model
uses the values due to Cercignani [21]: C1 = 1.1466 and C2 =
0.9576, derived through numerical solutions of the continuous
Boltzmann-BGK equation for an isothermal gas flow at low
Kn. The channel flow is driven by a body force mechanism
Fx = 0.01 (simulation units). A pressure gradient could be
applied instead, and would produce identical results, except for
the “kinetic” schemes discussed in Remark 2 of Sec. IV; further
comments on this issue are given at the end of this section. The
density ground state is always set to ρ0 = 1 (simulation units).
The convergence of numerical solutions is determined by the
steady-state criterion, measured by the relative change of the
mean velocity 〈ux〉 (numerically computed with the midpoint
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FIG. 3. Poiseuille flow velocity solutions at different Kn numbers within slip-flow theory [Eq. (24)]. (a) No-slip velocity boundary
condition (C1 = C2 = 0). (b) First-order slip velocity boundary condition (C1 = 1.0 and C2 = 0 by Maxwell [15]). (c) Second-order slip
velocity boundary condition (C1 = 1.1466 and C2 = 0.9576 by Cercignani [21]).

rule) not superior to 10−12, measured after 100 consecutive
time steps, i.e., | 〈ux 〉(t)

〈ux 〉(t−100) − 1| � 10−12.
The numerical tests cover all boundary schemes introduced

in Secs. IV, V and VI. For the LBM collision operator we
choose the TRT model, although results are readily applicable
to other collision models, such as REG/S-REG and BGK,
providing the different meaning of � is accounted for (see
Table II and discussion in Appendix A). We recall that
in MRT and TRT the � parameter is free tunable and ν

independent, while in collision models such as REG/S-REG
and BGK the �(ν) dependency is unavoidable, meaning
the fluid viscosity ν is the effective simulation calibration
parameter. Such a viscosity calibration is a common practice
in LBM, e.g., [100,102,118–121], although it suffers from
several pitfalls as debated in [63,64,93,94,115,117,120].

Concerning the physical parametrization of the problem, we
note that, in the slip-flow regime, the nondimensional group
Kn only applies at boundaries where its value determines
the amount of slip experienced by the fluid velocity with
respect to the wall velocity. The Knudsen number is defined as
Kn = λ/H , where H measures a characteristic length scale (in
simulation units) and the mean-free path λ is a free parameter
since the viscosity and mean-free-path relationship is not used
herein (such a relationship is a superfluous constraint in the
slip-flow regime as explained in Remark 1 of Sec. IV).

A. Analytical velocity profile

Consider the steady and unidirectional �u = {ux,0} (force-
driven) Poiseuille flow bounded by resting walls (Uw = 0).
The fluid-wall interaction is modeled with the second-order
slip velocity condition. With these conditions, the normalized
exact solution of the velocity profile ũ(exact)

x is given by

ũ(exact)
x =1− 4ỹ2 + 4C1Kn + 8C2Kn2, ỹ = y

H
∈

[
−1

2
,
1

2

]
,

ũ(exact)
x = u(exact)

x

u0
, u0 = FxH

2

8νρ0
, Kn = λ

H
, (24)

where H denotes the channel width and u0 corresponds to the
centerline velocity of the no-slip solution.

Figure 3 shows the velocity profiles given by Eq. (24), dis-
played in the following three regimes of wall slip conditions:

(a) no slip (C1 = C2 = 0), (b) first-order slip (C1 = 1.0 and
C2 = 0 by Maxwell [15]), and (c) second-order slip (C1 =
1.1466 and C2 = 0.9576 by Cercignani [21]). Irrespective of
the Kn number, we note that the ensemble of velocity solutions
corresponds to the linear superposition of a parabola and a
constant value of slip at boundaries [117]. Given that in bulk the
LBM equation exactly captures the parabolic profile (a result
pointed out in many past studies, e.g., [63,67,93,97,112,122]),
then any inaccuracy within this problem must be caused by the
boundary scheme. It turns out that the nature of boundary errors
differs depending on whether the channel walls are parallel or
oblique to the lattice links. Therefore, we will discuss these
two cases separately below.

B. LBM velocity profile in lattice-aligned horizontal channel

The exact solution of the LBM scheme in this problem,
considering a lattice-aligned horizontal channel (i.e., 
q =

 = 1), is given by Eq. (25a) in bulk and Eq. (25b) on
boundary nodes:

Fx + νρ0∂
2
yux = 0 for y ∈

]
−Ny

2
+ 1

2
,
Ny

2
− 1

2

[
, (25a)

ux ∓ α+∂yux + α−∂2
yux

∣∣
yb=∓ Ny

2 ± 1
2

= 0. (25b)

Note that the Taylor-type boundary condition (25b) is written
with generic coefficients α± that are summarized (in nondi-
mensional form) in Table VIII, where boundary nodes yb =
∓Ny

2 ± 1
2 lie adjacent to bottom and top walls, respectively,

and Ny denotes the number of grid nodes resolving the
channel width [Fig. 2(a)]. By introducing δy ∈ [0,1] as the
distance between the channel walls and the boundary nodes,
the effective channel width is defined as H = Ny + 2δy − 1
[Fig. 2(a)]. Then, the normalized LBM solution, obtained by
solving Eq. (25a) subject to Eq. (25b), is given by

ũx = 1 − 4ỹ2 + 4ε(α+ − δy) + 8ε2

(
1

2
δ2
y − δyα

+ + α−
)

,

ỹ = y

H
∈

[
−1

2
,
1

2

]
, (26)

ũx = ux

u0
, u0 = FxH

2

8νρ0
, ε = 1

H
.
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TABLE VIII. Coefficients in the closure relations of each LBM slip boundary scheme considered in the horizontal
channel case. TRT model is considered herein (the conversion to other collision models follows from Table II).

α+ α−

BB scheme [Eq. (20)] 1
2

2
3 �

CK scheme [Eq. (17) with Eq. (18)] 1
2 + C1(Kn/ε) 2

3 � + 1
2 C1(Kn/ε)

LI slip scheme [Eq. (22)] δy + C1(Kn/ε) 2
3 �

MR slip scheme [Eq. (13)] δy + C1(Kn/ε) 1
2 δ2

y + C1(Kn/ε)δy + C2(Kn/ε)2

Since the only error source comes from boundaries, the
difference between numerical [Eq. (26)] and exact [Eq. (24)]
solutions provides a measure for the artificial (numerical)
slip:

�ũx = ũx − ũ(exact)
x = 4ε[α+ − δy − C1(Kn/ε)]

+ 8ε2[ 1
2δ2

y − δyα
+ + α− − C2(Kn/ε)2]. (27)

Note, the terms embodying the “physical” slip shall not vanish
as ε → 0. Hence, they are absent from �ũx , which retains nu-
merical errors only. The overall velocity error, measured with
respect to the exact analytical solution [Eq. (24)], is computed
as the sum over all nodal points yi with i = 1, . . . ,Ny :

|E(ũx)| =
∣∣∣∣∣

∑
i �ũx(yi)∑

i ũ
(exact)
x (yi)

∣∣∣∣∣. (28)

Based on Eq. (27) and the α± coefficients summarized in
Table VIII, it is direct to determine the dependence of the
normalized numerical slip on the grid resolution ε = 1/H

and, accordingly, to compute the accuracy measure given by
|E(ũx)|. We note that in the horizontal channel case, the error
�ũx is constant along the nodal points yi . The only error
source is the numerical slip at the wall, which leads to a
uniform shift in the velocity profile from the correct values. A
different scenario occurs for non-mesh-aligned walls, where
the velocity profile gets distorted everywhere. This will be
illustrated in the inclined channel case (Sec. VII C). For
now, let us focus on the lattice-aligned case and discuss the
scaling of the numerical slip error with grid resolution: (i) by
theoretically analyzing the three different physical models of
wall slippage, and (ii) by verifying the theoretical conclusions
against numerical tests.

