
PHYSICAL REVIEW E 96, 013207 (2017)

Modification of magnetohydrodynamic waves by the relativistic Hall effect
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This study shows that a relativistic Hall effect significantly changes the properties of wave propagation
by deriving a linear dispersion relation for relativistic Hall magnetohydrodynamics (HMHD). Whereas, in
nonrelativistic HMHD, the phase and group velocities of fast magnetosonic wave become anisotropic with an
increasing Hall effect, the relativistic Hall effect brings upper bounds to the anisotropies. The Alfvén wave
group velocity with strong Hall effect also becomes less anisotropic than the nonrelativistic case. Moreover,
the group velocity surfaces of Alfvén and fast waves coalesce into a single surface in the direction other than
near perpendicular to the ambient magnetic field. It is also remarkable that a characteristic scale length of the
relativistic HMHD depends on ion temperature, magnetic field strength, and density while the nonrelativistic
HMHD scale length, i.e., ion skin depth, depends only on density. The modified characteristic scale length
increases as the ion temperature increases and decreases as the magnetic field strength increases.
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I. INTRODUCTION

Plasmas are multiscale in nature, meaning that macroscopic
dynamics are influenced by microscopic effects. Although
magnetohydrodynamics (MHD) is a simple and powerful
model to capture “overall” dynamics in both space and labora-
tories (see, e.g., Refs. [1,2]), it fails to describe real phenomena
when microscopic effects are not negligible. To solve this
issue, MHD has been extended by including various micro-
scopic effects [3–6]. As one of the primary extensions, Hall
magnetohydrodynamics (HMHD) was proposed [4] and has
been studied extensively in astrophysics, e.g., reconnection [7],
accretion disks [8–10], dynamo [11,12], nonlinear Alfvén
wave [13], and outflows [14], as well as in fusion [15,16].

When studying astrophysical objects, it is also essential
to consider relativistic effects. Relativistic MHD [17,18] has
been a de facto standard model for understanding large scale
astrophysical phenomena. However, for the same reason as the
nonrelativistic MHD, the lack of microscopic effects may be
a critical shortcoming. Koide’s extended version of the rela-
tivistic MHD (XMHD), in contrast, takes into account several
microscopic effects originating from two-fluid nature [19,20].
This model has been highlighted in recent studies [21–24]

To understand these various MHD models, it is crucial to
consider the properties of linear wave propagation. While the
linear wave properties for nonrelativistic ideal MHD have been
widely known (see Refs. [1,2]), the detailed analysis of HMHD
waves was not conducted until Hameiri et al. revealed that
phase and group diagrams are deformed by the Hall effect [25].
In addition to the nonrelativistic models, the dispersion relation
for relativistic ideal MHD has been studied [17,18,26,27].
Keppens and Meliani drew phase and group diagrams of
the relativistic MHD showing that there is no qualitative
difference between nonrelativistic and relativistic diagrams
in a fluid rest frame, except for the presence of the light
limit [27]. In addition to the relativistic MHD, there are
studies on wave properties for relativistic electron-positron
pair plasma [28–30]. For relativistic electron-ion plasma,
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whereas the dispersion relation for the relativistic XMHD was
derived by Koide [19] in specific wave vector configurations,
a general dispersion relation in any wave vector direction has
not been formulated. Hence the phase and group diagrams for
the relativistic XMHD are unknown.

One might assume that relativistic HMHD diagrams are
similar to the nonrelativistic HMHD diagrams, because the
relativistic and the nonrelativistic MHD diagrams are similar.
In this paper, we show that it is not true; we formulate the
linear dispersion relation of the relativistic HMHD in any wave
vector direction and show that, depending on whether the Hall
effect is relativistic or nonrelativistic, there are differences in
the way wave properties are changed.

