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Interaction between a tubular beam of charged particles and a dispersive metamaterial of
cylindrical configuration
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The interaction between a tubular beam of charged particles and a dispersive metamaterial of cylindrical
configuration has been investigated theoretically. This metamaterial may have negative permittivity and negative
permeability simultaneously over a certain frequency range where it behaves like a left-handed metamaterial. The
dispersion equation for the eigenmodes spectra of a metamaterial and the coupled modes spectra of the system
have been derived and numerically analyzed. It has been found that the absolute beam instability of bulk-surface
waves occurs because of peculiarities of the eigenmodes spectra of a left-handed metamaterial. Specifically,
the resonant frequency behavior of the permeability causes the emergence of the sections of dispersion curves
with anomalous dispersion. It has been demonstrated that the symmetric bulk-surface mode with two field
variations along the cylinder radius possesses the maximum value of instability increment. The obtained results
allow us to propose the left-handed metamaterial as the delaying medium in oscillators of electromagnetic
radiation without a need to provide an additional feedback in the system just as in a backward-wave
tube.
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I. INTRODUCTION

Since the traveling-wave amplifier was created by
Kompfner (see Ref. [1]) in the 1940s, there have been many
theoretical and experimental works devoted to transforming
a kinetic energy of charged particle flows into an electro-
magnetic radiation (see, e.g., Refs [2–6] and the references
cited therein). At the present time, there is a tendency toward
the advancement in millimeter and submillimeter wavelength
ranges in the development of electron-vacuum technology. At
the same time, the use of traditional approaches to electronic
device design is experiencing great difficulties due to the small
geometric dimensions of the main elements. There is a need to
use oversized (with respect to the wavelength of generated os-
cillations) electrodynamic structures operating in a multimode
regime. The stability of the generation frequency requires
excitation and selection of a high-order working mode in such
structures. The possibility of excitation of the weakly decaying
high-order modes (so-called “whispering gallery” modes) in
cylindrical dielectric resonators (CDRs) predetermines their
use in the vacuum electronic devices of the short-wave
range of millimeter and submillimeter wavelengths. Then, the
above-mentioned structural difficulty is overcome. However,
the output power of traditional sources drops down sharply
with a transition to submillimeter wavelengths [7]. Hence
it becomes necessary to use high-energy oscillators excited
by electron flows. It is important to note in this connection
that with powerful new technologies many types of artificial
materials can be fabricated which are endowed with unique
electromagnetic properties and show promise as structural
elements for the high-energy oscillators. For instance, among
them there are the metal-based (see, e.g., Refs. [8–15]), all-
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dielectric [16], and graphene-based [17] metamaterials which
behave like left-handed ones over a certain frequency range.
Below we dwell on electromagnetic properties of left-handed
metamaterials (LHMs) in more detail.

In [18], the results of investigations of an auto-oscillatory
system based on a high-quality CDR with whispering gallery
modes excited by the azimuthal-periodic current of a rela-
tivistic electron beam were presented. The possibility of using
the investigated system or its modifications is shown in the
millimeter wavelength range. The appearance of the detected
electromagnetic radiation is associated with the excitation of
CDR whispering gallery modes by a disturbed flow of charged
particles. The theoretical description of the phenomena that
lead to the appearance of the radiation found in Ref. [18]
is rather a difficult problem. Therefore, from our viewpoint,
it seems appropriate to use the simplified physical models
of the electrodynamic system discussed in Ref. [18], which
allow qualitative and quantitative descriptions of physical
phenomena that are as close as possible to the experimental
conditions. The simplest physical model is a radially thin tubu-
lar electron beam moving along an infinitely long solid-state
cylinder.

An actual problem of radiophysics and electronics is the
investigation of the generation mechanisms of electromagnetic
waves that are excited when charged particles move in various
electrodynamic systems. To create sources of electromagnetic
radiation in the millimeter and submillimeter ranges, the
beam instabilities occurring in electrodynamic systems of
various kinds are of great interest. Particular attention is
given to multiwave Cherenkov generators of surface waves
[19,20] and auto-oscillatory systems based on dielectric
resonators [18,21,22]. The energy loss of one particle per
unit time for eigenmode excitation in systems is one of
the fundamentally important characteristics of the possible
generation process [23–30]. Besides, the beam instabilities
that occur in electrodynamic systems containing dispersive
media are of special interest. In particular, the instability of
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the tubular electron beam that interacts with a plasmalike
medium was studied in Ref. [31]. In addition, an actual
problem is the investigation of the electromagnetic proper-
ties of solid-state structures containing left-handed media.
The technology progress of fabricating metamaterial struc-
tures stimulates studying the excitation mechanisms of their
eigenmodes.

Indeed, in recent years a good deal of attention has been
given to studying the electromagnetic properties of the left-
handed media. We recall that these materials came to be known
by this particular name because in these media the directions
of electric and magnetic field vectors as well as the direction
of a wave vector form a left-handed triplet. The unusual
properties of the left-handed medium (LHM) electrodynamics
were originally suggested in Refs. [32,33]. The authors of
Ref. [32] first proved the possibility of excitation of the elec-
tromagnetic waves with negative group velocity with the aid
of Cherenkov radiation in a medium, which possesses negative
permittivity ε and negative permeability μ simultaneously. In
addition to that it was shown that if an electron moves from
vacuum into the medium, the maximum of the intensity of
Cherenkov radiation is in vacuum and the Cherenkov angle
in this case is obtuse. The unusual properties of the LHM
electrodynamics were originally classified in Ref. [33], where
it was demonstrated that the LHM would exhibit unusual
properties such as the negative index of refraction, antiparallel
wave vector k and Poynting vector S, antiparallel phase and
group velocities, and the time-averaged energy flux opposite
to the time-averaged momentum density. Besides, as indicated
in Ref. [33], opposite directions of vectors S and k in the LHM
result in a reverse Doppler shift and the other phenomena of
interest.