The no-slip flow condition is recovered in limits of (i) Kn =
0 ∀ {C1,C2} or (ii) C1 = C2 = 0 ∀ Kn. Here, CK reduces
to BB, with α+ = 1

2 in both cases. Hence, if δy �= 1
2 , then

a first-order slip artifact is introduced, given by �ũx = ε(2 −
4δy) + O(ε2). Otherwise, with δy = 1

2 only a second-order slip
artifact appears: �ũx = ε2 ( 16

3 � − 1), which vanishes for the
well-known relaxation choice � = 3

16 [63,67,93,112]. Most
generally, a calibration of the kind �(δy) with ∀ δy ∈ [0,1] can
also be constructed through an artificial resolution-dependent
tuning (refer to [63,67,93] for more details). The LI slip
schemes produce a similar second-order slip error: �ũx =
ε2 ( 16

3 � − 4δ2
y), which vanishes for the well-known relaxation

choice � = 3
4δ2

y , ∀ δy ∈ [0,1] [67,93]. Finally, the MR slip
(parabolic) schemes retrieve the exact solution with �ũx = 0,
∀ δy ∈ [0,1] and ∀ � ∈ R+.

The first-order slip-flow condition is recovered for Kn > 0
with C1 �= 0 and C2 = 0. In this case, differences between

CK and BB appear already at the first order. In order to
make the first-order error to vanish, i.e., �ũx = 4ε[α+ − δy −
C1(Kn/ε)] + O(ε2), the BB needs to consider a resolution-
dependent parameter H in the � calibration, while CK
schemes require the σ calibrations given by Eq. (18) for
δy = 1

2 or by Eq. (19) for δy ∈ [0,1]. The vanishing of the
second-order slip error in CK schemes at δy = 1

2 requires
setting � = 3

16 (while for δy ∈ [0,1] the � calibration is given
in Table IV). The LI slip schemes, if not properly calibrated,
retain the first-order slip error �ũx = −8εδyC1Kn + O(ε2).
According to the calibration strategies presented in Sec. V, the
relaxation choice � = 3

2C1δy(Kn/ε) places the LI slip scheme
second-order accurate. The vanishing of the second-order error

requires the full calibration � = 3
2 [

δ2
y

2 + C1δy(Kn/ε)], which
retrieves the exact solution [Eq. (24)] for δy ∈ [0,1]. Finally,
the MR slip schemes guarantee, once again, the exact solution
with �ũx = 0, ∀ δy ∈ [0,1] and ∀ � ∈ R+.

The second-order slip-flow condition is recovered for
Kn > 0 with C1 �= 0 and C2 �= 0. As expected, the CK and BB
schemes differ. However, the two cases exhibit a zeroth-order
slip error �ũx = −8C2Kn2 + O(ε), even setting δy = 1

2 and
σ properly calibrated in the first-order coefficient of CK
schemes. That is, the second-order coefficient has a leading-
order impact on the scheme accuracy. Assuming δy = 1

2 with
� = 3

2C2(Kn/ε)2 sets CK schemes second-order accurate, but
conserves the slip error �ũx = ε2( 16

3 � − 1). The vanishing
of the full slip error, i.e., �ũx = ε2[ 16

3 � − 1 − 8C2(Kn/ε)2],
requires accounting for δy = 1

2 in the � calibration, i.e.,
� = 3

2 [( 1
2 )3 + C2(Kn/ε)2]. The elimination of slip errors in

BB requires a grid-dependent � calibration as summarized
in Table V. The LI slip schemes are also plagued by the
zeroth-order error �ũx = −8C2Kn2 + O(ε), when they are
not properly calibrated. We note that the calibration previously
used to remove the numerical slip for the case C1 �= 0 and
C2 = 0, i.e., � = 3

2C1δy(Kn/ε), leads to no improvements here
since it conserves the zeroth-order error now placed by C2 �= 0,
i.e., �ũx = −8C2Kn2 + O(ε). In order to eliminate the
zeroth-order slip error we have to set � = 3

2C2(Kn/ε)2, which
effectively places the LI slip schemes as first-order accurate
with respect to the second-order slip velocity condition. Since
the slip error left as residue is �ũx = −8εδyC1Kn + O(ε2),
the improvement to �ũx = O(ε2) requires extending the cal-
ibration to � = 3

2 [C1δy(Kn/ε) + C2(Kn/ε)2]. The vanishing
of the O(ε2) error, which remains due to the imprecise δy wall
location, requires further expanding the calibration to � =
3
2 [

δ2
y

2 + C1δy(Kn/ε) + C2(Kn/ε)2]. With this � calibration the
LI slip schemes lead to the exact analytical solution [Eq. (24)].
Finally, the MR slip schemes hold the exact parabolic solution
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FIG. 4. Accuracy |E(ũx)| as function of relaxation parameter �. Note, the meaning of � may be either of a free parameter (MRT/TRT)
or a viscosity-dependent one (REG/BGK) (see Table II). All cases refer to horizontal channel (
 = 1) with midway walls (δy = 1

2 ), resolved
by N = 5 grid nodes along width, i.e., channel width H = N − 1 + 2δy = 5 (simulation units). (a) No-slip flow regime (Kn = 0) where BB,

CK, and LI slip schemes are exact at � = 3
2

δ2
y

2 = 3
16 . (b) First-order slip-flow regime (Kn = 0.1, C1 = 1, and C2 = 0 [15]) where BB, CK, and

LI slip schemes are exact at � = 3
2 (

δ2
y

2 + C1λH ) = 33
16 , � = 3

2

δ2
y

2 = 3
16 , and � = 3

2 (
δ2
y

2 + C1λδy) = 9
16 , respectively. (c) Second-order slip-flow

regime (Kn = 0.1, C1 = 1.1466, and C2 = 0.9576 [21]) where BB, CK, and LI slip schemes are exact at � = 3
2 (

δ2
y

2 + C1λH + C2λ
2) � 2.70,

� = 3
2 (

δ2
y

2 + C2λ
2) � 0.55, and � = 3

2 (
δ2
y

2 + C1λδy + C2λ
2) � 0.98, respectively. The MR slip schemes (not shown here) are exact ∀ slip-flow

regimes and ∀ �.

with second-order slip conditions, guaranteeing ũslip = 0,
∀ δy ∈ [0,1] and ∀ � ∈ R+.

To illustrate with numerical results, the above discussions
we report two studies below. Figure 4 shows the effect of
the � calibration on the numerical slip magnitude |〈�ũx〉|,
with grid resolution fixed. Figure 5 shows the effect of the grid
resolution on the normalized error |E(ũx)|, with � fixed, where
convergence rates are quantified in Table IX. In the two cases,
the most relevant simulation input parameters and outcomes
are detailed in the figure captions. We note that all numerical
results exactly agree with the theoretical findings, as predicted
by Eq. (27) and Table VIII. Hence, the results confirm the
importance of the � calibration on the low-order slip boundary
schemes. As expected, the importance of the � calibration in
correcting the errors from low-order slip schemes increases
with the slip-flow condition order. For the correct modeling

of the second-order slip-flow condition, this issue becomes of
critical importance, implying the total lack of converge. The
results from high-order MR slip (parabolic) schemes are not
shown here since they recover the exact analytical solution
[Eq. (24)], up to the machine accuracy, irrespective of � and
H , for all cases.

Notwithstanding the defects previously identified, it should
be borne in mind that this test corresponds to the most favorable
simulation scenario. That is, wall discretization errors do not
exist in this case. Hence, the next example will consider a more
challenging test where the wall does not align with the uniform
Cartesian lattice. That is, the wall discretization will introduce
an additional error source. But, before addressing this case,
we will finalize the section with a remark on the consideration
of a pressure gradient, instead of a body force, in this class of
problems.

FIG. 5. Accuracy |E(ũx)| as function of grid resolution H . All cases refer to horizontal channel (
 = 1) with midway walls (δy = 1
2 ).

Convergence rates are obtained through a linear regression, with the numerical values of slopes summarized in Table IX. Unless otherwise
stated, the solutions are obtained for the fixed relaxation combination � = 1

4 . (a) No-slip flow regime (Kn = 0). (b) First-order slip-flow
regime (Kn = 0.1, C1 = 1, and C2 = 0 [15]). (c) Second-order slip-flow regime (Kn = 0.1, C1 = 1.1466, and C2 = 0.9576 [21]). The MR
slip schemes (not shown here) are exact for all slip-flow regimes, ∀ � values and ∀ H ; hence, concept of grid convergence does not apply.
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TABLE IX. Quantification of convergence rates of plots shown in
Fig. 5. Convergence values are determined through a linear regression
over numerical data from 5 to 50 grid nodes. Unless otherwise
specifically stated, solutions take � = 1

4 . The MR slip schemes (not
shown here) are exact for all slip-flow regimes, for all � values, and
for all grid resolutions H ; hence, concept of grid convergence does
not apply.