II. DERIVATION OF RELATIVISTIC HMHD
DISPERSION RELATION

Let us consider ion-electron plasma in Minkowski space-
time with a metric diag(1, − 1, − 1, − 1). We begin with
relativistic XMHD [19,20] which contains electron rest mass
and thermal inertial effects, the thermal electromotive effect,
and the Hall effect. In this study, we focus on the Hall effect
and ignore the other effects by assuming that the electron to ion
mass ratio is zero and the electron temperature is at most on the
order of the rest mass energy, i.e., Te/mec

2 � 1 with electron’s
temperature Te, rest mass me, and speed of light c. From
the latter condition, we may neglect all the terms including
electron’s thermal enthalpy and pressure in the momentum
equation and the generalized Ohm’s law [31]. Thus we obtain
the relativistic HMHD equations: the continuity equation,

∂ν(nuν) = 0, (1)

the momentum equation,

∂ν(nhuμuν) = ∂μp + JνF
μν, (2)

the generalized Ohm’s law,

enuνF
μν − JνF

μν = 0, (3)

and the Maxwell’s equations,

∂μFμν = 4πJ ν, ∂μ(εμνρσF ρσ ) = 0. (4)
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Multiplying uμ by (2), the adiabatic equation is obtained,

∂ν(σuν) = 0. (5)

Here, e, n, h, p, and σ are elementary charge, rest
frame number density, ion thermal enthalpy, ion thermal
pressure, and ion entropy density, respectively. We have
also defined the four-velocity uμ = (γ, γ v/c), the Faraday
tensor Fμν , the four-current J ν = ∂μFμν = (ρq, J/c) where
γ = 1/

√
1 − (|v|/c)2 is the Lorentz factor, εμνρσ is the

four-dimensional Levi-Civita symbol, and ρq is the charge
density. The only difference between the relativistic ideal
MHD is the second term in (3) which corresponds to a Hall
term. The 3+1 decompositions of (1)–(5) are written as

∂t (nγ ) + ∇ · (nγ v) = 0,

∂t (nhγ 2v) + ∇ · (nhγ 2vv) = −c2∇p + c2ρqE

+ cJ × B,

c(γ en − ρq)E + (γ env − J) × B = 0,

∂t (σγ ) + ∇ · (σγ v) = 0,

∇ · E = 4πρq,

−∂tE + c∇ × B = 4πJ,

∇ · B = 0,

∂tB + c∇ × E = 0,

with the electric field E and the magnetic field B. Here, the
time components of (2) and (3) are not shown since the former
is dependent on the adiabatic equation (5), and the latter is
dependent on the spatial component of the Ohm’s law itself.

Next, we linearize these equations by separating the
variables into homogeneous background fields denoted by
subscripts 0 and small amplitude perturbations denoted by
tilde symbols that are proportional to exp(ik · x − ωt) with
the wave vector k and the frequency ω. We set the frame
as the fluid rest frame by assuming v0 = 0 (the frame may
be Lorentz transformed to the laboratory frame in the same
manner as [27]). The background part of Maxwell’s equations
lead ρq0 = 0, E0 = 0, and J0 = 0. In the following, we assume
the ideal gas equation of state h = mc2 + [
/(
 − 1)]T where
T is the ion temperature, and 
 = 4/3 is a specific heat ratio
in ultrarelativistic case [32]. Then we get a set of equations
that the perturbations satisfy,

− iωñ + in0k · ṽ = 0, (6)

− iωn0h0ṽ = −ikc2p̃ + cJ̃ × B0, (7)

Ẽ + 1

c

(
ṽ − J̃

en0

)
× B0 = 0, (8)

− iωp̃ = −
p0

n0
iωñ, (9)

4π

c
J̃ = ik × B̃ + 1

c
iωẼ, (10)

ik · B̃ = 0, (11)

ik × Ẽ = 1

c
iωB̃, (12)

where h0 is the backgroud part of h, and p0 = n0T0 is the
equilibrium ion pressure. We note that the previous study
on the relativistic XMHD wave [19] assumed ρ̃q = 0, which
results in k · Ẽ = k · J̃ = 0. Although this assumption makes
the analysis simple (see Appendix B), it is not generally true.
In the present study, we do not assume this condition. Below,
we omit the tilde symbols.

Without loss of generality, one may assume k = (k⊥, 0, k||)
and B0 = (0, 0, B0). We ignore the entropy mode, i.e., ω �= 0.
Manipulating (6)–(12), we obtain the dispersion relation (see
Appendix A for the detailed derivation).