LHMs have evoked considerable interest since they were
practically implemented in Refs. [8–12] in the form of
alternating layers with negative ε and positive μ and the
layers with positive ε and negative μ. The permeability
frequency dispersion of complex composites is provided by
a periodic structure of nonmagnetic circular conducting units
such as the split ring resonators, spirals, etc. The permittivity
frequency dispersion is provided by a periodic grating of
thin conducting wires. If a wavelength of the electromagnetic
wave that propagates in such a material is much greater than
the period of composite structure, the composite for this
particular wave is similar to a continuous one. In Refs. [8–12]
the parameters of structural elements are selected in such
a way that ε and μ become negative over the GHz fre-
quency range. Since then, a large variety of metal-based
and all-dielectric LHMs with different types of unit-cell
geometries has been proposed (see, e.g., Refs. [13–16]).
For instance, in Ref. [15] the silver-based unit cells were
fabricated on a glass substrate by using standard electron-beam
lithography. The structure with a lattice constant of 600 nm
possessed left-handedness and negative refraction at infrared
frequencies. In Ref. [16] it was shown that by choosing
a proper geometrical shape of the dielectric inclusions, an
all-dielectric LHM can be achieved by using single-sized
dielectric resonators. Besides, both the left-handedness and
the negative refraction phenomenon at far infrared frequen-
cies were observed in a periodic stack of antiferromagnetic
and ionic-crystal layers [34] and in graphene-sheet periodic

structures [17]. A design for active LHM collaborated with mi-
crowave varactors was proposed and experimentally realized in
Ref. [35].

It should be noted that a lot of work has been done on the
theoretical study of electromagnetic properties of LHMs (see,
e.g., Refs. [36–40]). Specifically, in Ref. [36], an analytical
theory of low-frequency electromagnetic waves in metallic
photonic crystals with a small volume fraction of a metal
was presented. The effective medium theory of LHMs based
on the transfer matrix calculations on metamaterials of finite
lengths was proposed in Ref. [37]. Linear and nonlinear wave
propagation in LHMs was theoretically analyzed and a number
of nonlinear optical effects were predicted in Ref. [38]. In our
opinion, special attention should be paid to Refs. [39–42], in
which the effects of Cherenkov radiation and electron-beam
instability were theoretically investigated. In Ref. [39],
Cherenkov radiation of bulk and surface electromagnetic
waves by an electron bunch that moved in vacuum above
a composite medium was theoretically investigated. It was
shown that Cherenkov radiation gave rise to simultaneous
excitation of bulk and surface electromagnetic waves over
one and the same frequency range. The excited surface
electromagnetic waves can be of two different types: namely,
the electric and magnetic ones. The instability of two electron
beams passing through a slab of LHM was predicted in
Ref. [40]. It was shown that this instability originates from the
backward Cherenkov radiation and results in a self-modulation
of the beams and radiation of electromagnetic waves. In
Ref. [41] the theoretical analysis of excitation of the surface
plasmon polaritons by a thin electron beam propagating in the
vacuum gap separating a plasmalike medium (metal) from an
artificial dielectric with negative magnetic permeability was
performed. It was demonstrated that the interface-localized
waves with the negative total energy flux could be excited.
The case of uniform motion of the charge in infinite LHM
was considered in Ref. [42]. Using complex function theory
methods, the total field was decomposed into a “quasi-
Coulomb” field, a wave field (Cherenkov radiation), and a
“plasma trace.” It was shown that the wave field in LHM lags
behind the charge more so than it does in an ordinary medium.

The LHMs are promising for up-to-date applications, such
as amplifiers of evanescent waves [43], magnetic-optical
recorders [44], directional antennas [45], and for suppression
wake fields that occur during the process of particle accelera-
tion [46,47].

In the present paper, the interaction between a tubular beam
of charged particles and eigenmodes of cylindrical dispersive
medium are theoretically investigated. This medium may
have negative values of ε and μ over a certain frequency
range. It will be shown that the interaction gives rise to the
absolute instability of the so-called bulk-surface electromag-
netic waves, which are the propagating waves in the medium
and, at the same time, they are evanescently confined along
the normal to the lateral cylinder surface in vacuum. This
means that LHMs can be used as the delaying media with
“natural feedback” for generation of electromagnetic waves in
backward-wave tubes. Besides, the possibility of generation
of weakly damped whispering gallery waves will allow the
generation of electromagnetic waves in the submillimeter
region of the spectrum.

013205-2



INTERACTION BETWEEN A TUBULAR BEAM OF CHARGED . . . PHYSICAL REVIEW E 96, 013205 (2017)

z

Electron beam0ρ bρ

FIG. 1. Geometry of electrodynamic system.

