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Theory of wavelet-based coarse-graining hierarchies for molecular dynamics
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We present a multiresolution approach to compressing the degrees of freedom and potentials associated
with molecular dynamics, such as the bond potentials. The approach suggests a systematic way to accelerate
large-scale molecular simulations with more than two levels of coarse graining, particularly applications of
polymeric materials. In particular, we derive explicit models for (arbitrarily large) linear (homo)polymers and
iterative methods to compute large-scale wavelet decompositions from fragment solutions. This approach does
not require explicit preparation of atomistic-to-coarse-grained mappings, but instead uses the theory of diffusion
wavelets for graph Laplacians to develop system-specific mappings. Our methodology leads to a hierarchy of
system-specific coarse-grained degrees of freedom that provides a conceptually clear and mathematically rigorous
framework for modeling chemical systems at relevant model scales. The approach is capable of automatically
generating as many coarse-grained model scales as necessary, that is, to go beyond the two scales in conventional
coarse-grained strategies; furthermore, the wavelet-based coarse-grained models explicitly link time and length
scales. Furthermore, a straightforward method for the reintroduction of omitted degrees of freedom is presented,
which plays a major role in maintaining model fidelity in long-time simulations and in capturing emergent
behaviors.
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I. INTRODUCTION

Balancing the competing needs of computational com-
plexity and fidelity to the underlying chemical and physi-
cal phenomena being studied is a significant challenge in
molecular simulations. The challenge is made more acute
when the properties under investigation evolve over time, as
many orders of magnitude exist between the fundamental time
scale of molecular motions and the time scale of collective
material processes such as heat transfer, diffusion, or elastic
deformations. Coarse-graining methodologies have been fre-
quently used to reduce the complexity of molecular-dynamics
(MD) simulations, by reducing the number of “particles”
being studied [1–5]. Although the elimination of degrees
of freedom often leads to minor gains in the size of the
time steps that can be used in dynamic simulations [6–10],
such improvements have not led to significant breakthroughs
in simulation capabilities. More advanced coarse-graining
techniques will be required to enable simulations of systems
exhibiting structure on the micron or submillimeter scales,
such as semicrystalline materials [11].

In this paper we present an approach towards that end,
focusing on polymeric materials composed of homopolymers
or block copolymers. Our approach is based on the concept of
diffusion wavelets [12,13], which both automatically identifies
chemical structures that can be reduced into coarse-grained
units and also allows for repeated application, thus permitting
much greater customization of the level of simulation than
the traditional single-step coarse-graining approach. Unlike
traditional wavelet decompositions, which are based on prede-
termined scaling and wavelet functions [14,15], the functional
form of diffusion wavelets is based on the topological structure
to which they are applied, making them ideally suitable for
use in molecular systems. Such a technique enables both the

potential reduction of the number of degrees of freedom by
orders of magnitude and a vastly increased time step. Taken
together, these improvements can allow for vastly extended
time scales to be simulated using currently available com-
putational resources. Our approach is similar to the wavelet
transformed Gaussian network model of [16], but our method
directly accesses the underlying molecular Hamiltonian rather
than starting from a coarse-grained approximation. This notion
is fundamentally distinct from the use of wavelets to efficiently
compute coarse-grained (CG) potentials, for example, in the
multiscale coarse-graining approach [17–20].

Among the shortcomings of typical coarse-graining ap-
proaches has been that they normally involve only two
levels of description, the “original” atomistic level, and the
coarse representation, which has typically been based on
the developer’s judgment or intuition. These techniques rely
on partitionings of the atoms as the foundation to deriving
coarse degrees of freedom (DOFs), which typically replace
the atomistic groupings with single beadlike entities [21–27].
While approaches such as the force-matching method of Lu
et al. [28] and the reversible coarse-graining method for
phenolic polymers by Kremer and co-workers [21,22,29]
have greatly impacted accessible simulation scales for these
materials, they do not fundamentally change the underlying
computational process. Furthermore, these CG approaches in-
troduce the difficult problem of generating consistent atomistic
reconstructions [30,31], because particlelike coarse-grained
beads lose information about the particles they subsume. In
order to address this loss of information, approaches have
been developed to reintroduce specific information selectively
[32,33] or to use mixed resolutions [34]. On the other hand,
mixed-resolution approaches can pose theoretical challenges
regarding the fundamental underlying Hamiltonian [35].
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The present work focuses on polymeric materials, which
are the target application for many classes of coarse-graining
methodologies. In particular, polymers’ long chain lengths
and low defect concentrations compound the problems of
two-scale representations and fine-scale reconstruction, by
requiring a large number of particles and their associated
DOFs. Moreover, the equilibration time for polymeric liquids
is itself computationally challenging: A melt whose chains
contain N beads each will require O(N3) time to equilibrate,
making simulation essentially impossible without advanced
simulation approaches [36]. (For a review of this problem, see
[37].) However, coarse graining need not be restricted only to
polymers; even relatively simple fluids, such as water, have
been the subject of coarse-grained models [38].

Many of the above problems can be alleviated by selecting
an appropriate basis set for describing the internal structure of
individual molecules. Consider the analogy of a time-varying
quantity f (t). One naturally represents f (t) in terms of an
infinitely local basis (Dirac δ functions). A more sophisticated
approach, suitable for analyzing certain average properties of
the signal, might employ the Fourier basis consisting of sines of
varying frequency. However, the latter basis is global in nature,
presenting a challenge to processing and storage of signals that
are infrequent or have sharply varying features over only small
durations in time. In signal processing, wavelets are often used
as a basis to differentiate between local and increasingly global
features of the signal, because wavelet bases can be flexibly
defined to efficiently capture features of varying localization
[14,15]. Few other models provide the on-the-fly adaptivity
required for important problems, which in the structural mod-
eling sense might be problems including crack initiation, crack
propagation, and interfacial phenomena [39–41]. By analogy
to the time-varying signal, purely atomistic models and
standard two-scale CG models represent infinitely local Dirac
distributions, which are expensive; coarse-graining methods
based on globally periodic functions (e.g., plane waves) are
inefficient for modeling localized properties. In the context
of time-varying signals, the mathematical inefficiency can be
quantified precisely: Except for limited special cases, either
basis requires infinitely many coefficients to approximate a
signal to within tolerance of a given error metric, e.g., the l2
or l∞ metrics. In contrast, the number of coefficients required
for a wavelet-based representation is usually O(ln2 N ), where
N is the size of the signal (e.g., number of time samples).