(
ω2 − k2

||V
2

A

){
ω4 −

[
k2

(
V 2

A + n0h0

M C2
S

)
+ c−2C2

SV
2

Ak2
||

]

×ω2 + k2k2
||V

2
AC2

S

}

= δ2
i V

2
Aω2c−4

(
ω2 − k2

||c
2
)
(ω2 − k2c2)

(
ω2 − k2C2

S

)
,

(13)

where

M = n0h0 + B2
0

4π
,

CS

c
=

√

p0

n0h0
,

VA

c
= B0√

4πM
, δ2

i = h2
0

4πMe2
(14)

are total (fluid and magnetic) enthalpy [27], sound speed,
Alfvén speed, and modified ion skin depth, respectively. We
also have an identity 1 − V 2

A/c2 = n0h0/M. Taking the δi →
0 limit, (13) becomes the relativistic ideal MHD dispersion
relation [27]. In the nonrelativistic limit, δi becomes the
familiar ion skin depth di =

√
mc2/4πn0e2. One finds that

δi depends on both B0 and T0 as well as n0. This is remarkably
different from the nonrelativistic ion skin depth di which
depends only on n0. δi monotonically increases with increasing
T0 and monotonically decreases with increasing B0. The T0

dependence is straightforward, i.e., a high temperature induces
large effective mass resulting in a long inertial length. This
dependence has been pointed out in past studies [21,24,33].
However, the shrink of the inertial length by large B0 is
not trivial. Let us use β = 8πn0T0/B

2
0 and T̂ = T0/mc2 as

parameters instead of T0 and B0. One may rewrite the modified
ion skin depth as

δ2
i = d2

i
ĥ2

ĥ + 2T̂ /β
, (15)

where ĥ = h0/mc2. One finds that δi vanishes for small beta
plasma. Therefore if the magnetic field is very strong, the
plasma behaves like ideal MHD. One may interpret this as
follows. The Alfvén speed is written as VA = 
cδi where

c = ceB0/h0 is the relativistic cyclotron frequency. When
one takes the nonrelativistic limit (shown below), this becomes
the familiar expression VA = 
cdi with the nonrelativistic
cyclotron frequency 
c = eB0/mc2. Whereas the cyclotron
frequency is proportional to the magnetic field strength, the
Alfvén speed may not exceed the speed of light [see (14)];
hence the modified skin depth is required to shrink as the
magnetic field strength increases.
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We note that the dispersion relation (13) and the modified
inertial length δi are valid as long as the relativistic two-fluid
equations are correct for ion-electron plasma since (1)–(5)
are rigorously derived by the relativistic two-fluid equa-
tions [19,20]. However, it is proven that there are limitations for
nonrelativistic HMHD dispersion relation when it is derived
from a kinetic theory [34,35]. It is a open question whether the
dispersion relation (13) is derived from the relativistic kinetic
theory.

Next let us consider the nonrelativistic limit,

h0 → mc2, M → n0mc2,
ω2

c2k2
||

→ 0,
ω2

c2k2
→ 0. (16)

We get δi → di, (VA/c)2 → 2T̂ /β, and (CS/c)2 → 
T̂ .
Then (13) yields nonrelativistic HMHD dispersion rela-
tion [25],(

ω2 − k2
||V

2
A

){
ω4 − k2

(
V 2

A + C2
S

)
ω2 + k2k2

||V
2

AC2
S

}
= d2

i V 2
Aω2k2

||k
2
(
ω2 − k2C2

S

)
. (17)

Since in the nonrelativistic case, CS/VA does not depend on
T̂ , the shape of the phase and group diagrams are independent
of T̂ [1].

III. ANALYSIS OF RELATIVISTIC HMHD
DISPERSION RELATION

In the beginning, we show two apparent differences
between the relativistic dispersion relation (13) and the nonrel-
ativistic one (17). First, for exactly perpendicular propagation,
viz., k|| = 0, the right-hand side of (13) is finite whereas the
right-hand side of (17) vanishes. Therefore, for this direction,
the nonrelativistic Hall effect does not change the wave
properties [25], but the relativistic Hall effect does. Second, the
right-hand side of (13) is quartic with respect to ω2 while the
left hand is cubic. This means that the relativistic HMHD has
one additional wave solution that neither appears in relativistic
ideal MHD nor nonrelativistic HMHD [the right-hand side
of (17) is quadratic]. As we show below, this extra wave is
superluminous which becomes light wave at infinitely large
kδi . The other three waves are shear Alfvén wave, and slow
and fast magnetosonic waves. Below, for notational brevity,
superscripts A, F, and S denote the Alfvén, fast, and slow
waves, respectively.