II. STATEMENT OF THE PROBLEM AND BASIC
EQUATIONS

Consider an infinite along the z-axis cylinder with the radius
ρ0 occupying the region 0 � ρ � ρ0, 0 � ϕ � 2π , and −∞ �
z � +∞ (see Fig. 1). We suppose that the cylinder is made
of a metamaterial with the frequency-dependent permittivity
ε and permeability μ, which have negative values over one
and the same frequency range. The frequency dependences
for ε(ω) and μ(ω) will be specified below. A tubular electron
beam with the radial thickness a and density N0(ρ) moves
in vacuum at a distance of ρb from the cylinder axis at a
velocity v0. The quasineutrality condition for the beam is
satisfied because the charges of electrons are compensated
by the background of positive charges. We assume that the
thickness of the beam a is much smaller than the other spatial
scales of the electrodynamic system under consideration.
Hence the undisturbed beam density can be represented as
N0(ρ) = N0aδ(ρ − ρb), where N0 is the equilibrium beam
density and δ(ρ − ρb) is the Dirac delta function.

Below we will consider the interaction between the electron
beam and the cylinder eigenmodes in a linear approximation.
In this case, we specify the disturbed beam current density at
a point with the radius-vector r at a moment t as

j(r,t) = eN0(ρ)v(r,t) + ev0N (r,t),

where e is the electron charge, and N (r,t) and v(r,t) are the
variable components of the beam density and the electron
velocity, respectively. Hereafter, we will suppose the radial
component of the beam current density is equal to zero because
of the chosen model of the electron beam.

To describe the interaction between the electron beam
and the cylinder eigenmodes, we take as a starting point
the following Maxwell equations together with the linearized
continuity and motion equations for the beam electrons:

rotH(r,t) = 1

c

∂

∂t
D(r,t) + 4π

c
j(r,t), (1)

rotE(r,t) = −1

c

∂

∂t
B(r,t), (2)

divD(r,t) = 4πeN (r,t), (3)

divB(r,t) = 0, (4)

e
∂N (r,t)

∂t
+ divj(r,t) = 0, (5)

∂v(r,t)
∂t

+ v0
∂v(r,t)

∂z
= e

m

{
E(r,t) + 1

c
[v0,B(r,t)]

}
, (6)

where m is the electron mass, c is the velocity of light in
vacuum, E(r,t) and H(r,t) are the electric and magnetic field
vectors, and D(r,t) and B(r,t) are the electric displacement and
magnetic induction vectors that are related with the E(r,t)- and
H(r,t)-vectors by the constitutive equations

D(r,t) =
∫ t

−∞
ε̃(t − t ′)E(r,t ′)dt ′, (7)

B(r,t) =
∫ t

−∞
μ̃(t − t ′)H(r,t ′)dt ′, (8)

where ε̃(t − t ′) and μ̃(t − t ′) are the influence functions that
characterize the efficiency of the field action in time. Note that
the difference nature of the kernels of the integrals is due to
the homogeneity of the metamaterial properties in time.

In order to derive the dispersion equation for the electro-
magnetic waves in the electrodynamic system under consider-
ation, it is necessary to satisfy certain boundary conditions
at ρ = ρ0 and ρ = ρb. These conditions are as follows.
First, the tangential components of the electric and magnetic
fields are continuous at ρ = ρ0. Second, at ρ = ρb the
tangential components of the magnetic fields are discontinuous
because of the beam current. Note that the normal compo-
nent of the magnetic induction vector remains continuous,
whereas the normal component of the electric displacement
vector suffers discontinuity because of the disturbed beam
charge.

We determine the discontinuities of the tangential com-
ponents of the magnetic field and the normal component of
the electric displacement [in vacuum Dρ(r,t) ≡ Eρ(r,t)] by
integrating Eqs. (1) and (3) over the infinitesimally small beam
thickness. As a result, we have

Hϕ(r,t)
∣∣
ρ=ρb+0 − Hϕ(r,t)

∣∣
ρ=ρb−0

= 4π

cρb

lim
	ρ→0

∫ ρb+	ρ

ρb−	ρ

jz(r,t)ρdρ, (9)

Hz(r,t)|ρ=ρb+0 − Hz(r,t)|ρ=ρb−0

= −4π

c
lim

	ρ→0

∫ ρb+	ρ

ρb−	ρ

jϕ(r,t)dρ, (10)

Eρ(r,t)
∣∣
ρ=ρb+0 − Eρ(r,t)

∣∣
ρ=ρb−0

= 4π e

ρb

lim
	ρ→0

∫ ρb+	ρ

ρb−	ρ

N (r,t)ρdρ. (11)

We represent all variables in the form of the set of space-
time harmonics, for instance,

E(r,t) =
∞∑

n=−∞

∫ ∞

−∞

∫ ∞

−∞
En(ρ,qz,ω)

× exp [i(qzz + nϕ − ωt)]dqzdω, (12)

where ω, qz, and n are the frequency, longitudinal wave
number, and the number of the spatial harmonic (coinciding
with the azimuthal mode index), respectively; i2 = −1.

If we take into account Eq. (12), we can rewrite the original
equations, Eqs. (1)–(4), for the axial spectral components of
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the field in the region outside the electron beam (ρ �= ρb) in
the following form:[

1

ρ

∂

∂ρ
ρ

∂

∂ρ
+

(
q2

ν − n2

ρ2

)]{
Eν,zn(ρ,qz,ω)
Hν,zn(ρ,qz,ω)

}
= 0, (13)

where ν = 1 for the cylinder region and ν = 2 for vacuum;
q2

ν = ενμνω
2/c2 − q2

z is the square of the transverse wave
number of electromagnetic waves. When q2

ν > 0, the system
of equations (13) has the form of the Bessel equations,
whereas when q2

ν < 0 they are the modified Bessel equations.
Hereinafter we take the following notations: q2

1 = κ2 =
εμω2/c2 − q2

z in the cylinder region and q2
2 = q2 = ω2/c2 −

q2
z in vacuum.