Wavelet ideas have already been used extensively to
analyze time series data [15], including some relatively early
applications in molecular dynamics [42]. Our application of
wavelet ideas to a structural representation extends the work
of Ismail et al. [43,44]. In particular, the earlier work employed
the Monte Carlo method and did not capture dynamical
information. The work here develops an approach suitable
for molecular dynamics simulation by interpreting the wavelet
transform of Ismail et al. in terms of the equations of motion.
The method provides a consistent and systematic framework to
derive multiple levels of model resolution while also reducing
simulation complexity.

This approach has numerous advantages, whose theoretical
basis we address in this paper. The general theme of the
advantages is that for the dynamical and nonequilibrium
metrics of interest, this approach especially captures molecular

information relevant to both thermodynamics and kinetics. In
particular, application of diffusion wavelets to the chemical
topology of the molecule leads to the identification of
what we call collective action modes (CAMs) that represent
coordinated motions within the molecule at various length and
time scales. Our approach is rigorously tied to the underlying
physics and has the potential to increase simulation size
and duration by several orders of magnitude. Moreover, the
approach is agnostic to the kind of material being studied and
can be applied to structures of arbitrary chemical complexity,
including both relatively simple molecules such as water
or benzene and more complicated chain molecules such as
polymers and biopolymers (for a multiscale model based on
Lie groups, see [45]). Finally, it is also capable of capturing
minor effects such as mass effects from chemical substitution,
such as partial deuteration or fluorination. This may be of
special importance for materials design, where the task is
to link macroscopic behavior (e.g., Young’s modulus) to the
atomic structure of the monomer unit.

We proceed by introducing the type of classical Hamil-
tonian model we seek to accelerate, as well as the wavelet
methodology and its basic properties. We then discuss how
wavelets can be applied to uncover the CAMs for a given
molecule and how to use CAMs to systematically reconstruct
finer resolutions, as well as deriving mixed resolutions. We
present several examples showing the application of the
method for small molecules such as water and HCN before
summarizing our conclusions.

II. METHODOLOGY

We begin by analyzing the equations of motion in MD for
a physics-based wavelet construction. The foundations of MD
lie in the application of Newtonian mechanics to the energy
functional

E = 1
2 tr(ẋT Mẋ) + V (x), (1)

where x ∈ RN×3 are particle positions, ẋ ∈ RN×3 are particle
velocities, N is the number of particles, M is the diagonal
matrix of particle masses, and V is the potential. For the
macromolecular systems we are interested in, V is usually
partitioned as

V = Vharmonic + Vnonharmonic, (2)

where Vharmonic(x) = ∑
i �=j Kij (‖xi − xj‖ − r

(ij )
0 )2/2, Kij is

the force constant of the harmonic oscillator, xk is the position
of particle k, and r

(ij )
0 is the equilibrium distance of particles i

and j . The atoms and the bonds between them define a graph
in which the atoms are the vertices and an edge between atoms
i and j has weight Kij . The maximum number of edges for
a vertex in organic materials is 4 and even in organometallic
complexes the number of edges is unlikely to exceed 6 (the
typical maximum coordination number). Consequently, the
matrix representation of this graph, defined by K , should be
highly sparse.

Since generally the bond vibrations associated with the
harmonic potential limit time-step size and define molecular
units outside of reactive potentials [46,47], our multiresolution
approach begins with the graph Laplacian of the weighted
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FIG. 1. Example of a weighted graph Laplacian derived from a
simple weighted graph.

graph defined by using particles as vertices and the bonds
as edges weighted by the harmonic force constant. This graph
Laplacian, denoted by �, is here a matrix that can be defined as

� := diag(K1) − K, (3)

�ij =
{∑

j Kij , i = j

−Kij , i �= j,
(4)

where 1 denotes a vector of all ones and diag(v) denotes a diag-
onal matrix defined in terms of a vector v, so that if A = diag(v)
then Aii = vi . An example of the weighted graph Laplacian
� for a linear triatomic molecule can be found in Fig. 1.

Using Eq. (1) and our definition of �, we derive the
equations of motion

Mẍ = −∇V (x) = −�x − V ′(x), (5)

where V ′(x) = ∇V (x) − �x is the force for x not due to �; �
is the graph Laplacian of the weighted graph with particles as
vertices and the bonds as edges weighted by the harmonic force
constant (see Fig. 1). By letting r = M1/2x, p = ṙ , and q =
�̃1/2M1/2x, where �̃ = M−1/2�M−1/2, the harmonic energy
term can be expressed as (‖p‖2 + ‖q‖2)/2 and the equations
of motion become

ṗ = −�̃1/2q − V ′(x) = −�̃1/2q − Ṽ (r), (6)

where Ṽ (r) = V ′(M−1/2r) is the effective potential in terms
of r . If Ṽ = 0, the system can be solved analytically,

y(t) = eϒty0, (7)

where

ϒ =
(

0 �̃1/2

−�̃1/2 0

)
, y(t) =

(
q(t)
p(t)

)
, y0 =

(
q0

p0

)
.

(8)

It can be shown that �̃ is positive semidefinite and that
the eigenvectors of the exponential operator in Eq. (7) are
(Uj , ±iUj ), where Uj is an eigenvector of �̃. The solutions
to Eq. (7) oscillate with frequencies ±ωj , respectively, where
ω2

j is the eigenvalue of �̃ corresponding to the eigenvector
Uj . For this analytical case, any eigensolution of ϒ can be
propagated through time independently of any other solution.
Unfortunately, this simplicity is in general broken by Ṽ ,
which nonlinearly couples all of the eigensolutions to one
another. As a consequence, all solutions have to be simulated
concurrently according to the highest frequency associated
with an eigenvector. Hence, the transformation from particle
space coordinates (x,ẋ)† to the harmonic solution coordinates
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FIG. 2. Dyadic trees generated by multiresolution formalism us-
ing a filter T . Shaded spaces are final subspaces of the multiresolution.
All other spaces are intermediates of the construction. Shown on top
is the generic scheme and on bottom is an example using butane. The
final spaces are in gray; diamonds (red) and squares (blue) denote
opposite signs of weights in the construction from the finer scale.

offers no advantage. To circumvent this issue, a basis that
isolates the coupling effects from high- and low-frequency
components is needed.

The key motivation for our work is the recognition that the
mass-weighted graph Laplacian �̃ relates spatial coordinates
to temporal frequencies, which suggests that its eigenvector
matrix is a promising basis for compression. The weighted
graph Laplacian �̃ and its matrix of eigenvectors are then
analogous to the Laplace operator and the Fourier transform,
respectively, in conventional wavelet theory.