(a) (b) (c)
No slip First-order slip Second-order slip

BB −1.99 0.02 0.01
BB �(C1) −1.99 −1.99 0.07
BB �(C1,C2) −1.99 −1.99 −1.99
CK −1.99 −1.99 0.07
CK �(C2) −1.99 −1.99 −1.99
LI slip −1.99 −0.93 −0.24
LI slip �(C1) −1.99 −1.99 0.07
LI slip �(C1,C2) −1.99 −1.99 −1.99

Comment on the simulation of pressure-driven flows

As briefly pointed out in Remark 2 of Sec. IV, the
CK schemes fail to maintain their accuracy for nonuniform
pressure fields. Here, we prove this result by reassessing
the previous case, now for a pressure-driven Poiseuille gas
flow. For that, let us rewrite Eq. (25) considering a pressure
gradient in bulk and the closure relation of CK schemes at
boundaries [Eq. (17)]. As before, let us consider a horizontal
channel (
 = 1) with halfway walls (δy = 1

2 ) so that the
channel effective width is H = Ny . The formulation of the
pressure-driven problem reads as follows:

−∂xP + νρ0∂
2
yux = 0 for y ∈

]
−Ny

2
+ 1

2
,
Ny

2
− 1

2

[
,

(29a)

ux ∓
(

1

2
+ C1λ

)
∂yux +

(
2

3
� + 1

2
C1λ

)
∂2
yux

∣∣
yb=∓ Ny

2 ± 1
2

= C1λ

6νρ0
∂xP . (29b)

The solution of Eq. (29a) subject to Eq. (29b) is given in
normalized form as follows:

ũx = 1 − 4ỹ2 + 4C1Kn − ε
4

3
C1Kn + ε2

(
16

3
� − 1

)
,

ỹ = y

H
∈

[
−1

2
,
1

2

]
, (30)

ũx = ux

u0
, u0 = −∂xP H 2

8νρ0
, ε = 1

H
, Kn = λ

H
.

Comparing Eq. (30) with the exact solution ũ(exact)
x [Eq. (24)],

we observe that the LBM solution introduces the following
numerical slip:

�ũx = ũx − ũ(exact)
x = 8C2Kn2 − ε 4

3C1Kn + ε2( 16
3 �− 1

)
.

(31)

We recall the numerical slip in the force-driven case reads
as �ũx = 8C2Kn2 + ε2( 16

3 � − 1), which is obtained by in-

troducing the α± coefficients for the CK scheme given in
Table VIII into Eq. (27). The comparison of the two cases
reveals the inferior accuracy of the pressure-driven solution
since �ũx given by Eq. (31) is affected by a first-order error,
i.e., the term proportional to ε. This numerical slip artificial can
be vanished with the calibration � = 3

16 (1 + 4
3C1λ + 8C2λ

2),
which differs from the equivalent force-driven � calibration
� = 3

16 (1 + 8C2λ
2) (see Table IV). We note that, based on the

analysis developed in Sec. IV, it is straightforward to extend
this �-based calibration from δy = 1

2 to arbitrary δy ∈ [0,1].
The duality between pressure- and force-driven solutions

above shown is absent from the LBM solutions obtained
with the slip boundary schemes proposed in this paper (and
also the BB rule). Given that incompressible flow solutions
must hold invariant with the respect to the transformation
Fx → −∂xP , the conclusion is that CK schemes have an
inconsistent behavior for incompressible hydrodynamics, a
defect not reported in previous studies.

C. LBM velocity profile in lattice-inclined channel

For the study of the lattice-inclined channel it is more
convenient to consider for reference analytical solution j (exact)

q ,
which denotes the Poiseuille flow profile projected on the
lattice space. Here, spatial variations are measured with respect
to the link coordinate yq , i.e., the projection of the rotated y ′
axis along the axis parallel to {�cq,�cq̄} [see Fig. 2(b)]. Once
again, the flow is assumed steady and unidirectional u(exact)

x ′ and
driven by a constant body force Fx ′ (with no pressure gradient
imposed); the walls are at rest (Uw = 0) and the fluid-wall
interactions are assumed to be modeled by the second-order
slip velocity condition. The lattice-projected Poiseuille flow
analytical solution j (exact)

q reads as

j (exact)
q (yq) = Fq

8ν

(
H 2

q − 4y2
q + 4C1λqHq + 8C2λ

2
q

)
,

Hq = H


q

, λq = λ


q

,

= FqH
2
q

8ν

[
1 − 4

(
yq

Hq

)2

+ 4C1Kn + 8C2Kn2

]
,

Kn = λq

Hq

= λ

H
. (32)

The channel walls are located at yqw = ±Hq/2 or, equiva-
lently, at yqw = ±(yqb + δq), if measuring the wall locations
with respect to the boundary nodes yqb. Equation (32)
reduces to the lattice-aligned horizontal channel solu-
tion [Eq. (24)] when 
q = 
 = 1, which reads for
the nontrivial links cqxcqy �= 0 as follows: u(exact)

x (y) =
Fx

8νρ0
(H 2 − 4y2 + 4C1λH + 8C2λ

2).
In comparison to the lattice-aligned case, the new error

source introduced by the inclined channel modeling is the
discretization of the non-mesh-aligned walls. This error arises
when the condition on the boundary is not sufficiently accurate
to guarantee that the discrete walls match the real ones. The
result is perceived by the numerical velocity profiles with the
creation of spurious accommodation layers [67–69,97,123].
Such numerical boundary layers should be vanished,
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TABLE X. Calibration of � for each slip boundary scheme
considered in the study of the inclined channel flow. Note, these �

values yield the exact slip velocity condition in the case of horizontal
lattice-aligned channels, not for inclined channels. The BB and CK[ 1

2 ]
scheme consider δy = 1

2 , whereas the CK[δy] and LI slip schemes
consider a free δy ∈ [0,1], where δy is the distance from the boundary
node to the wall, measured along its normal direction, and with δy

attributed to all wall cut links q. TRT model is considered herein (the
conversion to other collision models follows from Table II).

�

BB scheme [Eq. (20)] 3
2 ( 1

8 + 1
2 C1λH + C2λ

2)

CK[ 1
2 ] scheme [Eq. (17) 3

2 ( 1
8 + C2λ

2)
with Eq. (18)]

CK[δy] scheme [Eq. (17) 3
2 [ 1

2 (δ2
y−δy+ 1

2 )+C1λ(δy− 1
2 )+C2λ

2]
with Eq. (19)]

LI slip scheme [Eq. (22)] 3
2 (

δ2
y

2 + C1λδy + C2λ
2)

MR slip scheme [Eq. (13)] ∀ R+

particularly when physical Knudsen layers are to be
considered, e.g., using effective viscosity approaches
[14,39,41,50,54,62,86]. For that reason, we will pay particular
attention to these artifacts in the analysis below. Without loss
of generality, the simulations consider the inclined channel to
make an angle θ = tan−1( 1

2 ) with the horizontal axis of the
lattice [see Fig. 2(c)]. The slip walls are modeled with five
different boundary schemes, namely, (i) BB, (ii) CK[ 1

2 ], (iii)
CK[δy], (iv) LI slip, and (v) MR slip. The difference between
the CK slip schemes (ii) and (iii) is that the former considers the
standard CK algorithm, which is limited to δy = 1

2 , e.g., [55],
while the latter operates with an improved version where
arbitrary δy ∈ [0,1] walls are considered, as explained in
Remark 4 of Sec. IV (i.e., the slip boundary scheme for “curved
walls” proposed in [56] further discussed in Appendix B).
Regarding the � specification, since no � strategy is available
to recover exact solutions in non-mesh-aligned boundaries,
we adopt the � value that would otherwise produce the
exact slip velocity condition in the horizontal lattice-aligned
channel setup; these � calibrations are summarized in Table X.
The effect of � on each of these boundary schemes will be
discussed at the end of the section. We note that the choice

of the collision model only effects the interpretation of the
numerical results in the meaning of � (see Table II). In this
context, we notice that collision operators with �(ν) violate the
consistency requirement of viscosity-independent permeabil-
ity for channel solutions [63,73,93,100,113,120,124]. Such a
defect, originally identified for hydrodynamic solutions in the
no-slip regime [63], is also present in the slip-flow regime, with
error form being dependent on the LBM collision operator.

