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Impact of the kinetic boundary condition on porous media flow in the lattice Boltzmann formulation
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To emphasize the importance of the kinetic boundary condition for micro- to nanoscale flow, we present an ad
hoc kinetic boundary condition suitable for torturous geological porous media. We found that the kinetic boundary
condition is one of the essential features which should be supplemented to the standard lattice Boltzmann scheme
in order to obtain accurate continuum observables. The claim is validated using a channel flow setup by showing
the agreement of mass flux with analytical value. Further, using a homogeneous porous structure, the importance
of the kinetic boundary condition is shown by comparing the permeability correction factor with the analytical
value. Finally, the proposed alternate to the kinetic boundary condition is validated by showing its capability to
capture the basic feature of the kinetic boundary condition.
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I. INTRODUCTION

An understanding of the transportation processes and fluid
flow through geological porous media helps in various engi-
neering applications, for instance, gas transport, oil extraction,
CO2 sequestration, and many more [1,2]. The transport of
fluid depends largely on the geometry and structure of the
pores. Depending on the pore size, the fluid behavior can be
divided into four major regimes: continuum flow regime with
Kn < 0.001 (Knudsen number Kn is the ratio of the molecular
mean free path with respect to character macroscopic length),
slip flow regime with 0.001 < Kn < 0.1, transition flow
regime with 0.1 < Kn < 10, and free molecular flow regime
with Kn > 10.

The typical length scales of pores in the conventional oil
field is of the order of a few micrometers. Furthermore, the
advent of unconventional energy resources such as tight gas,
shale gas, etc. has attracted focus towards the fluid flow on
an even smaller scale (of the order of nanometers) [3,4]. The
flow behavior in these narrow pores is completely different
from the continuum flow. At finite Kn, many of the continuum
approximations break down, hence, the plain Navier-Stokes
solvers with no-slip boundary conditions may not be valid.
For example, as the pore size decreases, permeability, which
is a key factor in the evaluation of the transport capacity of
porous media, becomes higher than that expected from Darcy’s
law. This phenomenon was first proposed by Kinkenberg [5],
who suggested that the increase is due to the increase of gas
slippage occurring at the solid-fluid interface. Therefore, any
numerical scheme should incorporate the properties such as
slip at the solid-fluid interface in order to accurately predict
flow behavior in narrow pores.

In the last two decades, the lattice Boltzmann method
(LBM) has emerged as an effective tool to simulate the
hydrodynamics of Newtonian fluids following the Navier-
Stokes equation [6–9]. The LBM can be understood as an
approximate technique for solving the discrete Boltzmann
equation based on the single relaxation Bhatnagar-Gross-

*shiwani@i2cner.kyushu-u.ac.jp

Krook (BGK) approximation [10]. Using the multiscale
Chapman-Enskog asymptotic expansion, it can be shown that
the lattice Boltzmann equation reproduces the Navier-Stokes
equation in the vanishing Kn limit [11]. Therefore, at small
Kn limit, the validity of LBM is guaranteed. However, for
finite Kn flow, where the molecular mean free path becomes
comparable to pore size, the applicability of the scheme is only
partially understood. The finite Knudsen flow is governed by
Burnett and super-Burnett equations, which are the higher
order generalized hydrodynamic equations. The numerical
applicability of these equations is limited due to practical
difficulties [12,13].

Through various attempts over the past few years, it is
now recognized that in order to recover the basic features
of noncontinuum flow, the appropriate kinetic boundary
condition is need for gas kinetic schemes [14,15]. Also,
the kinetic origin of LBM motivated Ansumali and Karlin
[16] to introduce a diffusively reflecting solid wall boundary
condition, which can be understood as a direct discretization
of the classical diffuse scattering boundary condition for
the Boltzmann equation. Unlike the bounce-back boundary
condition where the incident particle is directly reversed, the
main concept behind the kinetic boundary condition is that the
particle which strikes a solid wall is reflected back randomly
following Maxwellian distribution. Prior attempts have been
made to incorporate a second-order accurate slip effect using
a mixture of bounce-back and kinetic boundary conditions
with a heuristic tuning parameter [17–19]. However, properly
choosing this parameter is still an open question and the
boundary condition is restricted to straight geometry. Later,
Tao and Guo [20] proposed a mixed boundary condition for the
curved boundaries in which the heuristic parameter is selected
by tuning the constant of the multiple relaxation time (MRT)
lattice Boltzmann scheme to achieve proper slip. Although the
kinetic boundary condition is helpful in reducing numerical
instability, due to the need to calculate the wall normal nnn

towards the fluid, the application of this boundary condition is
restricted to the flat geometry [16,21,22].