Let us start by the analysis in k|| = 0 direction. Again, the
nonrelativistic dispersion relation (17) becomes ideal MHD in
this direction. The relativistic dispersion relation (13) becomes
the quadratic equation. The solutions are analytically obtained
as

(v±
ph)2 = 1

2

⎧⎪⎨
⎪⎩1 + Ĉ2

S + 1

(k⊥δi)2V̂ 2
A

±

√√√√[
1 + Ĉ2

S + 1

(k⊥δi)2V̂ 2
A

]2

− 4

[
Ĉ2

S + 1

(k⊥δi)2V̂ 2
A

(
V̂ 2

A + n0h0

M C2
S

)]⎫⎪⎬
⎪⎭, (18)

where vph = (vph⊥, 0, vph||) = (ω/ck) n is the normalized
phase velocity with n = k/k, and V̂A = VA/c and ĈS = CS/c

which are normalized Alfvén and sound speed. One may
show that v+

ph (v−
ph) is always larger (smaller) than unity. Thus

v+
ph is the superluminous wave. These two solutions become

(v+
ph)2 → 1 and (v−

ph)2 → Ĉ2
S for the k⊥δi → ∞ limit, and

(v+
ph)2 → ∞ and (v−

ph)2 → V̂ 2
A + Ĉ2

S(n0h0/M) = Ĉ2
S + (1 −

Ĉ2
S)V̂ 2

A (which is the fast wave phase speed for the ideal MHD)
for the kδi → 0 limit. The behavior of the superluminous
solution is the same as the ordinary wave in the strongly
magnetized relativistic electron-positron plasma [36,37]. The
disappeared two solutions become the shear Alfvén and the
slow waves in the k|| �= 0 direction.

Next we consider rough dependence of phase speed on kδi

when the magnitude of kδi is large. As shown in Ref. [25] for
the nonrelativistic case, the phase speed of the three HMHD
waves are vF

ph ∼ O((kdi)2), vS
ph ∼ O(1/(kdi)2), and vA

ph ∼
O(1/(kdi)2), respectively; since the left-hand side in (17) is
∼ v6

ph and the right-hand side is ∼ (kdi)2v4
ph, the solution with

O((kdi)2) exists. Thus, vF
ph increases as kdi increases. On the

other hand for the relativistic case (13), the left-hand side
is ∼ v6

ph and the right-hand side is ∼ (kδi)2v8
ph. Therefore, a

solution with O((kδi)2) does not exist, and the phase speed
of the all wave may not increase as kδi increases. This fact is
reasonable for the fast, slow, and Alfvén waves because their
phase speed may not exceed c. In the k|| = 0 direction, this is

exactly confirmed by (18) which is principally O(1/(k⊥δi)2)
and decreases monotonically.

As shown in Ref. [25], in the nonrelativistic case, vF
ph

increases except in the k|| = 0 direction as kdi increases. Since
the diagram for the ideal MHD fast wave is a circular shape, it
becomes a dumbbell shape stretched in the parallel direction at
large kdi. On the other hand, in the relativistic case, vF

ph may not
increase; especially in the k|| = 0 direction, (vF

ph)2 decreases

from Ĉ2
S + (1 − Ĉ2

S)V̂ 2
A to Ĉ2

S as kδi increases. Therefore the
resulting phase diagram at large kδi is less anisotropic than the
nonrelativistic phase diagram.

Next we consider the aforementioned nonrelativistic limit
more carefully. There are two relativistic effects included, the
ion thermal inertia effect and the displacement current. The
former effect is eliminated by assuming T̂ 	 1, which results
in h0 → mc2. The situation is divided in two cases depending
on the value of T̂ /β since M → n0mc2(1 + 2T̂ /β). For a
moderately or weakly magnetized case, we get M → n0mc2

which results in δi → di. Therefore the change of the inertial
length does not happen. For a strongly magnetized case, we
get δ2

i → d2
i /(1 + 2T̂ /β); thus the inertial length may change,

and the change is due to the displacement current. In both
cases, the structure of the dispersion relation does not change
from (13). Therefore, the superluminous solution still exists,
and the phase speed for all waves is O(1/(kδi)2).