Figure 6 shows the velocity profiles ũx ′ predicted by
the LBM with each of the five families of slip boundary
schemes. The parabolic accurate MR slip exactly captures
the analytical solution [Eq. (32)], for all slip-flow regimes.
On the other hand, all other slip schemes exhibit growing
differences to the expected analytical profile as the order
of the slip condition increases. Figures 7, 8, and 9 intend
to illustrate such differences, revealing how bulk solutions
become distorted when they are accommodated by inaccurate
boundary conditions, in this less trivial simulation scenario of
non-mesh-aligned walls. Next, we will discuss the impact of
this issue on the quality of the predicted LBM profiles.

Figure 7 displays the error profiles of the streamwise
component of fluid velocity �ũx along the channel width.
In the no-slip regime, we notice that, together with an
approximately uniform error at the channel center, there is
a sharp variation of the error nearby the boundaries. This
is a manifestation of the, previously mentioned, spurious
accommodation layers, which should not be confused with
physical Knudsen layers. While this latter has a physical origin,
the former is created by numerical artifacts. In terms of global
error, there is an order of magnitude loss of accuracy from LI
slip to BB or kinetic LBM boundary schemes (cf. Table XI).
When the no-slip wall regime evolves to a slip one, the form
and magnitude of the error change. The most striking feature
is the apparent diminishing in importance of the spurious
accommodation layers as the slip-flow regime intensifies. This
is confirmed by two features: (i) the absence of sharp variations
in the error profile nearby the boundary and (ii) the almost
uniform error throughout the channel full width, although the
magnitude of this �ũx error increases considerably with the
order of the slip condition (cf. Table XI). This result points
to the superior impact of the order of accuracy of the slip
boundary schemes on the quality of the velocity profiles in the
slip-flow regime.

FIG. 6. Poiseuille flow velocity solutions at Kn = 0.1 within slip-flow theory. Continuous black line represents exact analytical solution
[Eq. (32)]. Markers denote the LBM nodal point solutions, which are predicted by different slip boundary schemes. All cases refer to inclined
channel [θ = tan−1( 1

2 )], resolved by Ny = 6 grid nodes along its width. (a) No-slip velocity boundary condition (C1 = C2 = 0). (b) First-order
slip velocity boundary condition (C1 = 1.0 and C2 = 0 by Maxwell [15]). (c) Second-order slip velocity boundary condition (C1 = 1.1466
and C2 = 0.9576 by Cercignani [21]).
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FIG. 7. Error profiles, from Fig. 6, of streamwise velocity component �ũx′ = ũx′ − ũ
(exact)
x′ , where ũx′ = jq/j

(max)
q and the analytical solution

ũ
(exact)
x′ = j (exact)

q /j (max)
q , with j (exact)

q given by Eq. (32) and j (max)
q = FqH

2
q /(8ν). The mean error 〈�ũx′ 〉 is quantified in Table XI. Panel (a): No-slip

velocity boundary condition (C1 = C2 = 0). Panel (b): First-order slip velocity boundary condition (C1 = 1.0 and C2 = 0 by Maxwell [15]).
Panel (c): Second-order slip velocity boundary condition (C1 = 1.1466 and C2 = 0.9576 by Cercignani [21]).

FIG. 8. Error profiles, from Fig. 6, of transversal velocity component �ũy′ = ũy′ − ũ
(exact)
y′ , where analytical solution is ũ

(exact)
y′ = 0. The

mean error 〈�ũy′ 〉 is quantified in Table XI. Panel (a): No-slip velocity boundary condition (C1 = C2 = 0). Panel (b): First-order slip velocity
boundary condition (C1 = 1.0 and C2 = 0 by Maxwell [15]). Panel (c): Second-order slip velocity boundary condition (C1 = 1.1466 and
C2 = 0.9576 by Cercignani [21]).

FIG. 9. Error profiles of flow streamlines angle θ = tan−1 (ũy/ũx) (measured with respect to the fixed, lattice-aligned frame (x,y)) and
determined as �θ = θ/θ (exact) − 1, where analytical solution is given by θ (exact) = tan−1 (1/2). The mean error 〈�θ〉 is quantified in Table XI.
Panel (a): No-slip velocity boundary condition (C1 = C2 = 0). Panel (b): First-order slip velocity boundary condition (C1 = 1.0 and C2 = 0
by Maxwell [15]). Panel (c): Second-order slip velocity boundary condition (C1 = 1.1466 and C2 = 0.9576 by Cercignani [21]).
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TABLE XI. Error mean values 〈�ũx′ 〉 = 1
Ny

∑
�ũx′ , 〈�ũy′ 〉 =

1
Ny

∑
�ũy′ , and 〈�θ〉 = 1

Ny

∑
�θ for the error plots shown in

Figs. 7, 8, and 9, respectively. Parabolic-slip solutions are exact,
up to the roundoff error, for all tests shown in this table.

(a) No slip (b) First-order slip (c) Second-order slip

〈�ũx′ 〉
BB −0.031 −0.299 −0.428
CK[ 1

2 ] −0.031 −0.168 −0.236
CK[δy] 0.023 −0.079 −0.133
LI slip −0.003 −0.074 −0.108

〈�ũy′ 〉
BB 0.013 0.029 0.030
CK[ 1

2 ] 0.013 0.023 0.039
CK[δy] −0.001 0.026 0.045
LI slip 7×10−4 −0.001 0.002

〈�θ〉
BB 0.098 0.143 0.145
CK[ 1

2 ] 0.098 0.091 0.121
CK[δy] 0.041 0.096 0.125
LI slip 0.004 −3×10−4 0.005

Figure 8 displays the error profiles of the transversal
component of fluid velocity �ũy along the channel width.
Theoretically, the expected transversal velocity solution should
be ũ

(exact)
y ′ = 0. The fact that ũy ′ �= 0 is indicative of wall

discretization artifacts. More precisely, it is the attempt to
accommodate the inclined Poiseuille flow solution on the
low-order boundary conditions that generates the nonvanishing
transverse velocity component. A proof is that in lattice-
aligned channels ũy ′ = 0 is always recovered, irrespective of
the accuracy order of the LBM boundary scheme considered.
Other proof that ũy ′ �= 0 is primarily generated by spurious
accommodation layers lies in the structure of the error
profiles: they have a uniform value at the channel center
only notoriously varying nearby boundaries. This behavior
holds for almost all LBM slip velocity schemes, and the error
magnitude remains approximately unchanged with the slip
order (cf. Table XI). The exception is the parabolic MR slip
scheme which guarantees ũy ′ = 0, up to the roundoff error.

Figure 9 displays the profiles of the loss of rotational
invariance in the velocity field. The angular deviations are
quantified by �θ , which is defined within the caption of Fig. 9.
The rotational invariance analysis basically confirms the study
of ũy ′ , and both highlight the negative impact of the low-order
boundary schemes as slip wall conditions. Because of their
deficient accommodation of the bulk solution, they give rise
to spurious accommodation layers, which distort the velocity
field streamlines, deviating them from holding parallel to the
channel inclination. Compared to BB and CK schemes, the LI
slip shows a better performance in supporting the rotational
invariance of the bulk solution (cf. Table XI). In all cases, the
parabolic MR slip schemes exactly guarantee θ = θ (exact).