In this paper, we focus on the importance of the kinetic
boundary over curved surfaces using a simplified homoge-
neous porous media. We show that the kinetic boundary
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condition is one of the essential ingredients in the lattice
Boltzmann scheme to obtain both bulk and local features of a
fluid flow at finite Kn. Due to the large burden of calculating
surface normal, this boundary condition is not suited for tortur-
ous porous geometry usually encountered in geological rocks.
Therefore, as a next step, we introduced an ad hoc kinetic
boundary condition which does not require the information of
the normal direction. This ad hoc kinetic boundary condition
is constructed by tagging the wall boundary with outgoing flux
and is shown to retain the basic features of the kinetic boundary
condition, at least in the slip and early-transition regime.

The paper is organized as follows: The LBM is briefly
reviewed in Sec. II. The diffuse reflection kinetic boundary
condition as proposed by Ansumali and Karlin [16] is reviewed
and, using the channel flow setup, its importance for the flow
at finite Kn number is highlighted in Sec. III. This simulation
scheme is extended for the simple porous media between two
parallel plates in Sec. IV, followed by the introduction of the
ad hoc boundary condition, which is based on the mechanism
used initially to construct the kinetic boundary condition. In
Sec. V, it is shown that for the porous media flow also, the
kinetic boundary is necessary to obtain the correct value of
permeability and the correct local velocity profile, at least
until the early-transition flow. Finally, the work is summarized
in Sec. VI.

II. LATTICE BOLTZMANN METHOD

In a typical LBM framework, one works with a set of
discrete populations f = {fi}, corresponding to predefined
discrete velocities ccci (i = 1, . . . ,N) [6,23]. The discrete form
of the governing equation is

fi(xxx + ccc�t,t + �t) = fi(xxx,t) + �i(f ) + �tFi, (1)

where �i(f ) is the discrete collision operator generally
expressed by a single relaxation time approximation or the
lattice BGK approximation (LBGK),

�i(f ) = �t

τ

[
f

eq
i − fi(xxx,t)

]
, (2)

which corresponds to the relaxation of the distribution function
to an equilibrium Maxwell-Boltzmann function, f eq, as given
in Eq. (3), at the rate of τ−1,

f
eq
i = wiρ

[
1 + ccci · uuu

c2
s

+ (ccci · uuu)2

2 c4
s

− (uuu · uuu)

2 c2
s

]
. (3)

In Eq. (3), wi is the weight associated with the discrete
equilibrium distribution function, cs is the lattice sound speed,
ρ is the local density, and uuu is the local velocity. The term Fi

in Eq. (1) is the contribution of the body force and is given as
[24]

Fi = wiρ

[
ggg · ccci

c2
s

+ (ggguuu + uuuggg)

2c2
s

:::
(
ccciccci − c2

sδδδ
)]

, (4)

whereggg is the constant acceleration vector. For implementation
purposes, Eq. (1) can be divided into two basic operations as
follows.

(i) Collision:

f �
i (x,t) = fi(x,t) + �t

τ

[
f

eq
i − fi(xxx,t)

] + �tFi. (5)

FIG. 1. D2Q9 discrete-velocity model.

(ii) Free streaming:

fi(x,t + �t) = f �
i (xxx − c�t,t). (6)

The desired local macroscopic observables such as density
(ρ), momentum density (ρuuu), and momentum flux (���) can be
obtained from the discrete distribution function as

ρ(xxx,t) =
∑

i

fi,

ρ(xxx,t)uuu(xxx,t) =
∑

i

ficcci,

���(xxx,t) =
∑

i

fi

(
ccciccci − c2

sδδδ
)
,

(7)

where δδδ is the identity matrix. In the limit of vanishing
Kn number, the multiscale Chapman-Enskog (CE) expansion
yields the Navier-Stokes equations to the second order. The
CE expansion also reveals the relation between the relaxation
time (τ ) and the kinematic viscosity (η) of the fluid as
η = c2

s (τ − �t/2). The D2Q9 velocity model (D stands for
spatial dimension and Q stands for discrete velocity), as shown
in Fig. 1, is used in the present study. It has the following
discrete velocities ccci :

ccci =

⎧⎪⎨
⎪⎩

(0,0) if i = 0[
cos (i−1)π

4 , sin (i−1)π
4

]
if i = 1,2,3,4√

2
[

cos (i−1)π
4 , sin (i−1)π

4

]
if i = 5,6,7,8,

(8)

with the corresponding weights as

wi =

⎧⎪⎨
⎪⎩

4
9 for i = 0
1
9 for i = 1,2,3,4
1

36 for i = 5,6,7,8.

(9)

In order to make this scheme more robust and stable, a
regularization procedure was introduction in the BGK frame-
work (RLBGK) by Chen and co-workers [25,26] and Latt
and Chopard [27] which basically removes the information
of undesired higher order moments. A brief summary of this
procedure is given in Appendix A.