Hereafter, we will use the frequency dependencies ε(ω) and
μ(ω) the same as in Refs. [8,10]:

ε(ω) = 1 − ω2
L

ω2
, μ(ω) = 1 − Fω2

ω2 − ω2
r

, (14)

where ωL is the effective plasma frequency, ωr is the resonance
frequency, F is the fractional area of the metamaterial unit
cell occupied by the interior of the split ring resonator, and
F < 1. We recall that because these resonators respond to the
incident magnetic field, the medium can be viewed as having
an effective permeability (see Ref. [10]).

We are only interested in the waves, which are evanescently
confined along the normal to the lateral cylinder surface in
vacuum. For these waves the condition q2 < 0 is satisfied.
Exactly, these waves are excited by the beam of charged
particles provided the Cherenkov resonance ω = qzv0. Indeed,
for the nonrelativistic electron velocities (β � 1, where
β = v0/c is the dimensionless electron velocity) considered
herein, we have ω2/c2 � q2

z and q2 < 0. Taking into account
the aforesaid, we represent the expressions for the spectral
components of the electromagnetic field Ezn(ρ,qz,ω) and
Hzn(ρ,qz,ω) in the following form:

Ezn(ρ,qz,ω)

=

⎡
⎢⎢⎢⎢⎣

[
AE

n Jn(κρ), κ2 > 0

AE
n In(|κ|ρ), κ2 < 0

, ρ � ρ0

BE
n Kn(|q|ρ) + CE

n In(|q|ρ), ρ0 < ρ < ρb

DE
n Kn(|q|ρ), ρ > ρb

, (15)

Hzn(ρ,qz,ω)

=

⎡
⎢⎢⎢⎢⎣

[
AH

n Jn(κρ), κ2 > 0

AH
n In(|κ|ρ), κ2 < 0

, ρ � ρ0

BH
n Kn(|q|ρ) + CH

n In(|q|ρ), ρ0 < ρ < ρb

DH
n Kn(|q|ρ), ρ > ρb

, (16)

where Jn(u) is the nth order Bessel function of the first
kind; In(u) and Kn(u) are the modified functions of the
first kind (Infeld function) and the second kind (Macdonald
function), respectively [48]; AE,H

n , BE,H
n , CE,H

n , and DE,H
n

are the arbitrary constants. The choice of the solution is due
to the fulfillment of finiteness conditions for Ezn(ρ,qz,ω)
and Hzn(ρ,qz,ω) at ρ → 0 and ρ → ∞. At β2εμ > 1 the
expressions for the components Ezn(ρ,qz,ω) and Hzn(ρ,qz,ω)

of the fields inside the cylinder are described by Bessel
functions Jn(κρ), and at β2εμ < 1 they are described by
modified Bessel functions In(|κ|ρ). According to the terminol-
ogy of Ref. [6], in the first case we term the electromagnetic
waves as the bulk-surface waves, whereas in the second case
the electromagnetic waves are represented as the surface
waves. Using the Maxwell equations, we express other Fourier
components of the electromagnetic fields in the cylinder region
(ρ < ρ0), as well as in the annular gap (ρ0 < ρ < ρb), and
on the other side of the beam (ρ > ρ0) via the components
Ezn(ρ,qz,ω) and Hzn(ρ,qz,ω).

We note that in the nonrelativistic case, when β2 � 1
and εμβ2 > 1, the discontinuities of the tangential magnetic
field components Hϕ n(ρ,qz,ω) and Hzn(ρ,qz,ω) at the beam
surface (ρ = ρb) are small values of the order of O(β).
Therefore, in what follows, in the boundary conditions at
the beam surface (ρ = ρb), we suppose these components are
continuous, and take into account only the discontinuity of the
electric field component Eρ n(ρ,qz,ω).

Assuming the beam is nonrelativistic, and satisfying the
above-mentioned boundary conditions at the cylinder and
electron beam surfaces, we obtain the following dispersion
equation for the beam-cylinder coupled waves:

	
[
(ω − qzv0)2 − (qz,n)ω2

b

] = αω2
b, (17)

where ωb =
√

4π e2N0/m is the plasma frequency of beam
electrons, (qz,n) is the depression factor of space-charge
forces [2], and

(qz,n) = a

ρb

(
n2 + q2

z ρ
2
b

)
In(|qz|ρb)Kn(|qz|ρb)

×
[

1 − In(|qz|ρ0)Kn(|qz|ρb)

In(|qz|ρb)Kn(|qz|ρ0)

]
. (18)

α is the coupling factor of the beam with cylinder eigenmodes
that has the form

α = a

ρb

(
n2 + q2

z ρ
2
b

) K2
n(|qz|ρb)

q2
z ρ

2
0K2

n(|qz|ρ0)
	H, (19)

	 = 	0 − 	E	H, (20)

	0 =
[
nqzω(εμ − 1)

q2κ2ρ2
0c

]2

, (21)

	E = 1

|q|ρ0

K ′
n(|q|ρ0)

