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Long-time instability in the Runge-Kutta algorithm for a Nosé-Hoover heat bath of a harmonic
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In this paper, we investigate the Runge-Kutta algorithm for the Nosé-Hoover heat bath of a harmonic chain. The
Runge-Kutta algorithm is found to be unstable in long-time calculations, with the system temperature growing
exponentially. The growth rate increases if time step size is chosen larger. By analyzing the Fourier spectra
in both space (wave number) and time (frequency), we discover that the growth is caused by spurious energy
accumulation, particularly at the largest wave number. Such accumulation may be explained by von Neumann
analysis for an infinite chain, with the nonlinear heat bath being ignored. Furthermore, we propose to add a filter
to remove excessive energy, which effectively stabilizes the algorithm.
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I. INTRODUCTION

Nowadays, molecular dynamics simulations are indis-
pensable in materials science and engineering. Two major
components in the numerical computation are time inte-
gration and force calculation with a certain potential. As
the physical properties and dynamics of materials heavily
depend on temperature, it is vital in molecular dynamics
simulation to design and implement faithful and efficient
algorithms to incorporate finite temperature and thermal
fluctuations.

Over the past several decades, there have been various heat
baths (thermostats) invented to maintain finite temperature for
an atomic lattice, such as those named after Anderson [1],
Berendsen [2], Langevin [3], Nosé-Hoover [4,5], and more
recently the phonon heat bath [6] and heat jet approach [7,8]. In
the Nosé-Hoover heat bath, temperature is controlled through
a feedback mechanism with additional auxiliary variables.
It is widely used in both equilibrium statistic physics and
nonequilibrium statistic physics, due to its nice physical
properties [9], such as producing canonical ensembles and
maintaining ergodicity.

Commonly used time integration algorithms for the Nosé-
Hoover heat bath include the Runge-Kutta algorithm [10],
the velocity verlet algorithm [11], the reversible reference
system propagator algorithm (r-RESPA) [12], etc. The velocity
verlet algorithm is symplectic when applied to a Hamiltonian
system, and often used in heat transfer studies, such as
thermal conductivity for the Fermi-Pasta-Ulam-β (FPU-β)
atomic chain [13–17], Frenkel-Kontorova atomic chain [18],
few-layer graphene [19], and carbon nanotube [20]. The
r-RESPA is time reversal, and used for the Nosé-Hoover heat
bath to control temperature in constant-temperature atomic
simulations [21–23]. Although the Runge-Kutta algorithm is
neither symplectic nor time reversal, it is still widely used
to integrate the Nosé-Hoover heat bath to explore thermal
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conductivity for a nonlinear chain, such as the FPU-β atomic
chain [13,24–29], Frenkel-Kontorova atomic chain [30,31], φ4

potential lattice [31], Toda lattice [32], and on-site potential
lattice [33]. Moreover, the Runge-Kutta algorithm is the
dominant integrator for ordinary differential equations, and
handy in dealing with nonequilibrium simulations, such as
crack tip motion under finite temperature. As a matter of fact,
stability concerns on the Runge-Kutta method for a harmonic
oscillator triggered the study of symplectic algorithms three
decades ago, starting with the seminal work of Feng [34]. Some
symplectic Runge-Kutta algorithms have been developed since
then [35,36], yet stability of the Runge-Kutta algorithm for the
Nosé-Hoover heat bath of a linear harmonic chain has not yet
been well explored. Furthermore, the commonly used form of
the Nosé-Hoover heat bath is not a Hamiltonian system.

This paper is motivated by comparison of the Runge-
Kutta algorithm and the velocity verlet algorithm for the
Nosé-Hoover heat bath. No meaningful difference between
them appears in numerical tests for an anharmonic chain.
However, when a linear harmonic chain is under consideration,
quite unexpectedly they lead to totally different simulation
results. While the velocity verlet algorithm provides desired
uniform temperature distribution and correct spectrum, the
Runge-Kutta algorithm, as we shall describe later on, produces
indefinitely growing temperature and abnormal spectra. The
Runge-Kutta algorithm is known to be an explicit scheme,
hence it has a restriction of time step size to maintain stability
in general [37]. Yet this does not explain the numerical
observation of instability, which always presents in a long
enough run, regardless of how fine a time step size one chooses.
This motivates a substantial exploration for stability (long-time
instability) in the Runge-Kutta algorithm for the Nosé-Hoover
heat bath of a harmonic chain.