III. KINETIC BOUNDARY CONDITION

One of the major issues when dealing with fluid flow at
finite Kn is choosing the appropriate boundary condition. In the
conventional bounce-back boundary condition, the directions
of the incoming distribution functions are reversed when
it encounters the boundary node. This boundary condition
mimics the no-slip condition in the continuum limit (low Kn).
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However, as the Kn increases, slippage effects starts to appear
at the boundaries and the no-slip assumption is not accurate.
Hence, with increasing Kn, the failure of the bounce-back
boundary condition is inevitable.

Recognizing this shortcoming of LBGK for small-scale
flow and exploiting the kinetic origin of LBM, a diffusively
reflecting solid wall boundary condition was proposed by
Ansumali and Karlin [16]. The basic idea behind this boundary
condition is to redistribute the populations coming towards
the wall such that it follows mass-balance and normal-flux
conditions. The discrete version of the boundary condition is

fi(xxxw,t) = Kf
eq
i (ρ,uuuw), (10)

where subscript w denotes the wall and

K =
∑

ccci ·nnn<0 |(ccci − uuuw) · nnn|fi∑
ccci ·nnn>0 |(ccci − uuuw) · nnn|f eq

i (ρ,uuuw)
, (11)

with nnn being the unit normal direction. The term K can be
understood as the ratio of total outgoing flux to the wall
and total incoming equilibrium flux from the wall. This
interpretation of the term K will be utilized later in Sec. IV
to construct a suitable boundary condition for porous media.
Furthermore, Tao and Guo [20] recently proposed a diffuse
bounce-back boundary condition (DBB) where second-order
accurate slip flow is analytically established in straight flow by
using a combination of the bounce-back boundary condition
and the kinetic boundary. A brief introduction of DBB is given
in Appendix B.

Flow between parallel plates

In order to see the effect of the kinetic boundary condition,
we first consider the two-dimensional, viscous flow between
two stationary parallel plates (plane Poiseuille flow) that are
separated by a distance h. The Kn for this flow is η/(h cs),
where the kinematic viscosity is defined as η = c2

s (τ − �t/2).
The simulation is performed using 20 grid points to discretize
the channel height h. By keeping the mean velocity U0 small,
we attain a nominal Mach number, Ma = U0/cs , of the order of
10−6 to enforce incompressibility. This in turn results in small
Reynolds number, Re = Ma/Kn, which is in compliance with
the Darcy limit. In Fig. 2, the normalized mass flux, Q =∑h

0 ux(y)/Q0 with Q0 = gh2/cs , is plotted with increasing
Kn for the kinetic boundary condition (KB), bounce-back
boundary condition (BB), and diffuse bounce-back scheme
(DBB). The labels used in Fig. 2 to describe the simulation
based on the BGK model with and without regularization
are RLBGK and LBGK, respectively. The label MRT is used
to denote the simulation with a multirelaxation time scheme
with τq = 1, where τq is associated with the relaxation of
heat flux in the multirelaxation model (for more details, see
Appendix B). The mass flux results are also compared with
the direct simulation Monte Carlo (DSMC) results taken from
Ref. [28].

As can be seen from Fig. 2, for continuum flow (Kn → 0),
mass flux evaluated from every scheme is almost the same.
However, as Kn starts to increase, the bounce-back boundary
condition without regularization (BB-LGBK) initially un-
derestimates the mass flux until around Kn ≈ 0.3 and then
overestimates it in the transition flow regime. On the other

10 -3 10 -2 10 -1 10 0 10 1

Kn

10 -3

10 -2

10 -1

10 0

10 1

10 2

Q

KB-RLBGK
KB-LBGK
BB-RLBGK
BB-LBGK
KB-MRT
BB-MRT
DBB
Low-Kn Asymptote
High-Kn Asymptote
Navier-Stokes
DSMC

FIG. 2. Normalized mass flux (Q) as a function of Kn, using
different models. KB stands for kinetic boundary condition, BB
stands for bounce-back boundary condition, and AKB stands for
ad hoc kinetic boundary condition. RLBGK stands for regularized
LBGK and MRT stands for the multirelaxation scheme with τq = 1.
DBB stands for the diffuse bounce-back boundary condition of the
multirelaxation time scheme.

hand, the bounce-back boundary condition in the BGK scheme
with regularization (BB-RLGBK) as well as the bounce-back
boundary condition in the MRT scheme (BB-MRT) almost
give the same value of mass flow as predicted by Navier-Stokes
with the no-slip boundary condition which is Q = 1/(12 Kn).