Kn(|q|ρ0)
+ ε

κρ0

J ′
n(κρ0)

Jn(κρ0)
,

	H = 1

|q|ρ0

K ′
n(|q|ρ0)

Kn(|q|ρ0)
+ μ

κρ0

J ′
n(κρ0)

Jn(κρ0)
. (22)

Note that Eq. (17) has the form analogous to the char-
acteristic equation of a traveling-wave tube [2]. In our case,
it describes the interaction of the beam space-charge waves
(SCWs) with the cylinder eigenmodes. Dispersion equations
for the beam SCWs and the cylinder eigenmodes are described
by the following equations:

(ω − qzv0)2 − (qz,n)ω2
b = 0, and 	 = 0. (23)

The equation 	 = 0 can be interpreted as the dispersion
equation of hybrid E- and H -type waves. The symmetric (n =
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0) cylinder E-type eigenmodes are characterized by the equa-
tion 	E = 0, whereas the symmetric H -type waves are char-
acterized by the equation 	H = 0. For hybrid E- and H -type
waves the conditions |Ezn(ρ,qz,ωp)|max/|Hzn(ρ,qz,ωp)|max >

1 and |Ezn(ρ,qz,ωp)|max/|Hzn(ρ,qz,ωp)|max < 1 (where the
index “max” indicates the maximum value of the correspond-
ing component) are satisfied, respectively. From these facts, it
transpires that the wave type is determined by the dominant
axial component of the electromagnetic field [49]. In the mode
double subscript p ≡ ns; the radial index s represents the
number of field variations along the radial coordinate and
corresponds to the pair of roots order number of the equation
	 = 0, whose solutions determine the frequencies ωp of the
cylinder eigenmodes with the longitudinal wave number qz. In
the case of symmetric waves, the index s corresponds to the
root order number of the corresponding dispersion equation:
	E = 0 or 	H = 0. In the dispersion equation 	 = 0 the role
of the coupling factor between the E and H waves is played
by the quantity 	0. If n = 0, the dispersion equation 	 = 0
splits into two independent equations 	E = 0 and 	H = 0. In
this case, the electromagnetic fields of symmetric waves have
three components: Eρ0s , Hϕ0s , and Ez0s for E waves, and Hρ0s ,
Eϕ0s , Hz0s for H waves [here Ezns ≡ Ezn(ρ,qz,ωp), Hzns ≡
Hzn(ρ,qz,ωp), etc., where p ≡ 0s]. If n �= 0, all electric and
magnetic field components of the cylinder eigenmodes are
nonzero, and, therefore, they are the hybrid E- and H -type
waves.

In the case of ρ0 → 0 (i.e., the cylinder is absent in the
electrodynamic system), we have α/	 → 0, and the solutions
of the dispersion equation, Eq. (17), determine the frequencies
of the slow (ω−) and fast (ω+) beam SCWs:

ω− = qzv0 − R0(qz,n)ωb, (24)

ω+ = qzv0 + R0(qz,n)ωb, (25)

where R0(qz,n) = √
0(qz,n) is the reduction factor [2], and

0(qz,n) = Lim
ρ0→0

(qz,n)

= a

ρb

(
n2 + q2

z ρ
2
b

)
In(|qz|ρb)Kn(|qz|ρb). (26)

As follows from Eqs. (24) and (25), the phase velocities of
the slow and fast SCWs are, respectively, less and greater than
the beam velocity v0.

Our goal is to determine the frequencies of the cylinder
eigenmodes and the increments (decrements) of the beam-
cylinder coupled waves. When the beam is absent in the system
(ωb = 0), the dispersion equation, Eq. (17), is reduced to the
dispersion equation for the cylinder eigenmodes 	 = 0. Hence
we determine the cylinder eigenmodes ωp. The frequencies ωp

are changed because of the interaction of the beam with the
cylinder, and, as a result, small frequency corrections |δω| �
ωp occur. They are small because the plasma frequency of
the beam electrons is less than the frequencies of the cylinder
eigenmodes (ωb < ωp). Just this case is of interest because
the cylinder eigenmodes are excited. Then Eq. (17) can be

represented as follows:

δω3 + 2(ωp − qzv0)δω2 + [
(ωp − qzv0)2 − (qz,n)ω2

b

]
δω

− α(ωp)

	′
ω(ωp)

ω2
b = 0, (27)

where 	′
ω(ωp) is the frequency derivative of 	, which is

calculated at the cylinder eigenfrequency ωp. The case of
resonances is of the greatest interest. If the electron velocity
v0 satisfies the condition ωp = qzv0 (the Cherenkov resonance
[50]) and (qz,n) = 0, then from Eq. (27) we obtain

δω3 = α(ωp)

	′
ω(ωp)

ω2
b. (28)

This case is realized if ρb = ρ0. If ρb �= ρ0, then
Eq. (28) remains valid when the condition R(qz,n)ωb �
|δω| [where R(qz,n) =

√
(qz,n)] is satisfied. The value

R(qz,n)ωb makes sense of the effective (or reduced) plasma
frequency of the beam [2]. Note that Eq. (28) has three
roots, one of which is real and the other two are complex-
conjugate roots. One of the complex-conjugate roots has
a positive imaginary part, which leads to a wave ampli-
tude rise with time. A root with a negative imaginary
part refers to a damped wave with time. From Eq. (28)
we determine the following expression for the instability
increment:

Imδω =
√

3

2

∣∣∣∣ α(ωp)

	′
ω(ωp)

∣∣∣∣
1/3

ω
2/3
b . (29)

Since, according to Eq. (29), the instability increment is
proportional to N

1/3
0 , the excitation of the cylinder eigenmodes

by resonant beam particles (whose velocity satisfies the
condition ωp = qzv0) is coherent [51]. As noted above, this
instability is caused by the Cherenkov effect.