Through a standard von Neumann analysis for an infinite
harmonic chain, with the nonlinear heat bath being ignored,
each normal mode is found unstable. The amplification
factor depends on both the time step size and the wave
number. More precisely, instability diminishes along with
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refinement of time discretization, and short waves grow
faster.

Now consider a finite harmonic chain. The contact with
the Nosé-Hoover heat bath brings in nonlinearity. Numerical
evidences suggest that the linear stability analysis captures
the main mechanism in the nonlinear system, e.g., instability
occurs earlier and more severe at a larger time step size.
Moreover, the wave number spectrum and frequency spectrum
analyses reveal that the temperature growth is heavily related to
the spurious energy accumulation at the largest wave number.

For a nonlinear chain with the Nosé-Hoover heat bath,
strong nonlinearity blends different modes, and the feedback
mechanism in the heat bath stabilizes the whole system.
Therefore, the Runge-Kutta algorithm appears stable for
long-time integration. In contrast, when applied to the linear
harmonic chain, nonlinearity only appears in the heat bath. It
is not enough to blend the energy among different modes, and
leads to indefinite growth of temperature.

With the above understanding, the Runge-Kutta algorithm
may be remedied by a straightforward stabilization. We
introduce a filter to remove excessive energy at large wave
numbers after every fixed time period (filtering time). The
influence and choice of this empirical filtering time are
investigated by numerical tests. When it is suitably chosen, the
stabilized Runge-Kutta algorithm yields normal temperature
and spectra. The effective stabilization of this filtering method,
in turn, justifies our explanation of the long-time instability.

We remark that while it is debatable whether the Nosé-
Hoover heat bath is suitable for the harmonic chain, better
understanding of the numerical integration algorithm may lay
a solid foundation for faithful simulation tools.

The rest of this paper is organized as follows. In Sec. II, we
describe the governing equations of a linear harmonic lattice
under the Nosé-Hoover heat bath, the Runge-Kutta algorithm
for time integration, as well as von Neumann stability analysis
for an infinite harmonic chain. In Sec. III, we present numerical
simulation results and data analysis. In Sec. IV, a stabilized
algorithm is proposed and tested numerically. Finally, we make
some concluding remarks in Sec. V.

II. MODEL, NUMERICAL ALGORITHM, AND LINEAR
STABILITY ANALYSIS

We consider a finite harmonic chain of N atoms with nearest
neighboring interaction. A Nosé-Hoover heat bath is adopted
for the boundary atoms at temperature TL and TR , respectively
[25]. With q0 = qN+1 = 0 and fn = qn−1 − 2qn + qn+1, the
dimensionless governing equations are

q̈n = fn, n = 2,3, . . . ,N − 1, (1)

q̈1 = f1 − ζLq̇1, (2)

q̈N = fN − ζRq̇N , (3)

ζ̇L = 1

θ

(
q̇2

1

TL

− 1

)
, (4)

ζ̇R = 1

θ

(
q̇2

N

TR

− 1

)
. (5)

Here, qn is the displacement of the nth atom away from its
equilibrium, ζL,R are two auxiliary variables, and θ is an
empirically chosen parameter representing coupling strength.
From numerical simulations, we observe no obvious impact of
the initial value of ζL,R . Meanwhile, the impact of θ on heat
bath has been explained in [24]. For definitiveness, we take
ζL,R(0) = 1 and θ = 1 for all following numerical simulations.

Taking the first atom as an example, when its kinetic energy
exceeds the applied temperature TL, ζ̇L is greater than zero.
Then ζL tends to increase to a positive value, and damps the
kinetic energy of the first atom. On the other hand, when
the kinetic energy is low, a negative damping term pumps in
energy. Through this feedback mechanism, the kinetic energy
is maintained around the applied temperature.