Figure 10 shows the effect of � on the accuracy |E(ũx ′ )|, for
fixed grid resolution. Before analyzing this case, it is important
to recall the lattice-aligned one (with δy = 1

2 ) discussed in
Fig. 4. In that case, most of boundary schemes (except BB)
managed to cope with this problem correctly up to the first
order in their coefficients. As such, the accuracy of these LBM
solutions was essentially dominated by the � parameter at the
second order. The inclined channel case, however, introduces
the discretization of the boundary as a first-order artifact (man-
ifested in the staircase wall approximation). Therefore, the �

value that weighs second-order terms appears to have a reduced
influence on the accuracy of solutions that fail to be correct,
already, at the first order. This explains the less pronounced
dependence of |E(ũx ′ )| on �, and also why the exact solutions
are never achieved (contrary to the lattice-aligned channel
case). Given that � cannot be adjusted independently link
per link (recall Remark 3 in Sec. IV), the best one can expect
with the calibration of relaxation parameters is improvements
of the order of magnitude of those shown in Fig. 10.

Figure 11 shows the effect of the grid resolution on the
accuracy |E(ũx ′ )|, fixing �. That is, we still use � has given
by Table X, but fixing δy = 1

2 in its calibration for all cases.
In fact, numerical tests have suggested that, with a spatially
varying calibration of the kind �(δy), solutions become more
sensitive to numerical instabilities. For no-slip boundaries,
the CK[ 1

2 ] reduces to the BB rule. The CK[δy] differs due
to its extra degree of freedom, set by the σ (δy) calibration
[Eq. (19)] (note that contrary to � we allow σ to vary with
δy). These three cases indicate a first-order convergence with

FIG. 10. Accuracy |E(ũx′ )| as function of relaxation parameter �. All cases refer to inclined channel [θ = tan−1( 1
2 )] resolved by Ny = 6

grid nodes its along width. (a) No-slip flow regime (Kn = 0). (b) First-order slip-flow regime (Kn = 0.1, C1 = 1 [15]). (c) Second-order
slip-flow regime (Kn = 0.1, C1 = 1.1466, and C2 = 0.9576 [21]). The MR slip schemes (not shown here) are exact for all slip-flow regimes
and for all � values.
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FIG. 11. Accuracy |E(ũx)| as function of grid resolution H , with � fixed and given by Table X, with δy = 1
2 . Convergence rates are

quantified in Table XII. (a) No-slip flow regime (Kn = 0). (b) First-order slip-flow regime (Kn = 0.1, C1 = 1 [15]). (c) Second-order slip-flow
regime (Kn = 0.1, C1 = 1.1466, and C2 = 0.9576 [21]). The MR slip schemes (not shown here) are exact for all slip-flow regimes, ∀ � values
and ∀ H ; hence, the concept of grid convergence does not apply.

grid resolution which is observed in Fig. 11(a) and quantified
in Table XII. On the other hand, the LI slip schemes are
formally second-order accurate in the no-slip limit, which is
confirmed by the second-order convergence rate in Fig. 11(a)
and Table XII. However, as expected, these convergence
characteristics deteriorate significantly with the modeling of
the first-order slip condition. Here, BB and CK schemes fail
already to provide the correct first-order coefficient, which
makes them formally zeroth-order accurate. That is, they do
not converge with the grid-resolution refining [see Fig. 11(b)].
Such a result is the numerical proof of the inconsistency
of kinetic LBM boundary schemes as numerical models for
the first-order slip velocity condition (and obviously for the
second-order slip condition, as discussed next). On the other
hand, the LI slip schemes are correct in their first-order
coefficients. However, as pointed out in the analysis of Fig. 5,
with the exception of a very specific choice of � (generally not
available in arbitrary geometries), the second-order coefficient
of LI slip schemes preserves artifacts that are actually first
order with the mesh spacing, and this explains the first-order
convergence rate observed in Fig. 11(b) and in Table XII.
The most disturbing findings appear in the modeling of the
second-order slip condition. As shown in Fig. 11(c) and in
Table XII, neither CK nor LI slip schemes converge with the
grid resolution. This means that both schemes are inconsistent
numerical models for the second-order slip velocity condition.
Such a result is the numerical confirmation that the necessary
condition for the consistent modeling of the slip-flow regime
(both at first and second order) implies the parabolic accuracy
of LBM boundary schemes. Indeed, for general plane wall

TABLE XII. Quantification of convergence rates, which are
obtained through a linear regression over numerical data, of the
convergence plots shown in Fig. 11. The MR slip schemes (not shown
here) are exact for all slip-flow regimes, ∀ � values and ∀ H , meaning
the concept of grid convergence does not apply.

(a) No slip (b) First-order slip (c) Second-order slip

BB −0.893 −0.030 −0.002
CK[ 1

2 ] −0.893 −0.030 −0.026
CK[δy] −0.676 0.124 0.102
LI slip −1.982 −1.179 −0.203

configurations, where the “absorption” of numerical errors into
physical slip through calibration is not available, the fulfillment
of this condition is only possible by using slip schemes that
support the parabolic accuracy by design, which is the case of
the MR slip schemes presented in Sec. VI.

VIII. BENCHMARK RESULTS: KNUDSEN’S PARADOX

As commented in the introduction of Sec. VII, the ability
of LBM boundary schemes to support the slip velocity
condition can be also evaluated on the basis of the depen-
dence of the normalized mass flow rate Q̃ with Kn. This
problem gives rise to the well-known Knudsen’s paradox,
which states the existence of a minimum in the Q̃(Kn)
evolution [2–5,12,13]. Such a benchmark test has been used
by a number of LBM studies; a far from exhaustive list
is [39,41,44,54,61,62,83,87,88,90,106–108]. While in theory
the Knudsen’s paradox is equivalent to the study reported in
Sec. VII, concerning the direct measurement of the wall slip
in the velocity profile, the LBM predictions in this last case
may not lead to identical conclusions due to the interference
of numerical integration errors. The first part of this section
addresses this issue. The second part focuses on the impact of
different slippage coefficients, e.g., as those given in Table I,
over the performance of the LBM slip boundary schemes.

A. Analytical Knudsen’s minimum

Let us assume the normalized Poiseuille flow solution
given by ũ(exact)

x in Eq. (24). Then, the exact computation
of the normalized mass flow rate on the exact profile yields
[12–14]

Q̃(exact) = 1

4 Kn

∫ 1/2

−1/2
ũ(exact)

x (ỹ) dỹ = 1

6 Kn
+ C1 + 2C2Kn.

(33)

Figure 12 plots the solution of Eq. (33) for the four slip-flow
conditions: (i) no slip (C1 = C2 = 0), (ii) first-order slip
(C1 = 1.0 and C2 = 0 by Maxwell [15]), (iii) second-order
slip (C1 = 1.1466 and C2 = 0.9576 by Cercignani [21]),
and (iv) second-order slip [C1(Kn) and C2(Kn) by Wang
et al. [20]]. The curves associated with the second-order
slip velocity models clearly exhibit a minimum, which is
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FIG. 12. Normalized mass flow rate [Eq. (33)] as function of
Kn for the three slip-flow conditions: (i) no slip (C1 = C2 = 0), (ii)
first-order slip (C1 = 1.0 and C2 = 0 by Maxwell [15]), (iii) second-
order slip (C1 = 1.1466 and C2 = 0.9576 by Cercignani [21]), and
(iv) second-order slip [C1(Kn) and C2(Kn) as in Table I by Wang
et al. [20]].

known as Knudsen’s minimum. Theoretically, this mass flow
rate minimum is found by computing the positive root of
∂Q̃(exact)/∂ Kn = 0. When the C1 and C2 coefficients are Kn
independent, the Knudsen’s minimum Kn|(exact)

min is explicitly
given by [2,12–14]

Kn
∣∣(exact)
min = 1

2
√

3 C2
. (34)

For example, in the Cercignani model [21], Eq. (34) predicts
Kn|(exact)

min � 0.3. When C1 and C2 are functions of Kn, such
as in [19,20], then Kn|(exact)

min may not be available explicitly.
For example, in the Wang et al. model [20] we have
determined Kn|(exact)

min � 0.4, using the built-in root finder of
Mathematica.