Further, the kinetic boundary condition in the BGK scheme
without regularization (KB-LGBK) always overestimates the
value. The kinetic boundary condition with regularization
(KB-RLGBK) as well as the kinetic boundary condition in the
MRT scheme (KB-MRT) match well with the DSMC results
and analytical solution given by Cercignani [11] in the low Kn
limit,

Qlow = 1

2

[
1

6Kn
+ s + (2s2 − 1)Kn

]
, with s = 1.01615,

(12)

as well as high Kn limit,

Qhigh = ln (Kn)

2
√

π
. (13)

It is worth noting at this point that results obtained by RLGK
and those obtained by the MRT scheme are similar. This is
not surprising because the regularization process in which
the undesired nonhydrodynamic modes are suppressed can
also be considered as a multirelaxation process in which
the hydrodynamic moments are relaxed at a rate which
is associated with viscosity and, at the same time, the
nonhydrodynamic modes are eliminated by relaxing them with
a unit rate (in this case, τq = 1) [29,30]. Finally, the diffused
bounce-back boundary condition (DBB) which is designed to
capture the flow accurately in the slip regime matches perfectly
with the low Kn asymptote; however, it starts to deviate after
Kn = 0.2. Hence, it can be concluded that the kinetic boundary
condition plays a major role in both BGK and MRT schemes
of the lattice Boltzmann method in order to obtain the correct
nonequilibrium behavior [28,31].
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FIG. 3. Porous media model with pore-throat diameter d .

IV. KINETIC BOUNDARY CONDITION FOR
POROUS MEDIA

The encouraging result discussed in the previous section
inspired us to investigate the finite Knudsen effects in porous
media flow using the LB framework. To test the applicability
of the kinetic boundary condition, we consider a simple
connected porous media model between the parallel plate, as
shown in Fig. 3. In order to define the Kn, the characteristic
length is taken to be the pore-throat diameter d, as shown in
the figure. The centers of the four circles used to construct
the porous media are also identified and labeled as (xi

cen,y
i
cen)

with i = 1
In order to apply the kinetic diffuse reflection boundary

condition, first recall Eq. (10) which says that the distribution
function moving towards the fluid from a stationary wall node
(uuuw = 0) should be updated as

fi(xxxw,t) = Kf
eq
i , (14)

where

K =
∑

Ai<0 |Ai |fi∑
Ai>0 |Ai |f eq

i

, (15)

with Ai = cixnx + ciyny . This boundary condition requires
the knowledge of normal direction nnn towards the fluid
for implementation, which has restricted its use for plane
geometry. The objective now is to find the normal direction
at the boundary node. For this purpose, the whole domain is
divided into solid phases labeled i (corresponding to the ith
circle) and the fluid phase which is set to be 0. The node xxx is
identified as fluid-boundary node xxxi

b of the ith circle if xxx = 0
and xxxN = i, where N stands for the neighboring node on the
grid. Then, the unit normal for a perfect circle is calculated as

n̂nni = xxxi
b − xxxi

cen∣∣xxxi
b − xxxi

cen

∣∣ . (16)

Ad hoc kinetic boundary condition

The calculation of the unit normal for a regular geometry
such as the one shown in Fig. 3 is straightforward. However, the
porous media encountered in natural rock have very complex
geometry. Therefore, it is desirable to introduce a boundary

Solid

a

b

FIG. 4. Each color identifies the boundary node depending on the
outgoing velocity distribution. The arrows represents the directions
of the distribution function to be corrected at a particular boundary
node.

condition which does not require the information of the normal
direction. The boundary condition as given by Eq. (14) can still
be used, but the term K which is the ratio of total outgoing
flux to the wall and total incoming equilibrium flux from the
wall (as mentioned in Sec. III) can be assumed as

K = Fluxout

Fluxeq
in

. (17)

To implement this boundary, we first need to label the
boundary node based on the specific distribution functions
moving towards fluid away from the wall. A pictorial rep-
resentation of the same on a coarser grid is given in Fig. 4.
Different color on the boundary node signifies the different
outgoing flux. To further illustrate the implementation, two
points (a and b) on the boundary node are chosen.

At the boundary node a, the term K is given as

Ka = f↙ + f← + f↓
f

eq
↗ + f

eq
→ + f

eq
↑

, (18)

and the boundary condition implementation is given as

f↗ = Kaf
eq
↗ , f→ = Kaf

eq
→ , f↑ = Kaf

eq
↑ . (19)

Similarly, at boundary node b,

Kb = f↙ + f←
f

eq
↗ + f

eq
→

, (20)

and

f↗ = Kbf
eq
↗ , f→ = Kbf

eq
→ . (21)

This boundary condition will be tested in Sec. V to check its
capability to be used in place of the actual kinetic boundary
condition for a real porous media. Moreover, the real pore
geometry of natural rocks is usually obtained from micro-CT
images, which generate only pixel or voxel data and not the
explicit boundary curve between the pore and solid [32,33].
The proposed ad hoc kinetic boundary condition is very
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suitable for this kind of data and can be directly applied to
binarized CT images. In this boundary condition, rather than
calculating the approximated boundary curve and then the
normal direction, a preprocess operation can be performed to
store a direction list for the boundary nodes, which makes it
computationally more efficient.