The other relativistic effect, displacement current, is elimi-
nated by taking M → n0mc2, ω2/c2k2

|| → 0, and ω2/c2k2 →
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 1. The phase diagram for (a) nonrelativistic ideal MHD, (b)–(d) nonrelativistic HMHD, (e) relativistic ideal MHD, and (f)–(h)
relativistic HMHD. β and T̂ are fixed at 0.1 and 1.0, and kdi varies as (0.0,1.0,2.0,4.0) from left to right panels. The vertical and horizontal
axes in (a)–(d) are normalized by vF

ph with kdi = 0 and θ = 0. The inset figure in (d) is an enlargement near the Alfvén wave. The red, green,
and blue curves indicate the fast, Alfvén, and the slow modes, respectively. The broken circles indicate the light speed.

0. Accordingly we get δi → di, (VA/c)2 → 2T̂ /β, and
(CS/c)2 → 
T̂ . Obviously, this limit prohibits the superlumi-
nous solution; in fact, the right-hand side of (17) is ω4. Since
the order of the right-hand side has been lowered, phase speed
with O((kδi)2) is allowed. This solution is a nonrelativistic fast
wave.

In summary, among the two relativistic effects, the ion
thermal inertia only contributes to the change of the inertial
length, and the displacement current contributes to the emer-
gence of the superluminous solution and the wave dependence
on kδi. As we show in the next section, this relativistic wave
dependence on kδi caused by the displacement current changes
the phase and group diagrams dramatically.

Next we graphically show the phase diagram for the specific
plasma parameter. For a given β, T̂ , and kdi, the phase
velocity vph is determined as a function of θ = cos−1(k||/k)
by solving (13). Both CS/c and VA/c are monotonically
increasing functions of T̂ with upper bounds of

√

 − 1 and√

2(
 − 1)/[β
 + 2(
 − 1)], respectively. Since CS and VA

almost become the upper bound values for T̂ � 1, we consider
only a T̂ = 1 case. Since the relativistic Hall effect disappears
in very low beta plasmas as mentioned above, we consider the
β = 0.1 case. Such plasma parameters are relevant to Poynting
flux dominated gamma ray bursts (see, for example, [38]).
These settings yield δi/di = 1.

Figure 1 shows the phase diagrams with various kdi =
(0, 0.5, 1.0, 4.0) for Figs. 1(a)–1(d) nonrelativistic and
Figs. 1(e)–1(h) relativistic cases. For the nonrelativistic cases,
the shape of the diagram is independent from T̂ , hence vph

is normalized by vF
ph at θ = π/2, which is the same for any

di. The nonrelativistic diagrams Figs. 1(a)–1(d) are the same
as those in Ref. [25]. We find the phase speed of the fast
wave (vF

ph) increases with increasing kdi except in the θ = π/2
direction, hence the circular shaped phase velocity surface for

kdi = 0 [Fig. 1(a)] becomes elliptic [Fig. 1(c)] and finally
dumbbell-like in shape [Fig. 1(d)]. This means that the fast
wave becomes anisotropic in small scale. Another observation
is that the phase speeds of the Alfvén wave (vA

ph) and slow
wave (vS

ph) decrease with increasing kdi. Thus, the fast wave
gets separated from the other two waves. This separation is
appreciable especially in the parallel direction.