B. LBM Knudsen’s minimum in lattice-aligned horizontal
channel: Effect of integration scheme

For illustrative purposes let us focus on the most favorable
case of Poiseuille flow in a lattice-aligned horizontal channel
with midway walls δy = 1

2 . Here, LBM exact solutions are
available, which are given by Eq. (25) with coefficients given
in Table VIII. The key point in the Knudsen’s minimum
analysis is the computation of mass flow rate. While this step
requires the evaluation of an integral [Eq. (33)], in simulations
a numerical quadrature must be adopted. Often, low-order
quadrature methods are used, such as the midpoint rule, where
the nodal solutions are subject to simple summations [125]. In
this case, the computation of the mass flow rate Q̃(num) through
summation yields the following prediction:

Q̃(num) = 1

4 Kn

∑
j

ũx(ỹj ) = 1

6 Kn
+ ε

Kn

(
α+ − 1

2

)

+ ε2

3 Kn
(1 − 3α+ + 6α−). (35)

Note that in deriving Eq. (35) the summation was performed
over the nodal points ỹj = yj

H
with yj = −Ny

2 + 1
2 + j and

TABLE XIII. Solutions of Q̃(num) obtained by substituting into
Eq. (35) the explicit content of the α± coefficients for each slip
boundary scheme (cf. Table VIII).

Q̃(num)

BB 1
6 Kn + ε2

6 Kn (8� − 1)

CK[ 1
2 ] 1

6 Kn + C1 + ε2

6 Kn (8� − 1)

LI slip 1
6 Kn + C1 − ε C1 + ε2

6 Kn (8� − 1)

MR slip 1
6 Kn + C1 + 2C2Kn + ε2

12 Kn

j = 0,1, . . . ,Ny − 1. For this task the computation of Q̃(num)

employed ũx , as given by Eq. (25), and the α± coefficients
summarized in Table VIII. Table XIII lists the Q̃(num) solutions
predicted by each slip boundary scheme.

In order to evaluate the accuracy of each boundary scheme,
let us introduce the error measure

|E(Q̃)| =
∣∣∣∣Q̃(num) − Q̃(exact)

Q̃(exact)

∣∣∣∣, (36)

where Q̃(num) is collected in Table XIII and Q̃(exact) is given
by Eq. (33). Next, let us discuss each slip-flow condition
individually.

The zeroth-order (no-slip) condition implies C1 = C2 = 0,
which leads to Q̃(exact) = 1

6 Kn . All boundary schemes agree
with this solution up to second-order accuracy, i.e., |E(Q̃)| ∝
ε2. The low-order boundary schemes, as carrying a � depen-
dency, can use this free parameter to cancel the second-order
error and match the exact solution. The |E(Q̃)| = 0 happens
with � = 1

8 . We note the difference between the optimal �

value in the mass flow rate compared to that of the exact
parabolic profile, i.e., � = 3

16 . This difference is due to
addition of the integration errors [94,125].

The first-order slip condition implies C1 �= 0 and C2 = 0
which leads to Q̃(exact) = 1

6 Kn + C1. The BB prediction is
generally zeroth-order accurate with respect to Q̃(exact), except
when � = 1

8 + 3
4C1�H (i.e., using a resolution-dependent �

calibration), which leads to |E(Q̃)| = 0. The LI slip predicts
a first-order accurate solution, except when � = 1

8 + 3
4C1�,

which ensures |E(Q̃)| = 0. The CK and MR slip schemes are
second-order accurate with respect to the exact solution. Yet,
the former offers the possibility to have |E(Q̃)| = 0 by setting
� = 1

8 .
The second-order slip condition implies C1 �= 0 and C2 �= 0

which leads to Q̃(exact) = 1
6 Kn + C1 + 2C2Kn as in Eq. (33).

Aside from the MR slip scheme, which maintains its second-
order accuracy, all low-order boundary schemes become
zeroth-order accurate. Table XIV summarizes the specific
� calibrations that make Q̃(num) = Q̃(exact) in each scheme.
Table XIV also evidences the differences between the optimal
� calibrations for the velocity and the mass flow rate solutions.
We note the above results apply for any C1 and C2 values,
regardless they are constant or Kn dependent, as those
presented in Table I.

Finally, it is worthwhile commenting on the aggravated
consequences of the integration error on the numerical com-
putation of the Knudsen’s paradox problem. Let us assume we
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TABLE XIV. Differences between � calibrations using low-order
LBM boundary schemes in modeling horizontal Poiseuille channel
flow. �(ũ(num)

x = ũ(exact)
x ) are calibrations for the exact velocity profile.

�(Q̃(num) = Q̃(exact)) are calibrations for the exact mass flow rate. TRT
model is considered herein (the conversion to other collision models
follows from Table II).

�(ũ(num)
x = ũ(exact)

x ) �(Q̃(num) = Q̃(exact))

BB 3
16 + 3

4 C1λH + 3
2 C2λ

2 1
8 + 3

4 C1λH + 3
2 C2λ

2

CK[ 1
2 ] 3

16 + 3
2 C2λ

2 1
8 + 3

2 C2λ
2

LI slip 3
16 + 3

4 C1λ + 3
2 C2λ

2 1
8 + 3

4 C1λ + 3
2 C2λ

2

are operating with a slip boundary scheme that provides the
exact velocity solution, e.g., the MR slip schemes presented in
Sec. VI. It turns out that, even with an exact velocity profile, the
use of a low-order integration scheme at the post-processing
step inevitably introduces a second-order error in the mass flow
rate computation. Worse, the subsequent determination of the
Knudsen’s minimum based on this estimate further degrades
the accuracy of the post-processing outcome to first order.
The proof behind this loss of accuracy can be analytically
determined by computing ∂Q̃(num)/∂ Kn = − 1

6 Kn2 (1 + ε2

2 ) +
2C2 = 0, which yields Kn|(num)

min = 1
2

√
1+ε2

3C2
. That is, the

equivalence between exact and numerical Knudsen’s minima
differs through a first-order error in mesh spacing: Kn|(num)

min �
Kn|(exact)

min + O(ε). In conclusion, the numerical study of the
Knudsen’s paradox problem shall pay particular attention
to numerical integration errors in the post-processing step,
meaning higher-order quadrature schemes shall be adopted,
with Simpson’s rule recommended. Otherwise, efforts to
accurately predict the velocity solution may become severally
damaged by post-processing errors.

C. LBM Knudsen’s minimum in lattice-aligned horizontal
channel: Effect of slippage coefficients

Finally, this section evaluates the effect that slippage
coefficients may have on the accuracy of the LBM slip
boundary schemes. For this task, we keep focus on the
Knudsen’s minimum problem. However, now we compute
Q̃(num) with Simpson’s rule, meaning integration errors are
absent and the only error source comes from the LBM slip
schemes. That is, our study will work out on the outcome
provided by the exact integration of the numerical velocity
profile ũx [Eq. (26)], with δy = 1

2 . The (normalized) mass flux
is given by

Q̃(num) = 1

4 Kn

∫ 1/2

−1/2
ũx(ỹ) dỹ = 1

6 Kn
+ ε

Kn

(
α+ − 1

2

)
+ ε2

4 Kn
(1 − 4α+ + 8α−). (37)

Table VIII contains the specific content of the α± coefficients
for the slip boundary schemes considered. Their substitution
into Eq. (37) leads to the Q̃(num) predictions summarized in
Table XV. To understand how the accuracy of LBM predictions
may be impacted by the choice of the slippage coefficients,
we repeat the |E(Q̃)| error analysis given by Eq. (36). We

TABLE XV. Solutions of Q̃(num) obtained by substituting into
Eq. (37) the explicit content of the α± coefficients for each slip
boundary scheme (cf. Table VIII).