In this paper, we are mainly concerned with numerical inte-
gration for the system (1)–(5). The second order Runge-Kutta
algorithm is adopted for time integration. More precisely, with
a time step size h and notation

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1

q2
...

qN−1

qN

q̇1

q̇2
...

q̇N−1

q̇N

ζL

ζR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F (U ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̇1

q̇2
...

q̇N−1

q̇N

f1 − ζLq̇1

f2
...

fN−1

fN − ζRq̇N

( q̇2
1

TL
− 1)/θ

( q̇2
N

TR
− 1)/θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

the second order Runge-Kutta algorithm can be expressed as

U ∗ = Up + hF (Up), (7)

Up+1 = Up + h

2
[F (Up) + F (U ∗)]. (8)

To understand stability of the Runge-Kutta algorithm,
we perform von Neumann stability analysis for the infi-
nite harmonic chain (without the heat bath). We introduce
Qp(ξ ) = 1√

2π

∑
n e−iξnq

p
n to be the Fourier transform of the

displacement. The Runge-Kutta algorithm leads to

Q∗ = Qp + hQ̇p, (9)

Q̇∗ = Q̇p − hω2Qp, (10)

Qp+1 = Qp + h

2
(Q̇p + Q̇∗), (11)

Q̇p+1 = Q̇p − hω2

2
(Qp + Q∗). (12)

Here, ω = 2 sin ξ

2 is the dispersion relation. Eliminating Q∗

and Q̇∗, we have[
Qp+1

Q̇p+1

]
=

[
1 − h2ω2

2 h

−hω2 1 − h2ω2

2

][
Qp

Q̇p

]
. (13)
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The eigenvalues to the coefficient matrix are λ = (1 −
h2ω2

2 ) ± ihω. The modulus |λ| =
√

1 + h4ω4

4 is greater than
1, indicating instability of the Runge-Kutta algorithm. The
energy of each mode increases exponentially as |λ|2t/h, hence
the growth rate is 1

h
log10(1 + h4ω4

4 ). From this expression,
energy grows fastest at the maximal frequency ω = 2 or wave
number ξ = π , with a growth rate kref = 1

h
log10(1 + 4h4).

Furthermore, the growth rate decays toward zero if h → 0.
Hence, a smaller time step size is preferable for stability
concerns.

We remark that the analysis is valid for the linear chain
only. With the heat bath, the interplay between such instability
and nonlinearity can be delicate. Careful numerical studies are
hence carried out.

III. NUMERICAL RESULTS

In this section, we first introduce some definitions and
notations. Then we display the temperature and spectrum
for the Runge-Kutta algorithm, and illustrate the reason for
temperature growth. Having gained an understanding, we
further propose a stabilized Runge-Kutta algorithm.

We simulate a harmonic chain with N = 256 atoms at
temperature TL = TR = 10. Time step size is chosen as
h = 0.01, unless otherwise specified. We denote the total
computation time as ta , and a suitable truncation time as tc.

A. Definitions and notations

Following [24], we define a time dependent system temper-
ature:

T (t) = 1

N

N∑
n=1

q̇2
n(t). (14)

To compare with the theoretical growth rate kref, we define
a time dependent growth rate of system temperature:

k(tl) = log10 T̄ (tl+1) − log10 T̄ (tl)

tl+1 − tl
. (15)

Here, T̄ (tl) represents the average of system temperatures for
time tl to tl+1. The value of sampling time tl is taken at regular
intervals, and the choice is not unique. In numerical simulation,
we take tl = l

20 ta (l = 1,2, . . . ,20).
We further define a local temperature (average kinetic

energy for the nth atom), when the system reaches the local
equilibrium state:

Tn = 1

ta − tc

∫ ta

tc

q̇2
n(τ )dτ. (16)

We take the Fourier transform for velocity in space Aξ,i =
|Fn→ξ {q̇n(ti)}|,(i = 1,2,3, . . . ,I ). Due to large fluctuations in
the instantaneous amplitude Aξ,i , we define a mean amplitude
A(ξ ) = 1

I

∑I
i=1 Aξ,i as the time average of the instantaneous

amplitudes. Here the wave number ξ takes discrete values
from zero to π with an increment 2π

N
. The value of integer I

should be large enough. In numerical simulations, we take the
sampling time ti = i

100 ta (l = 1,2,3, . . . ,100). Furthermore,
we shall focus on Aπ,i to observe the evolution for the most
unstable mode.