A. Basic multiresolution

Here we introduce the wavelet transform used in this work
and its derivation. We use the multiresolution analysis for
diffusion wavelets as introduced by Coifman and Maggioni
[12]. In essence, the multiresolution decomposition partitions
the eigenvalues and eigenvectors of �̃, effectively strongly
coupling high frequencies in the time domain to high-
frequency eigenvectors of �̃ in the particle domain. This is
an important point for the applicability of our approach: Not
only can DOFs be reduced, but the time step may also be
increased considerably, approximately by a factor of 2 at each
subsequent resolution.

The multiresolution scheme (see Fig. 2) relies on a positive-
definite low-pass filter T with ‖T ‖∞ = 1, i.e., an operator that
suppresses high-frequency vectors, and an accuracy operator
Pε that projects eigenvectors of a matrix X ∈ span{T 2n |n ∈ N}
with associated eigenvalue less than a given accuracy ε > 0
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to zero. The effect and purpose of the filter will be to
project out DOFs associated with high frequencies, thereby
producing a hierarchy of CAMs in respective vector spaces.
After each application, the associated frequencies roughly
halve and concomitantly the minimum time step size roughly
doubles.

The recursively defined vector spaces Vn = Vn+1 ⊕ Wn+1,
where

Vn+1 = Pε(T 2n+1
)Vn (9)

and

Wn+1 = ker Pε(T 2n+1 |Vn
) (10)

are iteratively associated with orthonormal bases via QR

decompositions,

T 2n = QnRn, (11)

where Qn is unitary, Rn is upper triangular, and both are
dependent on the basis used to express T 2n

. The algorithm
terminates due to the finite spectrum of T when only a single
eigenvector remains.

One advantage of this approach is the inherent invariance
of the wavelet spaces with respect to permutations of the
graph vertices and its ability to deal with arbitrary matrices
T with ‖T ‖∞ � 1. The wavelet space at scale n (Wn) is ap-
proximately spanned by eigenvectors of T whose eigenvalues
obey

2−n+1 ln ε < ln λ � 2−n ln ε. (12)

Only a limited degree of mixing with eigenvectors associated
with eigenvalues outside of these bounds is possible (see
Appendix B for details). Since T is positive semidefinite,
T can be rewritten as an exponential eln T . The application
of the previous procedures are equivalent to doubling the
spectrum of ln T followed by projecting out the high-frequency
components of the spectrum of ln T .

1. Properties of �̃ as a filter

With an efficient means of computing the wavelet transform
in hand, we consider exclusively in the following the low-pass
filter T = I − �̃/C, where C is a constant sufficiently large
to render T positive semidefinite. In order to minimize the
number of matrix-matrix multiplications, in particular with
ker Pε(T 2n

)|Vn
= ∅, the normalization constant C = ‖�‖∞

would generally be optimal as �1 �= ∅. Eigenvalues for graph
Laplacians, such as �, are known to lie in [0,2 maxi �ii] [48].
Hence, C is chosen to be between maxi �̃ii and 2 maxi �̃ii for
all numerical examples.

As implied by Eq. (12), the frequency range � ln λ =
2−n ln ε for each wavelet space Wn is drawn ever tighter
with each iteration while the eigenvalues λ approach 1. Thus,
generally, more CAMs correspond to scales of high frequency
than scales of low frequency. As a result, each successive
scale corresponds to an increase in the minimum time step
size of that scale in MD simulations of approximately ε−2n

as
well as a significant reduction of CAMs. Furthermore, unless
the effective potential Ṽ couples involved scales strongly,

N N

NN

n

FIG. 3. Chemical structure of polytetrazine.

sufficiently coarse scales (n 	 m) are quasistatic compared
to a given scale m, while sufficiently fine scales (n 
 m)
only influence the target scale via their static mean. Therefore,
only the relevant scales need to be propagated through time,
reducing the DOFs and allowing one to raise the time step size
to match the scales.

Assuming that eigenvalues of T are distributed approxi-
mately exponentially, ε = e−1/2 would lead to ln2 N scales,
where N is the dimensionality of �̃. This leads to many
DOFs per scale due to issues discussed below. Instead a
higher resolution of ε

1/2
machine is used. Although this wastes some

computation on the first few iterations because ker PεT
2n |Vn

=
∅, it is equivalent to choosing a tolerance on the scale of δmax,
εeffective = ε2−m

machine ≈ 1 − δmax.

2. How molecular information influences �̃

Since the filter T and the weighted graph Laplacian �̃

derived from the MD potentials share the same eigenvectors
albeit with reversed order of eigenvalues, we discuss its
properties in greater detail. These properties have a major
impact on the performance of the wavelet transform. In the
following, we discuss shortly the conditions under which
separate groups of atoms are strictly independent of each other
leading to highly localized CAMs.

Due to the small number of bonds an atom generally
has, vertices are also generally of low degree. As a result,
there are highly localized modes due to invariant subspaces
of chemical motifs. For example, any CH2 group has an
associated medium-frequency, highly localized eigenvector of
�̃. This follows from the fact that the hydrogens are leafs on
the graph, i.e., the weighted subgraph Laplacian

�̃CH2 =

⎛
⎜⎝

2KCH
12 + o −KCH√

12
−KCH√

12

−KCH√
12

KCH 0

−KCH√
12

0 KCH

⎞
⎟⎠, (13)

where o collects the contributions from further bonds with
the carbon atom, shows only contributions from CH2 for the
hydrogens. If the hydrogen atoms are identified with indices
i and j on the full graph Laplacian, then (ei − ej )/

√
2 is an

eigenvector with an associated frequency
√

KCH/mH of a CH
vibration.

A slightly more involved example that also shows that this
phenomenon is not restricted to leaves on the graph is the
repeat unit of the energetic polymer poly-1,2,4,5-tetrazine (see
Fig. 3), which has an invariant subspace spanned by two in-
dependent eigenvectors. The repeat unit block of the weighted
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graph Laplacian �̃ is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2X+Z1
12 − X√

12×14
0 − X√

12×14

− X√
12×14

X+Y
14 − Y√

12×14

0 − Y√
12×14

X+Y
14 − X√

12×14

− X√
12×14

X+Y
14 − Y√

12×14
0

− Y√
12×14

X+Y
14 − X√

12×14

− X√
12×14

0 − X√
12×14

2X+Z6
12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

where X is the bond constant for the C–N bond, Y for the N–N bond, and Z1/6 for the contributions of vertices outside the
repeat unit. The two vectors (0,1,1, −1, −1,0) and (0,1, −1,1, −1,0) span a subspace invariant under application of A but that
is mapped to zero for operators B with entries Bij �= 0 ⇐⇒ i/j �∈ {2,3,4,5}. Hence, these vectors are highly localized (see
Appendix C for details of the general case).