Q̃(num)

BB 1
6 Kn + ε2

4 Kn ( 16
3 � − 1)

CK[ 1
2 ] 1

6 Kn + C1 + ε2

4 Kn ( 16
3 � − 1)

LI slip 1
6 Kn + C1 − ε C1 + ε2

4 Kn ( 16
3 � − 1)

MR slip 1
6 Kn + C1 + 2C2Kn

find that conclusions are similar to those observed in the
numerical study of the velocity profile in horizontal channel,
reported in Sec. VII B. As a conclusion, this study confirms
that the MR slip schemes due to their superior accuracy
are the only ones to exactly support the second-order slip
velocity condition independently of C1 and C2 values, i.e.,
with either constant or Kn-dependent slippage coefficients.
On the other hand, the low-order slip schemes do require
� to be adjusted according to the intended C1 and C2

values, which may not be straightforward to apply, particularly
when the slippage coefficients feature an intricate functional
Kn dependence, e.g., Wu [19] or Wang et al. [20] models
shown in Table I. This ability to support arbitrary slippage
coefficients places the LBM as a consistent numerical solver
for the slip-flow regime, meaning its applicability can be
extended over arbitrary classes of rarefied gas problems simply
by adjusting the slippage coefficients in the slip boundary
conditions. For that purpose, only physical considerations
need to be invoked, which is in contrast with the current
practice adopted in LBM, where the popular kinetic-based
slip schemes, as producing incorrect coefficients, must be
subject to specific ad hoc numerical calibrations afterwards.
Unfortunately, these numerical calibrations do not only lack
physical support as they display a limited range of applicability
as illustrated in this work.

IX. CONCLUSIONS

This work concerns the application of the lattice Boltzmann
method (LBM) to the numerical simulation of low-speed
and isothermal flows pertaining to the slip-flow regime. This
physical framework concedes the classical hydrodynamic
theory to hold valid in bulk, while at solid walls the no-slip
velocity boundary condition shall be replaced by a slip one.
In this context, Knudsen boundary layers take a vanishingly
small portion of the fluid domain. Thereby, the slip-flow
regime permits the study of the isolated effect of the fluid-wall
interactions in LBM simulations.

Based on these considerations, our study focuses on the
consistent formulation of boundary schemes for the LBM,
which model the slip velocity condition. The justification to
consider the LBM in this task does not come from its kinetic
origin (unlike most previous attempts as reported in Sec. I).
Rather, it is the fact that the typical LBM linkwise boundary
schemes follow a closure relation with a structure similar to
that of slip-flow theory: both cases are described by a truncated
Taylor series of the fluid velocity at the boundary. This
similarity makes the LBM a natural candidate to numerically
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solve the slip-flow regime, particularly when compared to the
more well-established CFD techniques. Another advantage of
the LBM framework is the possibility to reach higher Kn
number flow regimes, through higher-order LB formulations.
While not explored in this work, the extension of the present
results to such cases is programmed for future studies.

The key contribution of this work was the derivation of the
LBM boundary closure relation that prescribes the second-
order slip velocity condition on arbitrary wall discretizations,
within the LBM uniform Cartesian mesh formulation. The
necessary requirement to support this physical condition was
shown to be the parabolic accuracy of the LBM boundary
scheme, and we derived the explicit linkwise form of first-
and second-order coefficients for slip velocity schemes. Based
on this result, we critically evaluated the closure relations
of existing kinetic-based LBM boundary schemes, and iden-
tified the following number of defects: (i) they may hold
viscosity-dependent artifacts; (ii) they are inconsistent for
nonuniform pressure fields, such as pressure-driven flows;
(iii) they are anisotropic, meaning that a different condition
holds as function of the wall-lattice orientation; (iv) they are
low-order accurate, thus introducing discrete lattice effects in
the coefficients of the boundary condition, which will perturb
the physical slip value; and (v) they are inappropriate for
arbitrary geometries since the calibration typically used in
lattice-aligned setups, consisting of absorbing the numerical
errors into the physical slip condition, is unavailable for
arbitrary flows and/or wall-lattice orientations.

Upon recognizing the limitations plaguing the LBM per-
formance of existing kinetic-based boundary schemes, we
propose tackling this problem directly at the LBM discrete
level. For this purpose, we used the multireflection framework
and extended it to handle the slip velocity boundary condition.
Here, we considered both linear (LI slip) and parabolic slip
(MR slip) schemes. Each case presents a compromise between
complexity and level of accuracy. LI slip schemes correct
some defects of kinetic-based LBM schemes, while retaining
the local implementation; however, they preserve accuracy
limitations in arbitrary wall configurations. On the other
hand, MR slip schemes, although slightly more complex to
implement (as operating on a two-node update rule), support
the necessary condition to consistently model the slip-flow
regime in general flow configurations.

The performance of the above-mentioned LBM boundary
schemes as slip velocity models was verified for the steady
Poiseuille flow problem in the slip-flow regime. Particular
attention was given to the quality of the velocity profiles,
with focus on two issues: (i) the effective slip velocity
at the wall and (ii) the deformation of the profile due to
spurious accommodation layers. The numerical experiments
considered two cases of wall discretization, namely, lattice-
aligned and lattice-inclined walls. The Knudsen’s paradox
problem was also studied as a complementary benchmark
test. The ensemble of numerical tests confirmed the superior
accuracy of the schemes proposed in this work, revealing
the clear superiority of the parabolically accurate MR slip
schemes. Although only 2D problems were tested, we remark
that the theory here presented applies equally to 3D domains.
Moreover, while only planar walls were considered, in an
upcoming publication we will address the issue of prescribing

the velocity slip on curved solid boundaries, a case that must
account for the surface curvature. Also, even though we have
limited our study to the low-speed Stokes regime, we stress that
the schemes here proposed are equally applicable to nonlinear
Navier-Stokes flows; in this context, we refer to Appendix B
of [93] for a summary on the expected complexities arising
from the discretization of the nonlinear term. Finally, we note
that in terms of numerical implementation, while developed in
the frame of the TRT collision operator (and its subclasses
like REG/S-REG or BGK), the LBM boundary schemes
constructed and analyzed in this work can be directly extended
to multiple relaxation time (MRT) models. In that regard, we
suggest the straightforward application of the reasoning put
forward in [94].
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APPENDIX A: MRT, REG, AND BGK COLLISION
MODELS IN LBM

This Appendix briefly revises the most relevant aspects of
alternative LBM collision operators and their relation to the
TRT collision model.

MRT: The most general collision operator in LBM is
the multiple relaxation time (MRT) model [37,70,72,75,94].
Rather than operating on the populations fq , the MRT operates
on the moments mk with k = 1, . . . ,Q. These moments are
determined by the projections of fq on the eigenvectors Mkq

of the collision operator as follows: mk = Mkqfq (where
summation is implied over repeated indexes). The collision
eigenvectors Mkq are formed by a complete and orthogonal set
of discrete velocity polynomials, whose structure may be de-
termined through different theoretical frameworks; examples
are found in [37,63,72,75,94,126]. The associated eigenvalues
sk , which follow from this spectral decomposition, are related
to the relaxation rates of the collision process. This decoupling
of the collision eigenmodes permits their relaxation in an
individual and independent manner, which is the principal
asset of MRT.

A particularly interesting MRT formulation is the compu-
tationally efficient “symmetrized” MRT framework [94,126].
This idea explores the symmetry properties of the underlying
lattice space, thus decomposing the original MRT vector space
into MRT(+) and MRT(−) bases. As each of these groups oper-
ates on halved basis vectors, this permits reducing the number
of collision operations to approximately half [94,126]. This
symmetrized framework also facilitates the theoretical analysis
of the MRT. Indeed, if representing sk = s+

i ∪ s−
j , where i =

1, . . . ,Qm/2 and j = d + 1, . . . ,Qm/2, it can be proven [73]
that the impact of these collision eigenvalues on the macro-
scopic equations (at any order) is only perceptible through the
associated eigenfunctions �+

i = ( 1
s+
i

− 1
2 ) and �−

j = ( 1
s−
j

−
1
2 ). Most importantly, the steady-state mass and momen-
tum conservation equations reproduced by the MRT-LBM
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can be shown to be controlled in their truncations (i.e.,
beyond second order) exclusively by the free tunable (positive)
parameters �i,j = �+

i �−
j .