V. FLOW BETWEEN PARALLEL PLATE FILLED WITH
POROUS MEDIA

To comply with incompressibility and the Darcy limit,
the Reynold and Mach numbers are kept low. For the case
of creeping flow (Re → 0), permeability (κ), the physical
quantity of interest in porous media flow, is defined using
Darcy’s law as

κ = Qμ

ρg
, (22)

where Q is the mass flux per unit length across the channel,
μ is the dynamic viscosity, g is the body force, and ρ is the
density of the fluid. With an objective to test the ability of
the kinetic boundary condition to capture the microscale and
nanoscale flows, the permeability with different Kn number is
calculated. The permeability correction factor (PCF) which is
defined as the ratio of apparent permeability (κ) with absolute
permeability (κ0) is plotted in Fig. 5. To calculate the absolute
permeability for each scheme in the limit of Kn → 0, we
extrapolated the permeability calculated within the range from
Kn = 10−1 to Kn = 10−3 and chose the value at 10−7 as κ0.
In the present study, we have considered a regular geometry;
however, in geological sites, one encounters heterogeneous
and torturous rock structure. In that scenario, this strategy of
calculating absolute permeability could also be useful because
of the absence of any analytical formula for arbitrary structure.

FIG. 5. Permeability correction factor with increasing Kn num-
ber. DBB (K1) denotes the diffuse bounce-back implementation
where K is set to one as proposed in Ref. [20], DBB (Knorm) denotes
the DBB scheme where K is calculated using information of the
normal direction [Eq. (15)], and DBB (Kad) denotes the DBB scheme
where K is calculated using the proposed ad hoc scheme [Eq. (17)].
The rest of the labels have the same meaning as defined in Fig. 2.
The methods marked within the solid rectangle are the ones with
the kinetic boundary condition which are in best agreement with the
analytical results, and those within the dashed rectangle are with the
ad hoc kinetic boundary condition.

The simulations were performed with 500 grid points in each
direction. Recall that the Kn number in this case is defined
as Kn = η/(dcs). Hence, the Kn is changed by tuning η. The
analytic correction factors proposed by Klinkenberg [5],

κ

κ0
= 1 + 4cKn, (23)

and Beskok et al. [34],

κ

κ0
= [1 + α(Kn)Kn]

(
1 + 4Kn

1 + Kn

)
, (24)

are taken as a reference. Here, c is set to be 1 and the rarefaction
coefficient α(Kn) is given as

α(Kn) = 1.358

1 + 0.170 Kn−0.4348 . (25)

In order to describe the results obtained in Fig. 5, the Kn range
is divided into four flow regimes as below:

(i) Continuum flow regime (Kn < 0.001): For the low Kn
(continuum) limit, each scheme yields almost the same value
of permeability correction factor.

(ii) Slip flow regime (0.001 < Kn < 0.1): The bounce-back
boundary condition in all the schemes (LBGK, RLBGK, and
MRT) does not predict any increase in the value of permeability
from absolute permeability. The kinetic boundary condition
and ad hoc kinetic boundary condition (KB-LBGK, KB-
RLBGK, AKB-LBGK, AKB-RLBGK, KB-MRT, and AKB-
MRT) slightly overpredict PCF after Kn = 0.01, however still
remaining in the agreement with the analytic results. On the
other hand, simplified diffuse bounce-back boundary condition
DBB(K1) overestimates the permeability in the slip regime
itself. The diffuse bounce-back boundary condition and its
ad hoc version, DBB(Knorm) and DBB(Kad), perfectly fit the
analytical solution.