Let us compare these results with the relativistic HMHD
diagrams [Figs. 1(e)–1(h)]. Whereas the relativistic ideal MHD
diagram [Fig. 1(e)] is qualitatively the same as the nonrelativis-
tic ideal MHD one [Fig. 1(a)], the relativistic HMHD diagrams
[Figs. 1(f)–1(h)] are significantly different from those of the
nonrelativistic HMHD [Figs. 1(b)–1(d)]. The anisotropy of the
fast wave is moderated so that the shape of the phase velocity
surface does not become a dumbbell shape. This isotropiza-
tion is explained as follows. In nonrelativistic HMHD, the
anisotropy is created by the selective increase in vF

ph|| as kdi

(a) (b)

FIG. 2. (a) The anisotropy of the fast wave phase velocity and (b)
the ratio of the fast phase speed to the Alfvén phase speed at θ = 0.
The red and blue curves indicate the relativistic and the nonrelativistic
cases, respectively. β and T̂ are fixed at 0.1 and 1.0.
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increases. In relativistic HMHD, on the other hand, vF
ph may

not exceed the light limit, hence there is no room for the
significant increase in vF

ph||. Meanwhile, Figs. 1(e)–1(h) show
that vF

ph⊥ decreases as kdi increases (recall that vF
ph⊥ at θ = π/2

is changeable for increasing kdi unlike nonrelativistic HMHD).
However, vF

ph⊥ will eventually reach vA
ph⊥ because vA

ph⊥ does
not decrease. Since vF

ph⊥ may not be smaller than vA
ph⊥, the

decrease in vF
ph⊥ is saturated at some value of kdi. In short, vF

ph
is bounded from above by the light limit and from below by
vA

ph. Thus the anisotropy will stop increasing at some kdi.
Figure 2 explicitly illustrates this scenario. Figure 2(a)

shows a measure of the fast wave anisotropy defined by
vF

ph(θ = 0)/vF
ph(θ = π/2) as a function of kdi for the non-

relativistic and relativistic cases. One finds that the anisotropy
increases almost linearly in the nonrelativistic case whereas it
is bounded by ∼2 in the relativistic case. Figure 2(b) shows
the ratio of the fast phase speed to the Alfvén phase speed
at θ = 0. While, in the nonrelativistic case, the difference
between the two speeds increases endlessly, the fast wave
phase speed becomes at most twice as fast as the Alfvén
phase speed for kdi � 1.5 in the relativistic case. For the
relativistic case, since the maximum of vA

ph⊥ is almost the same
as vA

ph(θ = 0) for large kdi [see Fig. 1(h)], the lower bound
of vF

ph⊥ is almost the same as vA
ph(θ = 0). Therefore vF

ph(θ =
0)/vA

ph(θ = 0) ∼ 2 corresponds to the fast wave anisotropy
of ∼2.

Next we consider a normalized group velocity vgr =
(vgr⊥, 0, vgr||) = c−1∂ω/∂k; see Appendix C for full expres-
sion. Figure 3 shows the group diagrams for Figs. 3(a)–3(d)
nonrelativistic and Figs. 3(e)–3(h) relativistic cases with the
same parameters as Fig. 1. The nonrelativistic diagrams
Figs. 3(a)–3(d) are the same as those in Ref. [25]. Here,

we again find that there is no qualitative difference between
relativistic ideal MHD [Fig. 3(e)] and nonrelativistic ideal
MHD [Fig. 3(a)]. On the other hand, the relativistic HMHD
diagrams [Figs. 3(f)–3(h)] are significantly different from
those of the nonrelativistic HMHD [Figs. 3(b)–3(d)]. In the
nonrelativistic case, the behavior of the fast wave group veloc-
ity (vF

gr) is similar to that of phase velocity; in the beginning,
the group velocity surface is circular, then it becomes elliptic
and successively dumbbell-like as kdi increases. Since Alfvén
wave becomes dispersive when the Hall effect is present, its
group velocity becomes a triangle. We find that the Alfvén
group velocity surface becomes acute-angled triangle at large
kdi [see the inset of Fig. 3(d)].

Let us compare these behaviors with the relativistic HMHD
[Figs. 3(f)–3(h)]. We find that the fast and Alfvén group
velocity surfaces coalesce into a single surface at large kdi.
In the relativistic case, vF

gr|| and vA
gr|| is not allowed to increase

as kdi increases since they are almost at the light limit for
kdi = 0 [Fig. 3(e)]. On the other hand, vF

gr⊥ decreases as kdi

increases. Thus, the fast wave group velocity surface tends
to be elliptic (Figs. 3(e)–3(g)]. Meanwhile, vA

gr⊥ increases as
kdi increases [Figs. 3(e)–3(g)]. At some point, the increasing
vA