In large linear homopolymers, discussed in later sections, the invariant subspaces represent highly degenerate eigenvalues due
to the polymer’s repetitive structure. Degeneracies in �̃ reduce the effectiveness of the wavelets in the sense that no choice of
frequency accuracy alone can be used to separate them into individual subscales. On the other hand, when these degeneracies
exist outside of the focus of the targeted time scale, the degeneracy allows for a large reduction in tracked CAMs. Especially for
polymers, the high degeneracies associated with CAMs internal to the repeat unit are generally high-frequency CAMs and are
thus dropped at longer time scales. In such cases, when large numbers of degenerate frequencies coincide with the targeted time
scale, it may be possible to incorporate more information from the potential Ṽ , but this is outside of the current scope.

Example: Butane [H (CH2)4H ]. Butane has 14 atoms and therefore the graph Laplacian associated with H(CH2)4H is the
14-dimensional square matrix

Δ ∝

1 −1

−1 3 + κ −1 −1 −κ

−1 1

−1 1

−κ 2 + 2κ −1 −1 −κ

−1 1

−1 1

−κ 2 + 2κ −1 −1 −κ

−1 1

−1 1

−κ 3 + κ −1 −1 −1

−1 1

−1 1

−1 1

, (15)

where κ = 44/31 is the ratio of force constants for a C–C bond to a C–H bond in the polymer-consistent force field (PCFF) [49]
and the units of kcal/mol/Å/Å have been subsumed in the proportionality constant. The individual CH2 repeat units have been

boxed for emphasis. Since 660 kcal/mol/Å
2

is an upper bound for �, using the filter T = I − �/(660 kcal/mol/Å
2
) and εmachine

as the cutoff criterion yields six scales. The first four application of the scheme (T ,T 2, T 4, T 8, and T 16) did not lead to any unit

vectors below the threshold. At n = 5, the four highest frequency modes of � (λ = 517.1, 524.0, 556.3, and 556.3 kcal/mol/Å
2
,
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respectively),

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

H C H H C H H C H H C H H H

−0.50 0.46 −0.50 −0.50

0.33 −0.53 −0.53 0.21 −0.36 −0.36

−0.24 0.35 0.35 0.35 −0.52 −0.52

−0.46 0.50 0.50 0.50

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

approximately map to zero for T 32, i.e., the logarithm of the expectation values with T do not exceed 2−5 ln ε ≈ −1.13
[ln(1 − λ/660) < −1.53]. In Eq. (16) the coefficients are coded by their signs to highlight the inherent symmetries; negative
values are in italics and positive values are in bold. These CAMs correspond to the symmetric stretches of the methyl groups.
Hence the coefficients on the nonzero weighted carbon indices are opposite in sign to their bound hydrogens. This is less obvious
in the middle block of Eq. (16), as these are superpositions of the more localized vectors.

The six second highest frequencies [λ = 440 kcal/mol/Å
2

for all ln(1 − λ/660) ≈ −1.10]

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H C H H C H H C H H C H H H

0.81 0 −0.39 −0.43

0 0.72 −0.69

0.10 0 −0.70 0.70 0

0 −0.71 0.71

0 0.82 −0.41 −0.41

0.71 −0.71

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)

are computed for n = 6 and their expectations with T are between 2−5 ln ε ≈ −1.13 and 2−6 ln ε ≈ −0.56. These CAMs
correspond to individual HH stretches. The CAMs on the first and last two rows cover the degeneracy between the three
hydrogens within the respective methyl groups, whereas the third and fourth rows show isolated HH vibration modes.

The next two powers of T (T 128 and T 256) do not filter out any new spaces. The third wavelet subspace is spanned by a single

vector [λ = 72.7 kcal/mol/Å
2

for ln(1 − λ/660) ≈ −0.12]

⎛
⎝H C H H C H H C H H C H H H

0 −0.22 0 0 0.59 0.20 0.20 −0.59 −0.20 −0.20 0.22 0 0 0

⎞
⎠ , (18)

with exponent n = 9 for T 2n

. The logarithm of its expectation value with T is between 2−6 ln ε ≈ −0.56 and 2−9 ln ε ≈ −0.070.
This CAM isolates the asymmetric stretch between the terminal carbons and the centers of mass of the bridging methylene
groups.

The fourth wavelet subspace is spanned by another vector [λ = 42.1 kcal/mol/Å
2

for ln(1 − λ/660) ≈ −0.066],

⎛
⎝ H C H H C H H C H H C H H H

0.13 0.43 0.13 0.13 −0.46 −0.15 −0.15 −0.46 −0.15 −0.15 0.43 0.14 0.14 0.14

⎞
⎠ , (19)

with exponent n = 10 for T 2n = T 1024. The logarithm of its expectation value with T is between 2−9 ln ε ≈ −0.070 and
2−10 ln ε ≈ −0.035. This CAM captures the symmetric stretch between the center of mass of the bridging methylenes and the
centers of mass of the terminal methyl groups.
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The last nontrivial wavelet subspace also is spanned by a single vector [λ = 12.2 kcal/mol/Å
2

for ln(1 − λ/660) ≈ −0.019]

⎛
⎝ H C H H C H H C H H C H H H

−0.17 −0.59 −0.17 −0.17 −0.24 0 0 0.24 0 0 0.59 0.17 0.17 0.17

⎞
⎠, (20)

with exponent n = 11 for T 2n = T 2048. The logarithm of its expectation value with T is between 2−10 ln ε ≈ −0.035 and
2−11 ln ε ≈ −0.018. This CAM captures the symmetric stretch of the bridging carbons and the centers of mass of the terminal
methyl groups.

The coarsest level (0 kcal/mol/Å
2
)

H C H H C H H C H H C H H H

0.13 0.45 0.13 0.13 0.45 0.13 0.13 0.45 0.13 0.13 0.45 0.13 0.13 0.13
(21)

This last CAM is just the center of mass.