Note that if ρb > ρ0 the resonant interaction of the electron
beam with the cylinder eigenmodes is possible at frequencies

ω±
p = ω± = qzv0 ± R(qz,n)ωb.

If the condition R(qz,n)ωb 	 |δω| is valid, Eq. (27) takes
the form

δω2 = ± α(ω±
p )ωb

2R(qz,n)	′
ω(ω±

p )
. (30)

In Eq. (30) the plus sign before the fraction corresponds
to the frequency ω+

p , and the minus sign is for the frequency
ω−

p . It is evident that the condition δω2 < 0 is only valid at
the frequencies ω−

p . This means that the instability emerges
only if the slow space-charge wave interacts with the cylin-
der eigenmodes (the anomalous Doppler effect [50]). The
interaction of the fast space-charge wave with the cylinder
eigenmodes results only in the appearance of real corrections
to the frequencies ω+

p . Thus Eq. (30) has two real roots for
ω+

p and two complex-conjugate roots for ω−
p . The root with

a positive imaginary part corresponds to an increasing with
time wave. In case of the anomalous Doppler effect, from
Eq. (30) we obtain the following expression for the instability
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increment:

Imδω =
[

α(ω−
p )ωb

2R(qz,n)	′
ω(ω−

p )

]1/2

. (31)

It follows from Eq. (31), that the instability increment is
proportional to N

1/4
0 .

To gain a better insight into the interaction mechanism
of the charged particles of a tubular beam with the cylinder
waves, below we present the numerical analysis results of
the dispersion equation, Eq. (17), and the expression for the
instability increment, Eq. (29), corresponding to Cherenkov
resonance. The fact is that waves excited under the Cherenkov
resonance conditions are characterized by greater instability
increments (by ten or more times) than the waves excited
under the anomalous Doppler effect conditions.

III. NUMERICAL ANALYSIS OF THE
DISPERSION EQUATION

It is convenient to carry out a numerical analysis of the
dispersion equation, Eq. (17), using the following dimension-
less quantities: κ̄ = κρ0, q̄ = qρ0, q̄z = qzρ0, ρ̄b = ρb/ρ0,
ā = a/ρ0, ω̄ = ω/ω0, ω̄L = ωL/ω0, and ω̄r = ωr/ω0, where
ω0 = c/ρ0. In calculations, we choose the following geometric
and material parameters of the cylinder: ρ0 = 0.5 cm, F =
0.56, ω̄L = 2, ω̄r = 1, and ω̄μ=0 = ωμ=0/ω0 ≈ 1.51 (it is the
frequency at which μ = 0). The values of the equilibrium beam
electron density N0, the radial thickness of the beam a, and the
directed motion velocity of the beam electrons are chosen as
follows: N0 = 7.6 × 1010 cm−3, a = 0.05 cm, and v0 = 0.3c,
respectively. For the selected system parameters, we have
ω0 = 6 × 1010 s−1, and ω2

b/ω
2
0 ≈ 0.07, and the value q̄z = 1

refers to qz = 2 cm−1 and the corresponding wavelength λ =
2π/qz = π cm.

A. Spectra of the cylinder eigenmodes

Before proceeding to the analysis of the dispersion char-
acteristics of the cylinder eigenmodes, let us analyze the
frequency dependences of ε and μ shown in Fig. 2. Curves
1 and 2 correspond to the dependences ε(ω̄) and μ(ω̄),
respectively. Curve 3 corresponds to the value μ(ω̄) = 1 − F .
Straight lines 4, 5, and 6 correspond to the frequencies
ω̄ = ω̄r , ω̄ = ω̄μ=0, and ω̄ = ω̄L, respectively. In Fig. 2
there are the following four frequency regions depending
on the combinations of the signs of ε(ω̄) and μ(ω̄): (I)
0 < ω̄ < ω̄r , where ε < 0, μ > 0; (II) ω̄r < ω̄ < ω̄μ=0, where
ε < 0, μ < 0; (III) ω̄μ=0 < ω̄ < ω̄L, where ε < 0, μ > 0;
(IV) ω̄ > ω̄L, where ε > 0, μ > 0. The permeability μ(ω̄)
tends to plus or minus infinity at ω̄ → ω̄r − 0 or ω̄ → ω̄r + 0,
respectively.

Since in the frequency region I the conditions κ2 < 0 and
	H < 0 are simultaneously satisfied then only E-type surface
electromagnetic waves can exist in it.

In frequency region II, the conditions ε < 0 and μ < 0 are
simultaneously satisfied. Therefore the cylinder metamaterial
behaves like the left-handed medium. In this frequency range,
the conditions κ2 < 0 and κ2 > 0 can simultaneously be
satisfied. This fact means the possibility of the simultaneous
existence of bulk-surface and surface electromagnetic waves

at the same frequency, but with different values of the wave
number qz. The analogous feature of the left-handed medium
properties, namely, the ability to sustain the existence (at the
same frequency) of bulk-surface and surface waves in case of a
plane interface between a left-handed medium and a vacuum,
was demonstrated in Refs. [39,52].