We also calculate the frequency spectrum near the termi-
nation time, and denote the amplitude B(ω) = |Ft→ω{q̇1(t)}|
with t ∈ [ta − 1 × 104,ta]. To check energy change for the
largest frequency ω = 2, we define an instantaneous amplitude
B2,j = |Ftj →ω{q̇1(tj )}|. The time tj represents a period of time
within [ ta

50j − 1 × 104, ta
50j ] (j = 1,2, . . . ,50).

B. Long-time instability

We display simulation results with initial data qn(0) =
(−1)n and q̇n(0) = 0, corresponding to the most unstable mode
ξ = π . We observe in Fig. 1(a) that the system temperature
grows slowly in the beginning, and exponentially afterwards.
The growing tendency is close to the solid line representing
the theoretical growth rate for an infinite chain, yet at a
different growth rate. In Fig. 1(b), the local temperatures of
the interior atoms grow indefinitely, distributing in a parabola
shape. Owing to the exponential growth, the amplitude of
local temperature depends mainly on the last moment, while
the shape stays the same.

The temperature growth may be analyzed from the wave
number spectrum. See Fig. 1(c). The mean amplitude A(ξ )
does not distribute uniformly. Energy at the wave number ξ =
π grows fastest and makes the main contribution to the system
temperature growth. This is consistent with theoretical analysis
for the linear infinite chain. Other high frequency modes
also grow and contribute. See Fig. 1(d). The instantaneous
amplitude Aπ (t) does not fluctuate around a certain value.
It grows exponentially with fluctuations. Comparing with
Figs. 1(a) and 1(d), the growth rate of Aπ (t) is about half that
of T (t). Notice that Aπ (t) represents the growth of velocity,
whereas T (t) represents that of the square of velocity.

Despite the growth for the entire chain, the feedback
mechanism of the heat bath maintains the local temperature
T1 and TN at the applied temperature. From the frequency
spectrum of the first atom in Fig. 1(e), the energy concentrates
at the frequency ω = 2. Other frequencies take rather small
amplitudes. In Fig. 1(f), the instantaneous amplitude B2(tj )
gradually goes up and then keeps fluctuating around a certain
value, consistent with a fixed T1.

According to the linear stability analysis, the theoretical
growth rate of the system temperature depends on the time
step size h. For the nonlinear system with heat bath, we take
a range of time step size from 0.05 to 0.006. When the time
step size is small, it takes a long total computing time to
observe growth for the system temperature. In Fig. 2, stars
represent numerical growth rate k(tl) and solid lines represent
theoretical growth rate kref. For time step size larger than
0.01, the numerical growth rates increase quickly and then
maintain at the corresponding theoretical ones. It is similar for
smaller time step sizes, though the logarithmic plotting makes
an illusion of abrupt approaching. The larger time step size we
take, the more quickly the numerical growth rate reaches the
solid line.

For an even smaller time step size such as h = 0.005, the
system temperature does not show observable growth even
at t = 5 × 108. See Fig. 3. It fluctuates around the applied
temperature. Furthermore, the local temperature grows very
slowly, and still forms a mild hump in the middle.
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FIG. 1. Runge-Kutta algorithm with step size h = 0.01: (a) system temperature, (b) local temperature, (c) time average of wave number
spectrum, (d) instantaneous wave number spectrum at ξ = π , (e) frequency spectrum, and (f) instantaneous frequency spectrum at ω = 2.
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FIG. 2. Runge-Kutta algorithm with step size h = 0.05,0.02,

0.01,0.008,0.006 from top to bottom. Stars represent numerical
growth rate, and solid lines represent theoretical growth rate.

In the above, we discover that the system temperature
growth is well expected from the linear stability analysis for
the infinite chain. Energy of the most unstable mode ξ = π

grows fastest, again consistent with theoretical analysis.
It is worth mentioning that other initial conditions have also

been tested. They only affect when the temperature shows an
exponential growth, whereas the exponential growth rate is
determined solely by the time step size.