3. Multiresolution construction from fragments

Since the previously mentioned invariant subspaces are in-
herent to molecular fragments and some molecular fragments
are particularly common, the question of how much can be
gained by precomputing the internal scales of these fragments
arises. For example, proteins are long heterogeneous polymers,
but they are mostly comprised of only 20 amino acids. Hence it
is instructive to characterize the effects of modifying bonds or
substituting different atoms. Indeed, connecting fragments (see
Appendix D for details) affect precomputed CAMs such that
only a few CAMs need to be adjusted. Precomputed fragments
can therefore speed up the computation of scales considerably
when the perturbations due to connecting them are relatively
small.

4. Example: Linear homopolymers

Linear homopolymers are an important class of materials,
whose graph Laplacians exhibit convenient structures that we
will exploit in the following to derive their CAMs. Linear
homopolymers are a successive addition of edges between
identical building blocks. We can derive computationally
inexpensive algorithms to compute the eigenvalues of their
weighted graph Laplacians and thereby the successive con-
struction of the respective wavelet spaces. The eigensystems
are computed by exploiting the recursive structure of �̃ to
solve n much smaller eigensystems, where n is the number
of repeat units in a single chain of the polymer. The graph
Laplacian of linear homopolymers can be ordered to have a
block Toeplitz structure, where each nonterminal block is a
constant m × m matrix for the off-diagonal B and diagonal A,
respectively,

�̃ =

⎛
⎜⎜⎜⎜⎝

A B∗ 0 B

B
. . .

. . . 0

0
. . . B∗

B∗ 0 B A

⎞
⎟⎟⎟⎟⎠, (22)

where m is the number of particle DOFs in the repeat unit of
the polymer. Furthermore, the off-diagonal block B generally
consists of a single nonzero entry representing a single bond

connecting repeat units, such as B1,m [see off-diagonal blocks
in Eq. (15) for an example]. This highly repetitive structure
can be exploited to compute eigenvectors and eigenvalues very
efficiently and hence the CAMs (see Appendix E).

The following simulation exemplifies the effectiveness of
the approach. The molecular-dynamics simulation was per-
formed in LAMMPS [50]. A crystalline model of polyethylene
(PE) consisting of 100 800 atoms in a single infinite chain,
wrapped due to periodic boundary conditions, was simulated
in the NV T ensemble with 2-fs time steps, PCFF [49] at
500 K for 1000 time steps. The monoclinic unit cell has
edge vectors a = (103.432 Å,0,0), b = (0,147.87 Å,0), and
c = (73.88 Å,0,50.78 Å). The initial structure is depicted in
Fig. 4.

FIG. 4. Simulated 3D structure of a 100 800-atom polyethylene
single crystal.
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FIG. 5. Fourier transform of the y component [FT(y)] of 1000

atoms in crystalline PE (100 800 atoms) with frequency ω, excluding
zero frequency to allow detail at other frequencies. The MD
simulations were at 500 K and 1 atm. Shown on the left are individual
power spectra per atom and on the right is the power spectrum of
magnitude of optimal representation.

Figure 5 shows the superimposed Fourier-transformed time
series of 1000 atoms from the 500 K trajectory, which due to
the high temperature shows the highest mobility of atoms.
Although, the zero frequency is by far the most intense signal
(and is omitted from the figure for clarity), a wide range of
other frequencies is active, most importantly around 0.45 PHz,
which limits the time step of atomistic simulations of PE to
2.4 fs or less.

On the other hand, Fig. 6 shows the effects of scales on time
series analysis. The finest scale out of 25 still retains the high-
frequency components [Fig. 6(a)] as may be expected, but they
are much less intense than the remaining modes. Traversing
the scales, it is noteworthy that a decreasing number of DOFs
at the coarser scales show significant peaks at all. At the
medium scale [Fig. 6(b)], no high-frequency components are
found anymore. Therefore, medium-scale and coarser DOFs
are quasistatic compared to the finer scales. Furthermore, the
signals are clearly separated and very sharp despite the high
temperature, which speaks for strongly decoupled modes and
justifies dropping the finer scales, which in turn facilitates
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FIG. 6. Fourier transform of the y component [FT(y)] of a
100 800-atom crystalline PE sampled at 1 fs with frequency ω. Three
scales are shown: (a) the first (finest) scale, (b) the fifth scale, and (c)
the 12th scale (out of 25).

speed-up by not only reducing DOFs but also increasing the
propagation time step.

B. Adaptive multiresolution

In the previous sections, our goal was to identify scales of
the physical system to remove unimportant CAMs, thereby
increasing time step size and reducing DOFs. However, for
some phenomena, such as phase transitions such as melting
of a polymer, fine details that are unimportant at one point
in time can play a major role at another. So we now
turn to the problem of reconstruction, that is, reintroducing
dropped CAMs. We find that reconstruction is systematically
possible for numerical (e.g., derived from iterative Boltzmann
inversion) and analytical (where such exists, e.g., quadratic
potentials) coarse-graining hierarchies.

1. Reconstruction theory

We begin by putting coarse graining into a wider context.
In general, a coarsening γ : α → β is a continuous surjection
between two topological state spaces α, the fine space, and
β, the coarse space, which can be parametrized by n > m

state variables, respectively. As an example, one can consider
mapping the positions of groups of particles to their centers
of mass. In statistical mechanics, the fine-grained state space
α is associated with a probability measure Pα : {X ⊂ α} →
[0,1] and a corresponding probability space. For systems in
equilibrium, α would further follow a Boltzmann distribution.
The coarsening γ thereby induces a probability space on
the coarse states in β as well, with the probability measure
Pβ(k) = Pα(γ −1(k)), where k ⊂ β and γ −1(k) ⊂ α is the
preimage of k. Here Pβ constitutes the mean probability
distribution of the coarsened DOFs. It is thus possible to
select (reconstruct) a precursor for a state b ∈ β by sampling
γ −1({b}) with Pα via the conditional probability P (a|b) =
Pα({a} ∩ γ −1(b))/Pα(γ −1(b)), e.g., using Monte Carlo sam-
pling. Since n > m, there is also a complementary coarsening
γ ⊥ : α → ker γ with its complementary probability measure.

In MD, the state spaces consist of the positions and
their associated momenta and thermodynamic state variables,
such as temperature or pressure. The probability distributions
are Boltzmann distributions that depend on the studied
thermodynamical ensemble. In a sequence of coarsenings
(γn : βn → βn+1)n spanning several scales, such as that
derived from the preceding multiresolution scheme, it is
generally not cost effective to sample fully in the largest
space α =: β0 and analytical derivations for Pβn

are rarely
available. Hence, approximations need to be made. Common
solutions in the MD community are probability measures
from iterative Boltzmann inversion or (successive) force
matching to generate effective potentials that are themselves
Boltzmann distributed. Hierarchical iteration thereby produces
not only probability distributions on the coarser space, but also
conditional probability distributions for a fine state mapping to
a coarse state. Furthermore, the probability distributions can
be used to indicate when a previously undersampled coarse
state subspace is encountered at some state x, e.g., using an
expected improvement measure [51] or a sensitivity analysis
of the potential − ln Pβ(x) with respect to the sampled points,
for which the trust boundaries can be precomputed.