In frequency region III, just as in the frequency region I,
the conditions κ2 < 0 and 	H < 0 are simultaneously valid.
Therefore, only the E-type surface electromagnetic waves can
exist.

In frequency region IV, the condition κ2 > 0 holds and,
consequently, the E- and H -type bulk-surface waves can only
exist. When the condition κ2 < 0 holds we have 	E < 0 and
	H < 0 which indicates the absence of solutions of dispersion
equations 	E = 0 and 	H = 0. It follows that it is not possible
that the surface symmetric (n = 0) electromagnetic waves
exist in this frequency range.

Region II is of the greatest interest for us because the
cylinder material behaves there like a left-handed medium.
Therefore, we will concentrate our attention on studying the
features of the dispersion dependences of electromagnetic
waves in this frequency region. Hereafter, we will evaluate
the roots of corresponding dispersion equations using the
simplex method for minimization of a function of several
variables [53].

Figure 3 shows the dispersion dependences of the cylinder
symmetric eigenmodes (n = 0). Straight lines 1, 2, and 3
correspond to ω̄ = ω̄r and ω̄ = ω̄μ=0, and the light line in
vacuum ω̄ = q̄z, respectively. Curve 4 corresponds to the
solution of the equation κ̄ = 0. Straight lines 5 and 6 represent
the frequencies at which ε = −1 and μ = −1, respectively.
Curves 7 and 8 refer to the E-type bulk-surface waves, and
curves 9 and 10 are for the H -type bulk-surface waves.
Curves 11 and 12 are the surface waves of E and H type,
respectively. The empty circles show the starting (ending)

FIG. 2. Frequency dependences ε(ω̄) and μ(ω̄). Curves 1 and 2
correspond to the dependences ε(ω̄) and μ(ω̄), respectively. Curve
3 corresponds to the value μ(ω̄) = 1 − F , where F = 0.56. Straight
lines 4, 5, and 6 correspond to ω̄r = 1, ω̄μ=0 ≈ 1.51, and ω̄L = 2,
respectively.
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FIG. 3. Dispersion dependences of the cylinder symmetric eigen-
modes (n = 0) in the frequency region where ε < 0 and μ < 0. Lines
1, 2, and 3 represent straight lines ω̄r = 1 and ω̄μ=0 ≈ 1.51, and the
light line in vacuum ω̄ = q̄z, respectively. Curve 4 is for the solution
of the equation κ̄ = 0. Straight lines 5 and 6 are for the frequencies at
which ε = −1 and μ = −1, respectively. Curves 7 and 8 refer to the
E-type bulk-surface waves, and curves 9 and 10 are for the H -type
bulk-surface waves. Curves 11 and 12 are for the surface waves of E

and H type, respectively. The empty circles show the starting (ending)
points of the spectra of corresponding waves.

points of the spectra of corresponding waves. Generally
speaking, the values of ω̄ and q̄z at these points do not satisfy
the corresponding dispersion equations (	E = 0 or 	H = 0).

As shown in Fig. 3, the dispersion curves of bulk-surface
waves (curves 7–10) are located in the region bounded by
the straight lines 1 (ω̄ = ω̄r ) and 3 (ω̄ = q̄z), and curve 4
(κ̄ = 0) where the conditions q̄2 < 0 and κ̄2 > 0 are satisfied.
These dispersion curves originate from the light line ω̄ = q̄z

in a vacuum. To the left of this line they convert in the
dispersion curves of cylinder bulk eigenmodes, when q̄2 > 0,
and consequently, the fields in vacuum are described by the
Hankel functions of the first kind [49]. These modes cannot be
excited by a beam of charged particles moving in a vacuum,
since in this case q̄2 < 0. Therefore, they are not of interest
to us. The coordinates of the starting points of the spectra of
bulk-surface modes on the light line in vacuum for arbitrary
values of the index n are determined from the conditions
ω̄ = q̄z and 	 = 0. Since the equation 	 = 0 has infinitely
many solutions, there exist infinitely many starting points of
the pair of branches of E and H waves. Here, the density of
such branches will increase as the frequency ω̄ approaches the
resonance value of ω̄r , when κ → ∞. As noted above the order
number of the pair of branches of E and H waves corresponds
to the mode radial index s. Consequently, in Fig. 3 the value
s = 1 is for the pair of curves 7 and 9, and the value s = 2
is for the pair of curves 8 and 10. Using the classification
proposed in Ref. [49], the branches 7 and 9 refer to the E01

and H01 modes, respectively. Here, the first index corresponds
to the value of n, and the second one is for the value s.
Similarly, the branches 8 and 10 represent the dispersion
dependencies of E02 and H02 modes, respectively. Note that the

FIG. 4. Dispersion dependences of the cylinder unsymmetrical
eigenmodes with the azimuthal index n = 1 in the frequency range
where ε < 0 and μ < 0. Lines 1–6 are the same as in Fig. 3. Curves
7 and 8 correspond to the hybrid-type bulk-surface modes with the
radial index s = 1, and curves 9 and 10 are for the bulk-surface hybrid
modes with s = 2. The empty circles show the starting (ending) points
of the spectra of corresponding waves.

dispersion curves with values s > 2 that are located in pairs
below the curves for E02 and H02 modes are not shown in
Fig. 3.