IV. STABILIZED RUNGE-KUTTA ALGORITHM

In many applications, the Runge-Kutta algorithm is widely
adopted for its convenience in coding and high accuracy. As
the instability is mainly due to the accumulation of spurious
energy at the most unstable wave number, we propose to add a
filter to remove excessive energy at large wave numbers after
every fixed time period �tf .
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FIG. 3. Runge-Kutta algorithm with step size h = 0.005:
(a) System temperature, (b) Local temperature.

More precisely, in view of the high amplitudes of the last
four points in Fig. 1(c), we simply clear these modes with
ξ = 125

128π, 126
128π, 127

128π,π . Then we adopt a rectangular filter:

G(ξ ) =
{

1, 0 � |ξ | < 125
128π ;

0, 125
128π � |ξ | < π.

(17)

At time tα = α · �tf (α = 1,2, . . .), we insert a filtering
step as follows:

q∗
n (tα) = F−1

ξ→n{Fn→ξ {qn(tα)} · G(ξ )},
q̇∗

n (tα) = F−1
ξ→n{Fn→ξ {q̇n(tα)}G(ξ )}. (18)

The filtering time �tf is an empirical parameter depending
on the time step size. If the time step size is big, the high
frequency modes grow quickly. Hence we choose a short
filtering time. We illustrate the stabilized algorithm with initial
data qn(0) = 1 and q̇n(0) = 0, and time step size h = 0.01. We
compute with t = 8 × 107 and �tf = 4 × 105.

After filtering, temperature profiles and spectrum are recti-
fied. The system temperature does not grow exponentially any-
more. See Fig. 4. It keeps fluctuating around the applied tem-
perature. The filter causes relatively bigger temperature fluc-
tuations. See Figs. 4(c) and 4(d). The mean amplitude of each
mode A(ξ ) distributes uniformly around a certain value. For the
most unstable mode, the instantaneous amplitude Aπ (t) does
not rise indefinitely. This verifies the effectiveness of the filter
in avoiding accumulation of energy at the most unstable mode.

To make comparison, we choose other filtering time �tf
and check the local temperature and spectrum. See Figs. 5(a)
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FIG. 4. The stabilized Runge-Kutta algorithm with a filtering time �tf = 4 × 105: (a) system temperature, (b) local temperature, (c) time
average of wave number spectrum, and (d) instantaneous wave number spectrum at ξ = π .
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FIG. 5. The stabilized Runge-Kutta algorithm with different filtering time: (a) local temperature with �tf = 1 × 105, (b) time average of
wave number spectrum with �tf = 1 × 105, (c) local temperature with �tf = 8 × 105, and (d) time average of wave number spectrum with
�tf = 8 × 105.

and 5(b) with �tf = 1 × 105. The local temperature is lower
than the applied temperature. The mean amplitude A(ξ ) of
large wave numbers is lower than the average value. Too
frequent clearance of high frequency modes does not leave
enough time for them to grow. A longer filtering time �tf =
8 × 105 gives results displayed in Figs. 5(c) and 5(d). The
local temperature is higher than the applied temperature, and
the mean amplitude A(ξ ) of large wave numbers is higher than
the average value.

We observe that the filter clears energy in high frequency
modes and balances the spurious growth due to numerical
instability of the Runge-Kutta algorithm. The numerical tests
validate the effectiveness, while the choice of the filtering time
is empirical.

V. DISCUSSIONS

When used as an integrator for a linear harmonic chain,
the second order Runge-Kutta algorithm is unstable for any
time step size. The accumulation of energy appears more
severe at larger time step size, and at larger wave number.
Numerical tests and analyses reveal that this instability persists

in the numerical integration of the Nosé-Hoover heat bath
for a linear harmonic chain, while the interplay between
instability and nonlinearity leads to a different growth rate.
This understanding for the incompetency of the Runge-Kutta
algorithm is further verified by a stabilization method via filter.

We remark that for higher order Runge-Kutta algorithms
the numerical instability may be explored in a similar way,
yet appears even weaker. An even longer filtering time may
be chosen. This may explain the seemingly stable numerical
results in [26], where a linear harmonic chain was simulated
by an eighth order Runge-Kutta algorithm. They also reported
indefinite growth of temperature for longer-time calculations
[38]. From this paper, we discover that the linear instability of
the Runge-Kutta algorithm is the underlying reason.
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