013301-8



THEORY OF WAVELET-BASED COARSE-GRAINING . . . PHYSICAL REVIEW E 96, 013301 (2017)
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FIG. 7. Dyadic tree generated by separable coarsenings. Shaded
spaces are final subspaces of the multiresolution. All other spaces
are intermediates of the construction with γ1 = μA ⊕ μ⊥

A and γ2 =
μA ⊕ μB .

2. Coarse-graining hierarchies

In the context of MD, mixed resolutions are necessary
for the concurrent treatment of, e.g., gross rigid protein
orientations and flexible active site residue interactions with a
binding molecule. State spaces with mixed levels of fine and
coarse CAMs arise naturally from the multiresolution scheme
laid out in Eqs. (9) and (10) (see Appendix F and Fig. 7 for
details).

The sequence of coarsenings (γn : Vn → Vn+1)n generates
a full dyadic tree, due to the complementary coarsenings γ ⊥

n ,
i.e., each state space can be split into ker γ ⊥

n and ker γn. A
sequence of separable coarsenings (γn,βn,μAn

,μBn
) thereby

induces a hierarchy of coarsenings and associated probability
measures, induced as described above.

3. Wavelet hierarchy

A minimal set of separable coarsenings that generates a
full given hierarchy is fundamental and characterizes said
hierarchy. One such sequence for coarsenings based on CAMs
for Vm = (

⊕�2−mN�
n=1 W2mn−1)ln2 N

m=0 is

μAm
:

�2−m−1N�⊕
n=1

W2mn−1 →
�2−m−2N�⊕

n=1

W2m+1n−1, (23)

μBm
=

�2−mN�⊕
n=�2−m−1N�+1

W2mn−1 →
�2−m−1N�⊕

n=�2−m−2N�+1

W2m+1n−1,

(24)

where N is the number of particles in the finest resolution.
We note that these intermediate probability distributions are

available both analytically and numerically, since an accurate
fundamental coarsening has to include proper statistics for
the intermediate state space to be consistently sampled.
Recursive application of conditional probabilities enables
concurrent mixed resolutions. Since the construction of CAMs
from the multiresolution analysis produces a hierarchy of
frequencies, it induces a hierarchy of coarsenings by dropping
successively higher-frequency CAMs, i.e., by applying the
low-pass filter Pε(T 2n

).

4. A priori approximations for reconstruction

Implementation of reconstruction algorithms as discussed
above requires a starting point. In the following, methods are
proposed for finding good starting points based on �̃ and other
molecular information that is available prior to simulation, i.e.,
without the need for MD or Monte Carlo sampling. To second
order, a quadratic potential around the equilibrium positions
of the transformed coordinates approximates the full potential.
We assume dominance of harmonic terms, in both the original
and the transformed basis:

Vbond(M−1/2UTr̃) ≈ 1
2 (r̃ − r̃0)TU�̃UT(r̃ − r̃0), (25)

where r̃ = UM1/2x is the position vector in the wavelet basis
and UM1/2 is the wavelet transformation matrix. From statisti-
cal mechanics the root mean square deviation from equilibrium
of a harmonic oscillator is

√
kT /λ, where λ is the force

constant. In other words, the higher-frequency components
are found increasingly close to their energy minima. This
implies that finer scales only have small deviations from their
equilibrium positions, while coarser scales may access a much
larger space.

We start by approximating ‖xi − xj‖ by a Taylor expansion
around r

(0)
ij . This transforms the bond potential Vbond into

Vbond ≈ 1

8

∑
ij

Kij

r
(0)2

ij

(‖xi − xj‖2 − r
(0)2

ij

)2
. (26)

Hence, to find equilibrium distances for r̃ = UM1/2x, we solve
the minimization problem

min
r̃0

∑
Cij

[‖(M−1/2UT r̃0)i − (M−1/2UT r̃0)j‖2 − r
(0)2

ij

]2
,

(27)

where Cij = Kij/r
(0)2

ij .
For example, the two nonzero eigenvalues of H2O cor-

respond to a unique solution for reconstructing H2O. The
harmonic Laplacian for H2O,

�̃H2O =

⎛
⎜⎜⎝

2KOH
mO

−KOH

m
1/2
O

−KOH

m
1/2
O

−KOH

m
1/2
O

KOH 0

−KOH

m
1/2
O

0 KOH

⎞
⎟⎟⎠, (28)

shares the same structure as CH2. The eigenvalues λ0,1,2 of this
simple matrix are 0, KOH, and (1 + 2/mO)KOH, respectively,
with corresponding eigenvectors (m1/2

O ,1,1), (0,1, −1), and
(2m

−1/2
O , −1, −1). The transformation matrix from r̃ to x is

W =
⎛
⎝m

−1/2
O

1
1

⎞
⎠

⎛
⎝m

1/2
O 0 2m

−1/2
O

1 1 −1
1 −1 −1

⎞
⎠

×
⎛
⎝(mO + 2)−1/2

2−1/2

(2 + 4/mO)−1/2

⎞
⎠. (29)

The corresponding harmonic potential for water is

VH2O(x0,x1,x2) = 1
2KOH(‖x0 − x1‖ − rOH)2

+ KOH(‖x0 − x2‖ − rOH)2. (30)
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This attains its minimum when

‖x0 − x1‖2 = ‖r̃2‖2
(

1
2 + m−1

O

) −
√

1 + 2m−1
O r̃T

1 r̃2 + 1
2‖r̃1‖2

= r2
OH, (31)

‖x0 − x2‖2 = ‖r̃2‖2
(

1
2 + m−1

O

) +
√

1 + 2m−1
O r̃T

1 r̃2 + 1
2‖r̃1‖2

= r2
OH, (32)

where we have used that x0 − x1 = r̃2
√

1/2 + 1/mO − r̃1/
√

2
and x0 − x2 = r̃2

√
1/2 + 1/mO + r̃1/

√
2. Hence, r̃1 and r̃2

must be perpendicular to each other [subtracting Eqs. (31)
and (32)] and ‖r̃2‖2(1/2 + 1/mO) + 1

2‖r̃1‖2 = r2
OH. As these

solutions are exact, the hydrogens are always at a distance
of rOH from the oxygen. Since there is no angular potential,
the solution is indeterminate with two extreme solutions, the
first being ‖r̃2‖ = 0. In this case, the molecule is linear,
while for ‖r̃1‖ = 0 the two hydrogens overlap. Adding the
constraint that ‖r̃1‖2 = 2rOH sin 104.5◦ at equilibrium renders
‖r̃2‖ = rOH cos 104.5◦/

√
1/2 + 1/mO.