(iii) Early-transition flow regime (0.1 < Kn < 1.0): In
this regime, the bounce-back boundary condition in the
BGK scheme with regularization (BB-RLBGK) as well as
the bounce-back boundary condition in the multirelaxation
scheme (BB-MRT) do not predict a significant increase in the
permeability. The BGK implementation without regularization
(BB-LBGK) shows the increase in apparent permeability;
however, it largely underpredicts the PCF as compared to the
analytical value. The kinetic boundary condition as well as the
ad hoc kinetic boundary condition in the MRT scheme and
BGK with the regularization scheme (KB-MRT, AKB-MRT,
KB-RLBGK, and AKB-RLBGK) provide the permeability
correction factors which are reasonably comparable to the
analytical value. On the other hand, the kinetic boundary
condition and the ad hoc kinetic boundary condition without
regularization in the BGK formulation (KB-LBGK and AKB-
LBGK) significantly overestimate the value of PCF. It should
be noted that the ad hoc kinetic boundary condition under-
predicts the PCF values as compared to those obtained using
the kinetic boundary condition. The simplified diffuse bounce-
back boundary condition DBB(K1) continues to overestimate
the permeability in this regime also. The diffuse bounce-back
boundary condition and its ad hoc version, DBB(Knorm)
and DBB(Kad), lie between between the Beskok and the
Klinkenberg solutions.
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(iv) Transition flow regime (1 < Kn < 10): Finally, in the
transition regime, the bounce-back boundary condition with
regularization in the BGK framework (BB-RLBGK) predicts
a lower value of absolute permeability as compared to the
apparent permeability after Kn = 5.0, which definitely is an
unphysical prediction. The bounce-back boundary condition in
the multirelaxation scheme (BB-MRT) predicts permeability
slightly above one. All of the other simulations except
with the kinetic and ad hoc kinetic boundary conditions
with regularization in the BGK and MRT schemes over-
estimate the value of the permeability correction. These
schemes (KB-RLBGK, AKB-RLBGK, KB-MRT, and KB-
AKB) start to significantly underestimate the analytical value
after Kn = 2.0.

Again it can be seen from Fig. 5 that the regularized
BGK and MRT (τq = 1) produce similar results as expected.
The above-mentioned discussion indicates that the kinetic

boundary condition is one of the essentials for modeling flow
in slip and early-transition regimes under the LB framework.
For the flow beyond this limit, one needs to consider the higher
order lattice, as suggested by Montessori et al. [28]. This aspect
of the scheme is left for future study.

After investigating the bulk properties (permeability), it is
natural to see how the local observables behave under different
boundary conditions. Therefore, the steady state streamlines
are plotted first for the diffuse bounce-back boundary condition
in Fig. 6 and then for the three boundary conditions (BB,
KB, AKB) in the BGK scheme, without regularization in
Fig. 7 and with regularization in Fig. 8, for different Kn.
The same scale has been used for all the plots to show the
difference in the prediction of the velocity field made by
different boundary conditions. For small Kn (Kn = 0.05),
the streamlines obtained from all three boundary condition
are similar.

FIG. 6. Steady state velocity streamlines with diffuse bounce-back boundary condition (DBB) with K obtained in three ways: K1 [Figs. 6(a)–
6(c)], Knorm [Figs 6(d)–6(f)], and Kad [Figs. 6(g)–6(i)], for different Kn numbers.
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FIG. 7. Steady state velocity streamlines in the BGK scheme without regularization for different boundary conditions and Kn numbers.

(i) DBB scheme: The simplified diffuse bounce-back
boundary condition DBB(K1) does not predict accurate results
even in the early transition regime [see Figs. 6(b) and 6(c)]. The
boundary implementation in which information of the normal
direction is needed as well as its ad hoc version, which works
well in the early transition regime, but fails after it.

(ii) BGK (LBGK) scheme: As the Kn number is increased
(Kn = 0.5), the bounce-back boundary condition does not
show any increase of velocity between the pores, as can be
seen from Fig. 7(b). The kinetic boundary condition as well
as ad hoc boundary condition shows an increase in velocity
between the pores [see Figs. 7(e) and 7(h)]. However, as the Kn
number is further increased to 5, all three boundary conditions
fail to produce any reasonable flow profile.

(iii) Regularized BGK (RLBGK) scheme: The kinetic
boundary condition and ad hoc kinetic boundary condition
efficiently capture the flow profile even at high Kn number,

as shown in Figs. 8(f) and 8(i). The bounce-back boundary
condition at Kn = 5.0 produces unphysical vortices at the
boundaries. This proves that the bounce-back boundary con-
dition completely fails at high Kn number.

As can be seen from Figs. 8(d)– 8(f), with the increase in
Kn, the magnitude of velocity increases inside the pore throat.
This increase of velocity can be attributed to the increase of
slip velocity with increasing Kn around the boundaries, whose
effect will be maximum inside the pore throat.

At this point, we can conclude that although by design the
diffused bounce-back boundary condition (DBB) is second-
order accurate in the slip regime, its simplified version
DBB(K1), where the ratio of the outgoing to incoming
equilibrium flux, K , is set to one, does not reproduce accurate
bulk as well as local properties. The true diffused bounce-back
boundary condition DBB(Knorm), where K is calculated based
on the information of local normals and its ad hoc version
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FIG. 8. Steady state velocity streamlines in the BGK scheme with regularization for different boundary conditions and Kn numbers.