gr⊥ becomes the same value as the decreasing vF
gr⊥. Thus the

coalesce of the fast and Alfvén waves is realized. Since the fast
wave speed may not be smaller than the Alfvén wave speed, the
fast wave diagram no longer becomes dumbbell-like in shape.
The Alfvén wave diagram also becomes less anisotropic since
only vA

gr⊥ increases as kdi increases.
Figure 4(a) shows a measure of the fast wave anisotropy

defined by vF
gr(θ = 0)/vF

gr(θ = π/2) as a function of kdi for
the nonrelativistic and relativistic cases. One finds that the
anisotropy linearly increases in the nonrelativistic case while
it saturates at ∼2 in the relativistic case. Figure 4(b) shows

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. The group diagram for (a) nonrelativistic ideal MHD, (b)–(d) nonrelativistic HMHD, (e) relativistic ideal MHD, and (f)–(h)
relativistic HMHD. β and T̂ are fixed at 0.1 and 1.0, and kdi varies as (0.0,1.0,2.0,4.0) from left to right panels. The vertical and horizontal
axes in (a)–(d) are normalized by vF

gr with kdi = 0 and θ = 0. The inset figure in (d) is an enlargement near the Alfvén wave. The broken circles
indicate the light speed.
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(a) (b)

FIG. 4. (a) The anisotropy of the fast wave group velocity and (b)
the ratio of the fast group speed at θ = 0 to the Alfvén group speed
at θ = π/2. The red and blue curves indicate the relativistic and the
nonrelativistic cases, respectively. β and T̂ are at fixed at 0.1 and 1.0.

the ratio of the maximum of vF
gr to the maximum of vA

gr, i.e.,
vF

gr(θ = 0)/vA
gr(θ = π/2). Here, vA

gr(θ = π/2) corresponds to
the vertex of the Alfvén surface on the vgr⊥ axis. Whereas the
fast and Alfvén waves separate in the nonrelativistic case, such
a separation is prohibited in the relativistic case.

IV. CONCLUSIONS

We have shown that the relativistic Hall effect changes the
MHD wave properties in a different way from the nonrela-
tivistic Hall effect; namely, isotropization and coalescence of
the fast and shear Alfvén waves. It is also remarkable that
the characteristic scale length δi depends on ion temperature,
magnetic field strength as well as density. This is different
from the nonrelativistic ion skin depth di which depends only
on density. The modified ion inertial length increases as the
ion temperature increases whereas it decreases as the magnetic
field strength increases. Therefore the Hall effect disappears,
and plasma behaves like ideal MHD in very strong magnetic
field.
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APPENDIX A: DERIVATION OF (13)

In this section, we explicitly derive the relativistic HMHD
dispersion relation (13). From (6) and (9), we get

p = n0h0

ω

C2
S

c2
(k · v).

Substituting this into (7), we get

−ωn0h0v = −n0h0

ω
C2

S(k · v)k + c

i
J × B0. (A1)

k × (8) yields

ωB + k||B0v − (k · v)B0 − 1

en0

[
k||B0J − (k · J)B0

] = 0.

(A2)
k · (10) yields

k · J = B0

4πc
iω

[
−(k × v) · ẑ + i

4πen0c
(ω2 − c2k2)Bz

]
.

(A3)

k · (A1) is manipulated using (10) and (12) as

k · v = − B0ω(ω2 − c2k2)Bz

4πn0h0
(
ω2 − C2

Sk
2
) . (A4)

Eliminating vz from the z components of (A1) and (A2) and
using (A4), we get

ω

k||B0
Bz = −ω2 − C2

Sk
2
||

ωk||

B0(ω2 − c2k2)Bz

4πn0h0
(
ω2 − C2

Sk
2
)

+ 1

en0

(
Jz − k · J

k||

)
. (A5)

Substituting (A3) into (k × (A1)) · ẑ, we get

(k × v) · ẑ = i
cB0

ωM

[
k||Jz + B0ω

(4πc)2en0
(ω2 − c2k2)Bz

]
.