Another instructive example is HCN. Its harmonic Lapla-
cian

�̃HCN =

⎛
⎜⎜⎝

KCH+KCN
mC

− KCH√
mCmH

− KCN√
mCmN

− KCH√
mCmH

KCH
mH

0

− KCN√
mCmN

0 KCN
mN

⎞
⎟⎟⎠ (33)

is no longer as simple as for H2O, nor are the eigenvalues
except 0 simple functions of the variables in Eq. (33); for the
general AMBER force field (GAFF) [52], they are 14.7 and
42.8. Equation (27) was numerically solved. The numerical
GAFF CAM distances in one dimension are (r̃ (0)

1 ,r̃
(0)
2 ) =

(3.26,0.66) with r̃
(0)
1 = 2.61 and r̃

(0)
2 = −1.32. Knowing that

the molecule is linear at equilibrium selects the first solution
to reconstruct the equilibrium structure.

In both examples it was necessary to include angle
information to make the best choice. The numerical solution
to Eq. (27) can be computed efficiently using a variety of
nonlinear least-squares algorithms, but more direct methods
are still under investigation. Similar derivations are possible
for angle potentials.

III. CONCLUSION

We have characterized a coarse-graining procedure for
accelerating molecular simulations through a systematic
hierarchical algorithm based on multiresolution diffusion
wavelets. The proposed wavelet-CG approach goes beyond
conventional approaches based on expert knowledge because
our proposed method can accelerate calculations of different
classes of molecules without requiring extensive expert insight
and model parametrization. This advantage is especially
important for inverse problems in materials design, wherein
the materials engineer aims to optimize material performance
in an essentially infinite design space (the chemical space of
polymer repeat units). Our demonstration of the perturbation
theory for chemical variations in the repeat unit illustrates this
key advantage for the wavelet CG approach.

Importantly, these advantages are obtained in a framework
that automatically recapitulates the physical insights under-
lying existing coarse-graining methods such as united-atom
models. On the other hand, diffusion-wavelet CG models
are simultaneously more general (they do not require a
priori expert modeling and parametrization) and more spe-
cific. In fact, the diffusion-wavelet CG approach leads to
system-specific CG models derived automatically from the
system’s underlying bonding topology and atomistic force
field, without further input other than an error tolerance. The
systematic and purely algorithmic basis offers the opportunity
for adaptive error control, whose obvious importance has
motivated significant analysis already [53–55]. It is possible
that this framework provides a mechanism to automatically
adjust model resolution dynamically in regions that require
atomistic accuracy, e.g., at grain boundaries. Further work will
establish the relationship between time steps and simulation
accuracy [56] and demonstrate algorithms for accelerating
MD simulations by compressing force and energy calculations
using the wavelet CG basis.

APPENDIX A: DERIVATION OF WAVELET SPACES

The wavelets will be derived iteratively from a filter T using
the QR decomposition. At each iteration, T is cast in the Q

basis of the previous iteration,(
n∏

i=0

Qi

)T

T 2n+1

(
n∏

i=0

Qi

)
= Qn+1Rn+1. (A1)

Therefore, repeated application (with infinite precision) is
equivalent to the QR algorithm for finding eigenvectors. Since
T is positive definite and ‖T ‖∞ = 1, the squaring introduces a
de facto projection operator Pε via the machine precision. It is
this projection that distinguishes a conventional QR algorithm
for finding eigenvalues and eigenvectors from the wavelet
decomposition into CAMs.

We separate Qn into a low-frequency submatrix 
n and a
high-frequency submatrix �n, where the latter are the columns
Qn,i of Qn for which QT

n,iT
2n

Qn,i < ε. The matrix 
n collects
the remaining columns of Qn. Thus,(

n−1∏
i=0

Qi

)T

T 2n+1

(
n−1∏
i=0

Qi

)
≈ 
T

nQnRnR
T
nQT

n
T
n

≈
(

n∏
i=0


T
i

)
T 2n+1

(
n∏

i=0


i

)
.

APPENDIX B: ERROR BOUNDS ON SCALES

The contamination of the wavelet spaces Wn by eigenvec-
tors U> of larger eigenvalues λ2n

> ε of the filter operator T

is limited by

S
(n)
T := ε − ωn,max

ωn,min − ε
,

where ωn,min = min{λ2n

> ε|λ ∈ σ (T )}, ωn,max = max{λ2n �
ε|λ ∈ σ (T )}, and σ (T ) denotes the spectrum of T . In classical
wavelet theory, wavelets are localized in both real and
reciprocal space, e.g., the Fourier transform of the Mexican
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hat wavelet transform Wf (x) = −σ−2�
∫

e−(y−x)2/2σ 2
f (y)dy

is W̃ f̃ (ω) = ω2σ−2e−ω2/4σ 2
f̃ (ω). The sensitivity S

(n)
T of T

at scale n measures the localization of Wn in the frequency
domain. In practical terms, small S

(n)
T implies that the bases


n and �n are generally sparse matrices if T 2n

is sparse, and
the wavelet transform can thus be computed efficiently.

APPENDIX C: INVARIANT SUBSPACES

The weighted graph Laplacian �̃ is positive semidefinite
and �̃JJ M1/21J = 0 for each set of indices J , where �̃JJ is
the square submatrix of �̃ with indices in J and 1J is the
vector of ones on indices in J and 0 otherwise. It is possible to
block tridiagonalize �̃ using only transpositions with diagonal
blocks �̃J,J and off-diagonal blocks �̃J,K , where J and K are
disjoint index sets and J,K,J ∪ K are contiguous index sets.
Without loss of generality, we let j < k∀j ∈ J and k ∈ K . The
rank of �̃JK is generally low due to the low maximum degree
of a vertex in �̃. If � = span �̃KJ and �̃JJ has a nontrivial
invariant vector space � perpendicular to �, then � is localized
to indices preceding K . Examples include linear homopoly-
mers discussed in detail in Sec. II A 4 and Appendix E, but
also disconnected graphs from individual molecules. Invariant
subspaces {�} are computationally convenient because they
allow a separation of the problem into independent smaller
subproblems.