DBB (Kad), gives accurate predictions in the slip regime.
At the same time, the kinetic and ad hoc kinetic boundary
conditions with regularization in the BGK scheme work well,
at least for the slip and early-transition regimes, both in terms
of bulk and local variable. Also, in the transition regime, when
other numerical schemes fail to produce the correct local flow
profile, the kinetic and ad hoc kinetic boundary conditions with
regularization in the BGK framework reproduce a reasonably
accurate flow profile. It should be noted that the velocity in the
pore throat, in Fig. 8, is slightly less for the ad hoc kinetic
boundary condition as compared to the kinetic boundary
condition (KB). Therefore, it is instructive to investigate the
slip velocity generated by different boundary conditions. For
this purpose, a point is chosen between the pores, as shown
in Fig. 9. From now on, we only consider the case with the
regularization scheme in the BGK framework. At this marked
location, the steady state velocity is calculated as

upore =
√

u2
x + u2

y. (26)

The upore is plotted with increasing Kn in Fig. 9(b). As
expected, the bounce-back boundary condition does not
predict any significant increase of slip velocity with increasing
Kn. Although both the kinetic and ad hoc boundary conditions

10 -4 10 -3 10 -2 10 -1 10 0 10 1

Kn

(b)(a)

10 -8

5×10 -8

u
 p

or
e

KB
AKB
BB

FIG. 9. (a) A point of observation is marked inside the pore to
study the (b) magnitude of local velocity with the KB and AKB
conditions.
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FIG. 10. Grid convergence study for the KB and AKB conditions. (a) The percentage error in κ and (b) the percentage error in upore. To
provide an estimate of the accuracy, the first- and the second-order accurate lines are also plotted.

show an expected increase in velocity in the pore with
increasing Kn, the ad hoc kinetic boundary condition starts
to severely deviate from and underpredicts the value obtained
from the KB after the slip flow regime. Hence, to estimate the
effect of discretization error present in the ad hoc boundary, it
is helpful to do the grid convergence study on both the bulk and
local observables. The percentage error in permeability (κ) and
and pore-throat velocity (upore) with different grid resolution
(N) are calculated as

% error in κ =
∣∣∣∣κ

N − κ∞

κ∞

∣∣∣∣ × 100 and

% error in upore =
∣∣∣∣u

N
pore − u∞

pore

u∞
pore

∣∣∣∣ × 100, (27)

where the converged values κ∞ and u∞
pore correspond to the

limit dX → 0 (N → ∞), with dX being the grid spacing.
The percentage error in the permeability and velocity inside

the pore throat are plotted in Figs. 10(a) and 10(b), respectively,
at two Kn: Kn = 0.1 and Kn = 1.0. As can be seen from the
figures, for low Kn (Kn = 0.1), the percentage error in both
κ and upore obtained using the kinetic boundary condition,
although fluctuating, is too small (below 0.5) to significantly
affect the continuum observables. For Kn = 1, the kinetic
boundary condition yields the percentage error in κ which is
only slightly above 1 for small number of grid points. The
percentage error in upore for this value of Kn starts with around
5% for small resolution, but converges quickly to 1 as the
grid point is increased. The ad hoc kinetic boundary condition
(AKB) at Kn = 0.1 yields around 5% error in both κ and upore

for small resolution, which decreases with increasing grid size.
However, for Kn = 1.0, the percentage error in both κ and
upore is more than 10 for an even reasonably large number of
grid points. This suggests that the ad hoc kinetic boundary
condition (AKB) predicts the flow reasonably well with small
resolution until the slip flow regime, but for the early-transition
regime, a large number of grid points is needed to get correct
flow properties.

VI. CONCLUSION AND OUTLOOK

In this paper, we explore the feasibility of using the
lattice Boltzmann for micro- to nanoscale porous flows. The

significance of the kinetic boundary is first highlighted by
showing its ability to produce correct mass flux in both
low and high Kn limit in the channel flow setup in the
existing slip model, both in BGK and MRT schemes of the
lattice Boltzmann method. Further, the implementation of
the kinetic boundary is presented in a simple homogeneous
porous geometry by calculating the wall normal around curved
boundaries. It is shown to capture the inherent physics of
the slip and early-transition limit, such as Kn-dependent
permeability and correct local velocity profile. Furthermore,
realizing the difficulties of its usage in a realistic geological
porous structure, an alternate boundary condition is proposed.
This boundary condition is constructed by tagging the wall
with outgoing flux instead of evaluating wall normal and is
shown to reproduce the basic flow characteristics as shown
by the kinetic boundary condition. To sum up, the correct
implementation of the kinetic boundary condition, either by
calculation of the surface normal or in an ad hoc manner as
proposed here, or in a somewhat equivalent manner [35], is
crucial in micro- to nanoscale flows.