For example, in the d2Q9 model, the following nine
linearly independent moments can be constructed: mk =
(ρ, ε, ε, pxx, pxy, jx, jy, qx, qy)�, where ρ is the density, ε

is the energy, ε is the square of the energy, pxx and pxy are the
diagonal and off-diagonal components of the viscous stress
tensor, jx and jy correspond to the x and y components of
momentum, and qx and qy relate to the x and y components
of energy flux. Note, the elements in mk are ordered in such
a way that the first five belong to MRT(+) and the remaining
four to MRT(−). On this basis, the corresponding relaxation
rates are sk = (0, s+

ε , s+
ε , s+

ν , s+
ν ,0,0, s−

q , s−
q )�. Thus, from the

above exposed, the MRT steady-state solutions get controlled
by the following three combinations [94]:

�j,k = �+
j �−

k = {�+
ν �−

q ,�+
ε �−

q ,�+
ε �−

q }. (A1)

To the best of our knowledge, the cast of MRT studies sim-
ulating the slip-flow regime, e.g., [50,51,55,56,62,80], agrees
on the following conclusion: the major role in the accuracy
of MRT solutions is played by �+

ν �−
q , whereas the other

free tunable relaxation combinations �+
ε �−

q and �+
ε �−

q have
negligible impact. Based on this conclusion, we may adopt
the simplification �+

ν = �+
ε = �+

ε = �+ and �−
q = �−, so

that MRT effectively reduces to TRT with the only control
parameter available being � = �+�−, which is sufficient for
this class of problems in terms of accuracy control.

REG: The regularized (REG) collision operator [81,82,92]
was originally developed independently from the MRT frame-
work [70,72,75,94]. However, it is now recognized that the
former can be considered as a subclass of the latter. The
relationship between MRT and REG is natural in weighted
orthogonal eigenvectors, where the two become equivalent
under a specific relaxation setting [94,100,127,128], which
will be discussed next. The reason for still considering REG
separably from MRT is that REG is often credited as “the nec-
essary collision model to correctly reproduce nonequilibrium
flows,” e.g., [80,82–87]. With this discussion our intent is to
clarify how REG operates in the LBM algorithm. Although
our analysis applies to standard lattices, e.g., d2Q9, where
only Navier-Stokes order effects are preserved, its extension
to higher-order lattices, e.g., [40–44], proceeds along the same
lines.

The main premise of REG is the “filtering out” of the
nonequilibrium contributions associated to moments beyond
hydrodynamic level, the so-called ghosts [36,127]. They can
be identified by formally writing the LBM populations as [127]
fq = f H

q + f T
q + f G

q , where f H
q , f T

q , f G
q refer to hydrody-

namic, transport, and ghost modes. Taking for concreteness the
d2Q9 model, each of these groups incorporates the following
MRT moments: f H

q = {ρ, jx, jy}, f T
q = {ε, pxx, pxy}, and

f G
q = {ε, qx, qy}. Notice REG operates with a nontraceless

strain rate [127,128]. Thus, the ε mode, which controls bulk
viscosity, falls into the transport mode category. As such, in
REG all moments belonging to f T

q share the same relaxation
rate: s+

ε = s+
ν = 1/τ (related to fluid viscosity). The filtering

out of f G
q is set by the ghost relaxation rates: s+

ε = s−
q = 1. By

placing these results into Eq. (A1), one concludes that the REG

steady-state solutions get controlled by the single relaxation
combination

� = 1
2�+

ν = 1
2�+

ε = 3
2ν. (A2)

The other independent relaxation combination in REG is
restricted to the fixed value: �+

ε �−
q = 1

4 . Equation (A2)
implies that truncation errors in REG display a viscosity-
dependent structure, like in BGK [73]. This is no surprise
since both collision schemes depend on a single relaxation
parameter. However, the two differ on how such a viscosity
dependence scales within the spatial truncation errors: BGK
scales ∝ν2 [73], while REG scales ∝ν. Roughly speaking,
this is the principal asset of REG over BGK for steady-
state solutions. A more detailed discussion on this topic,
also supported by results showing the exact structure of the
truncation corrections of the REG scheme, will be addressed
in a separate publication.

In the context of this work, we note that REG can be
partially reproduced by TRT. We recall that TRT sets �+

ν =
�+

ε = �+
ε = �+ and �−

q = �−. Hence, if choosing �+ = 3ν

and �− = 1
2 we recover a very similar version of REG, which

we label as “symmetrized” REG (S-REG). For example, in
d2Q9, the only difference is identified in the fourth-order
moment relaxation s+

ε , which is s+
ε = 1 (fixed) in original

REG while s+
ε = 1/τ (viscosity dependent) in S-REG. Yet,

as pointed out before for MRT, the higher-order symmetric
modes, and particularly ε mode, appear to play a negligible
impact on the simulations of microchannel fluid flows and
this was confirmed by our numerical tests. Hence, for the
purpose of this study, REG and S-REG are virtually equivalent
(with the advantage of the latter exhibiting a more convenient
computational implementation and a simpler structure for
theoretical analyses).

BGK: The single relaxation time (BGK) collision opera-
tor [36,37,71] is the simplest relaxing setting in LBM. Here, all
collision modes are controlled by a single relaxation parameter
τ , which simultaneously determines the fluid viscosity as ν =
1
3 (τ − 1

2 ) and the spatial truncation errors as ∝ν2 [73]. This last
point is the principal source of shortcomings identified in the
performance of BGK [73]. Evidently, the BGK is a subclass
of other collision operators. Namely, BGK is recovered by
(i) MRT with sk = 1/τ with k = 1, . . . ,Q; (ii) TRT with
�+ = �− = (τ − 1

2 ); and (iii) REG (or S-REG) with τ = 1.

APPENDIX B: RECOVERING DBB SCHEME IN [56]

This Appendix elaborates on the equivalence between the
DBB solutions for the calibration of r and �, summarized
in Tables III and IV, and the corresponding solutions derived
in [56], specifically Eq. (29) of [56]. The interest in showing
this equality comes from the different theoretical frameworks
adopted by each work. While we operate on the basis of
the second-order Chapman-Enskog expansion, as popularized
by multireflection works [63,64,67,94,97,112], the study [56]
develops on the much more hardworking procedure of [122].
The common point is that the two cases rely on a lattice-aligned
channel flow for carrying out the derivations, although we
note that [56] considers further constraints, which are detailed
below.
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Let us start out by recalling the solutions of r and � of
DBB, given in Tables III and IV of Sec. IV, namely,

r = (3ν − C1λ
) − (δy ′ − 1/2)

(3ν + C1λ
) + (δy ′ − 1/2)
, (B1a)

� = 3
2

3
−1

[
1

2

(
δ2
y ′−δy ′+1

2

)
+C1λ


(
δy ′−1

2

)
+C2λ

2



]
.

(B1b)

Now, let us adopt [56] notation and replace δy ′ by � following
the transformation � = (1 − δy ′ ). Moreover, let us introduce
the two extra assumptions used by [56], namely, (i) hori-
zontal channel 
 = 1, and (ii) viscosity and mean-free-path

relationship ν = ξλ with ξ = 1
3

√
6
π

. Finally, let us introduce
the specific MRT notation used by [56] for the relaxation
parameters: ν = 1

3 (τs − 1
2 ) and � = (τs − 1

2 )(τq − 1
2 ). With

these changes, our Eq. (B1) rewrites as follows:

r =
(
τs − 1

2

)(
1 − C1

√
π
6

) − (
1
2 − �

)(
τs − 1

2

)(
1 + C1

√
π
6

) + (
1
2 − �

) , (B2a)

(
τs − 1

2

)(
τq − 1

2

)
= 3

2

[
1
2

(
�2 − � + 1

2

) + (
τs − 1

2

)√
π
6 C1

(
1
2 − �

)
+ (

τs − 1
2

)2 π
6 C2

]
. (B2b)

Equation (B2) can be further simplified to

r =
(

1
2 − τs

)
C1 + (τs + � − 1)

√
6
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2

)
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Finally, we solve Eq. (B3a) for C1, which yields C1 =√
6
π

[2� − 1 + (r − 1)(� − τs)]/[(1 + r)(τs − 1
2 )]. Then, af-

ter substituting the C1 expression into Eq (B3b), we recover
the r and τq solutions as given by Eq. (29) of [56]:

r =
(

1
2 − τs

)
C1 + (τs + � − 1)

√
6
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)
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√
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(B4a)

τq = (6�−1)τsr + (5−6�)τs + (
1
2−3�2

)
r−3�2+6�− 5

2

4(r+1)
(
τs− 1

2

)
+ π

4 C2
(
τs − 1

2

)
. (B4b)

This proves that [56] can be recovered as a particular
solution of the general framework developed in Sec. IV.
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