APPENDIX D: PERTURBATION THEORY
FOR MOLECULAR FRAGMENTS

Changing the mass of atom i by δ leads to M ′−1/2 =
M−1/2 + δeie

T
i and similarly �̃ becomes

�̃′ = (
M−1/2 + δeie

T
i

)
�

(
M−1/2 + δeie

T
i

)
(D1)

= �̃ + δm
1/2
i

(
eie

T
i �̃ + �̃eie

T
i

) + δ2mi�̃iieie
T
i . (D2)

For an eigenvector �ν of �̃ contained in some wavelet space Wn

with nondegenerate eigenvalue η�ν , the first-order correction

to the eigenvalue is m
1/2
i δ|�νi |2(2η�ν + m

1/2
i �̃iiδ) and the

first-order correction to the eigenvector is
∑

�μ �=�ν �μ ·
δ �μi�νim

1/2
i (η�ν + η �μ + δmi�̃ii)/(2η �μ − 2η�ν), where { �μ} is an

orthonormalized set of eigenvectors of �̃. Hence the scale of �ν
is unaffected if |�νi |2 is 0 or sufficiently negligible. Corrections
to the eigenvector are only of significance if some eigenvector
�μ outside of Wn additionally has a significant component �μi .

By a similar argument, first-order corrections can be
computed for a perturbation of the edge weights, e.g., changing
bond spring constants,

�̃′ = �̃ + δM−1/2
(
eie

T
i + ej e

T
j − eie

T
j − ej e

T
i

)
M−1/2,

(D3)

η
(1)
�ν = δ

∣∣m−1/2
i �νi − m

−1/2
j �νj

∣∣2
, (D4)

�ν(1) =
∑
�μ �=�ν

δ

(
m

−1/2
i �μi − m

−1/2
j �μj

)(
m

−1/2
i �νi − m

−1/2
j �νj

)
η �μ − η�ν

�μ.

(D5)

Hence, a wavelet subspace Wn only changes if ∃�ν ∈ Wn :
‖T �ν‖2 + δ‖�ν‖∞ � ε1/2n

or ‖T �ν‖2 − δ‖�ν‖∞ � ε1/2n−1
.

APPENDIX E: DERIVATION
OF HOMOPOLYMER WAVELETS

The computation of wavelet spaces for linear homopoly-
mers with n repeat units can be subdivided into n subproblems.
The recursive structure of linear homopolymers implies that
�̃ for a linear homopolymer of n repeat units can be reordered
by a permutation κ of indices such that κT �̃κ = A ⊗ In +
B ⊗ (�T

n + ene
T
1 ) + BT ⊗ (�n + e1e

T
n ), where In is the n × n

identity matrix and �n is the n × n matrix with all ones on the
first subdiagonal only and zeros elsewhere. Then κT �̃κ takes
the simple form

⎛
⎜⎜⎜⎝

A1,1In A1,2In · · · A1,mIn + B1,m

(
�n + e1e

T
n

)
A2,1In A2,2In · · · A1,mIn

...
. . .

...
Am,1In + B1,m

(
�T

n + ene
T
1

) · · · · · · Am,mIn

⎞
⎟⎟⎟⎠. (E1)

Let U = (ei2πkl/m/
√

m)kl be a unitary matrix that diagonalizes
A1,mIn + B1,m(�T

n + ene
T
1 ); then U := Im ⊗ U transforms

κT �̃κ into⎛
⎜⎜⎝

A1,1In A1,2In · · · D∗
A2,1In A2,2In · · · A1,mIn

...
...

. . .
...

D Am,2In · · · Am,mIn

⎞
⎟⎟⎠ = U∗κT �̃κU, (E2)

where D is a complex diagonal matrix with eigenvalues
Dk,k = A1,m + B1,meikπ/m. Applying the similarity transform
by κT produces a block diagonal matrix (κU∗κT �̃κUκT )
with square blocks Ãi = A − (A1,m + Di,i)e1e

T
m − (A1,m +

D∗
i,i)emeT

1 . Hence, the computation of the wavelet spaces

has been reduced to n problems of size m instead of one
problem of size nm. Furthermore, any eigenvector ν of A with
eT
mν = eT

1 ν = 0 has an n-fold degenerate eigenvalue.

APPENDIX F: DERIVATION OF MIXED RESOLUTION
FROM SEPARABLE COARSENINGS

Let βτ
n : Rmn → βn denote a parametrization of the mn-

dimensional state space βn, e.g., the positions and momenta
of particles. A coarsening γn can be separated into com-
ponents if there exist parametrizations βτ

n : An ⊕ Bn → βn

and βτ
n+1 : An+1 ⊕ Bn+1 → βn+1 such that An ⊕ Bn = Rmn ,

An+1 ⊕ Bn+1 = Rmn+1 , and there exist continuous surjective
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mappings μAn
: An → An+1 and μBn

: Bn → Bn+1 with

βτ
n

(
μ−1

An
(tA),μ−1

Bn
(tB)

) = γ −1
n

(
βτ

n+1(tA,tB)
)

(F1)

for tA ∈ An+1 and tB ∈ Bn+1. Here μA and μB map a fine
parametrization to a coarse parametrization. An example
parametrization is the representation of Vn as Vn+1 ⊕ Wn+1

with fine-to-coarse mappings as per Eqs. (9) and (10). See
Fig. 7.

A separable coarsening for which neither μAn
nor μBn

is
a bijection induces intermediate coarsenings. The state space

An × Bn+1 is an intermediate state space with the coarsen-
ings γ : βτ

n (tAn
,tBn

) �→ (tAn
,μBn

(tBn
)) ∈ An × Bn+1 and γ ′ :

(tAn
,tBn+1 ) �→ βτ

n+1(μAn
(tAn

),tBn+1 ) ∈ βn+1. Finally, mixed res-
olution spaces An × Bn+2 are induced via function composi-
tion, γ : βτ (tAn

,tBn
) �→ (tAn

,μBn+1 ◦ μBn
(tBn

).
The reconstruction from a fundamental coarsening

can be achieved by reconstructing its separable compo-
nents separately and independently via the conditional
probabilities P (tAn

|tAn+1,tBn+1 ) = Pβn
(({tAn

} ∩ μ−1
An

(tAn+1 )) ×
μ−1

Bn
(tBn+1 ))/Pβn+1 (tAn+1,tBn+1 ). The same can be achieved for

the complements analogously.
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