The average pore size in the conventional geological sites
is of the order of a few micrometers [33] and, with a mean free
length of gases such as CO2 and CH4 in tens of nanometers
[36], the gas flow in geological porous media falls under the
slip regime. Therefore, in order to predict the accurate storage
capacity of a geological site, we cannot ignore the slip effect.
In such scenario, it is important to use the kinetic boundary
condition if one chooses to use the lattice Boltzmann method
to make numerical predictions of flow. The porous geometry
in two dimensions is considered in the present work; however,
the extension of the boundary condition to three dimensions
is straightforward. In subsequent work, we will study the slip
effect of the fluid flow in a realistic porous geometry of natural
rock imaged by a multislice micro-CT scanner [32].

ACKNOWLEDGMENTS

The authors are grateful for the support of the International
Institute of Carbon-Neutral Energy Research (WPI-I2CNER),
sponsored by the Japanese Ministry of Education, Culture,
Sports, Science and Technology. This study was supported by
JSPS through a Grant-in-Aid for Scientific Research on Inno-

013303-9



SHIWANI SINGH, FEI JIANG, AND TAKESHI TSUJI PHYSICAL REVIEW E 96, 013303 (2017)

vative Areas (Grants No. 15H01143 and No. 17H05318) and
a Grant-in-Aid for Young Scientists (Grant No. 16K18331).

APPENDIX A: REGULARIZATION PROCEDURE

One of the major shortcomings of the LBGK is the loss of
stability with decreasing viscosity (high Re) for applications
of practical importance. In order to address this shortcoming,
a modification in the existing LBGK was introduced by Chen
and co-workers [25,26] and Latt and Chopard [27], called
the regularized BGK method. The motivation behind regular-
ization was to filter out the higher order nonhydrodynamics
or ghost modes, which will remove the unphysical effect
responsible for inducing instability in the macroscopic flow.
To do so, the poststreaming distribution function is divided
into two parts,

fi = f
eq
i + f

neq
i . (A1)

Here, f
eq
i contains only the information of hydrodynamic

moments. However, in order to eliminate the contribution
of nonhydrodynamics mode, f

neq
i is converted to a new

distribution function f Reg which is defined only in the terms
of hydrodynamically relevant moments (ρ,uuu,���). The discrete
form of f Reg turns out to be

f
Reg
i = wi

2c4
s

(
ccciccci − c2

sδδδ
)

: ���neq, (A2)

where ���neq is the nonequilibrium part of momentum flux
and is defined as���neq = ∑

i f
neq(ccciccci − c2

sδδδ). The regularized
version of the BGK-based lattice Boltzmann method takes the
following form:

fi(xxx + ccc�t,t + �t) = f
eq
i +

(
1 − �t

τ

)
f

Reg
i + �tFi.

(A3)

Using RLGBK, not only an improvement in the convergence
rate for a given Re but also a higher stable Re simulation
for a given grid resolution are achieved [29]. In other
words, an important gain in quality and numerical stability
is obtained at very low cost. Although regularization was first
introduced to devise a more stable BGK scheme, later on it
was recognized as one of the key factors essential in finite
Kn flows [28,37,38].

APPENDIX B: DIFFUSED BOUNCE-BACK BOUNDARY
CONDITION

In the multiple relaxation time scheme of the lattice
Boltzmann method, the collision term used in Eq. (1) is given

as

�MRT
i =

∑
j

(MMM−1SSSMMM)ij
(
fj − f

eq
j

)
, (B1)

where the transformation matrix MMM is given by [39]

MMM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(B2)

with the diagonal relaxation matrix SSS being given as

SSS = diag{τρ,τe,τε,τd,τq,τd,τq,τs,τs}−1, (B3)

where τρ and τd can take any value and τs determines the shear
viscosity and τe determines the bulk viscosity. The value of τe

is taken as 1.1 and τε as 1.2, in accordance with Ref. [20].
Since the values of τe and τε have negligible influence on
the simulation results, one can choose to work with a similar
but efficient two relaxation time (TRT) scheme [40,41]. The
value of τq is taken as one in the present study. However, in
a recently proposed diffused bounce-back condition [20], a
combination of the bounce-back (BB) and kinetic boundary
(KB) conditions is used as

fboundary = rfBB + (1 − r)fKB, (B4)

in which the combinational coefficient r and the relaxation
parameter associated with heat flux, τq , are tuned using the
first- and second-order slip coefficients of the channel flow
to achieve the second-order accurate slip model. The explicit
expressions used in Refs. [20,42] (for the specific case of
� = 1/2) for r and τq are

r =
√

6/π − C1√
6/π + C1

,

τq = C2π

4
(τs − 0.5) + 3

16(τs − 0.5)
+ 0.5,

(B5)

where the first-order and second-order slip coefficients are
taken as C1 = [(1 − 0.1817σ )(2 − σ )]/(σ ) and C2 = 1/π +
C2

1/2, respectively [20]. Here the wall accommodation factor
σ is chosen as one.
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