(A6)

Then we back-substitute this into (A3) to get

k · J = V 2
A

c2
k||Jz +

(
V 2

A

c2
− 1

)
ω(ω2 − c2k2)B0Bz

(4πc)2en0
. (A7)

Next we substitute (A6) and (A7) into (k × (A2)) · ẑ to get

[
4πV 2

A

c
ωk2

|| − 4πcωk2 − cB2
0

ωMk2
||(ω

2 − c2k2)

]
Jz

=
[

−
(

V 2
A

c2
− 1

)
ω2k||(ω2 − c2k2)B0

4πcen0
+ B3

0

(4π )2cen0M
k||(ω2 − c2k2)2 − k||B0

4πn0ce
(ω2 − c2k2)2

]
Bz. (A8)

Substituting (A7) into (A5), we get

− 1

en0

(
V 2

A

c2
− 1

)
Jz =

[
ω

k||B0
+ B0

4πn0h0

(
ω2 − C2

Sk
2
||
)
(ω2 − c2k2)

ωk||
(
ω2 − C2

Sk
2
) +

(
V 2

A

c2
− 1

)
ω(ω2 − c2k2)B0

(4πcen0)2k||

]
Bz. (A9)

Finally, we obtain the dispersion relation (13) by eliminating Jz from (A8) and (A9).
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APPENDIX B: REDUCTION TO THE DISPERSION
RELATION IN REF. [19]

In Ref. [19] the dispersion relation for XMHD is derived
in the specific condition. The wave vector and the perturbed
velocity are set in the configuration k = kx x̂ and v = vx x̂.
Furthermore, the rather restrictive condition k · E = k · J = 0,
which is led by the assumption ρq = 0, is imposed. Under these
conditions, we may simplify (A1) and (A2) as

−ωn0h0vx = −n0h0

ω
C2

Sk
2
xvx + c

i
JyB0, (B1)

and

ωBz − kxvxB0 = 0. (B2)

Combining with (10) and (12), we obtain the very simplified
dispersion relation,

ω2 = 4πn0h0C
2
S + c2B2

0

4πn0h0 + B2
0

k2
⊥. (B3)

This is the dispersion relation for the fast wave in Ref. [19].

APPENDIX C: GROUP VELOCITY

In a similar manner to Ref. [25], straightforward algebraic
manipulation of (13) yields

vgr = K + (kδi)2L
M + (kδi)2N

, (C1)

with

K =
{(

V̂ 2
A + n0h0

M Ĉ2
S

)
v4

ph −
[
V̂ 2

A +
(

1 + n0h0

M

)
Ĉ2

S

]
V̂ 2

A

(
k||
k

)2

v2
ph + Ĉ2

SV̂
4

A

(
k||
k

)4
}

n

+
{(

1 + Ĉ2
S

)
V̂ 2

A

(
k||
k

)
v4

ph −
[

2

(
k||
k

)2

V̂ 2
AĈ2

S +
[
V̂ 2

A +
(

1 + n0h0

M

)
Ĉ2

S

]]
V̂ 2

A

(
k||
k

)
v2

ph + 2Ĉ2
SV̂ 4

A

(
k||
k

)3
}

b,

L = V̂ 2
A

{
−(

1 + Ĉ2
S

)
v4

ph +
[(

1 + Ĉ2
S

)(k||
k

)2

+ 2Ĉ2
S

]
v2

ph − 2Ĉ2
S

(
k||
k

)2
}

v2
phn

+ V̂ 2
A

{
−

(
k||
k

)
v4

ph + (
1 + Ĉ2

S

)(k||
k

)
v2

ph − Ĉ2
S

(
k||
k

)}
v2

phb,

M = 3v5
ph − 2

[(
1 + Ĉ2

S

)(k||
k

)2

V̂ 2
A +

(
V̂ 2

A + n0h0

M Ĉ2
S

)]
v3

ph +
{(

k||
k

)2

V̂ 2
AĈ2

S +
[
V̂ 2

A +
(

1 + n0h0

M

)
Ĉ2

S

]}
V̂ 2

A

(
k||
k

)2

vph,

N = V̂ 2
A

{
4v6

ph − 3

[
1 + Ĉ2

S +
(

k||
k

)2
]
v4

ph + 2

[(
1 + Ĉ2

S

)(k||
k

)2

+ Ĉ2
S

]
v2

ph − Ĉ2
S

(
k||
k

)2
}

vph, (C2)

with b = B0/B0.
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