From Fig. 3, it follows that the dispersion dependences of
the bulk-surface modes E01 and H01 (curves 7 and 9) have
normal dispersion, and on the curve κ̄ = 0 they convert to the
dispersion curves of the E- (curve 11) and H -type (curve 12)
surface waves, respectively. The dispersion dependences of the
bulk-surface modes E02 and H02 (curves 8 and 10) have parts
with normal and anomalous dispersion, and if q̄z → ∞ they
approach the straight line ω̄ = ω̄r asymptotically. Note that the
dispersion dependences of the bulk-surface modes with s > 2
are similar to the dependences for the E02 and H02 modes.
Dispersion dependences of the surface E and H waves (curves
11 and 12) have normal dispersion. If q̄z → ∞, the frequency
of the surface E wave (curve 11) approaches asymptotically
the frequency at which ε = −1 (line 5), and the frequency
of the H wave (curve 12) approaches the frequency at which
μ = −1 (line 6).

Let us consider the dispersion dependences of the cylinder
unsymmetrical eigenmodes (n �= 0) in the frequency range
where ε < 0 and μ < 0. In Fig. 4, the spectra of cylinder
eigenmodes with the azimuthal index n = 1 are shown. Note
that the qualitative behavior of the dispersion dependences of
cylinder eigenmodes with n > 1 is similar to the dependences
for the modes with n = 1. The lines 1–6 are the same as in
Fig. 3. Curves 7 and 8 correspond to the hybrid-type bulk-
surface modes with the radial index s = 1, and curves 9 and
10 are for the bulk-surface hybrid modes with s = 2. The
empty circles show the starting (ending) points of the spectra
of corresponding waves. Note that the values of ω̄ and q̄z at
these points do not satisfy the dispersion equation 	 = 0.

As shown in Fig. 4, the dispersion dependences of the bulk-
surface waves, labeled by the numbers 8–10, have the parts
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with both normal and anomalous dispersion. The dispersion
dependences of the bulk-surface modes with radial indices
s > 2 are similar. They are located below the dependences of
the hybrid modes with s = 2, and in Fig. 4 they are not shown.
From Fig. 4, it follows that only one of the dispersion branches
of the bulk-surface waves (curve 7) with normal dispersion
converts to the branch of the surface wave (curve 12) on the
curve κ̄ = 0. If q̄z → ∞, the frequency of this surface wave
approaches asymptotically the frequency at which μ = −1
(line 6). In contrast to the dispersion diagram of the cylinder
symmetric waves (Fig. 3), in Fig. 4 the second branch of
the surface wave (curve 11), whose frequency tends to the
frequency at which ε = −1 (line 5) if q̄z → ∞, has the starting
point at the intersection of the light line ω̄ = q̄z in vacuum (line
3) and the curve κ̄ = 0 (curve 4).

B. Spectra of coupled waves: Absolute and convective
instabilities

Let us ascertain the nature of instability that occurs in the
Cherenkov resonant interaction between the electron beam
and cylinder eigenmodes under the condition R(qz,n)ωb �
|δω| and the condition of an extremely small distance of the
beam from the cylinder. Henceforward, we will suppose that
ρb = ρ0.

It is well known that if for real qz we find complex ω with
Imω > 0, a field of monochromatic wave, ∼ exp[i(qzz − ωt)],
will grow in time without bounds and the electrodynamic
system will be unstable [51]. It is apparent that the increase
of field amplitude without bounds is valid only in the
linear approximation of the electrodynamic system under
consideration. At the same time in realistic electrodynamic
systems a nonlinear stage in the beam instability develops
as the field amplitude increases [54]. There are absolute and
convective instabilities. Let us recall that an absolute instability
implies the growth of the initial perturbation without bounds
for given z as t → ∞. If, however, the perturbation remains
bounded for given z and t → ∞, one talks about a convective
instability. These instabilities find wide use in generation and
amplification of electromagnetic waves (see, e.g., [1–3,51]).

Now our goal is to establish the nature of the instability in
a small vicinity of the intersection points of the eigenmode
dispersion curves with the beam wave ω̄ = q̄zβ (the so-called
resonance points). Hereafter, we use the well-known Sturrock
method [51,55]. To this end, we represent the values of ω̄

and q̄z near the resonance points (q̄z,res,ω̄res) in the following
way:

ω̄ = ω̄res + δω̄, q̄z = q̄z,res + δq̄z, (32)

where |δω̄| � ω̄res and |δq̄z| � q̄z,res.
For the sake of simplicity and without loss of physical

generality, we only consider the case of symmetric modes
(where n = 0). Substituting expressions from Eq. (32) into
Eq. (17) and performing the necessary expansions in terms
of small variations of δq̄z and δω̄ about the corresponding
resonance values, we obtain the following equation:

(δω̄ − βδq̄z)
2(δω̄ − v̄grδq̄z) = āω̄2

b

(
∂	E

∂ω̄

)−1

q̄z,res,ω̄res

, (33)

FIG. 5. Dispersion curves of the symmetric eigenmodes and the
beam wave. Line 1 refers to the light line in vacuum, curve 2 is for
κ̄ = 0, and line 3 is for the beam wave (ω̄ = q̄zβ). Curves 4 and
5 correspond to the bulk-surface waves H02 and E02, respectively,
and curves 6 and 7 are for the surface waves of H and E type,
respectively. Points A and B correspond to the intersection of the
dispersion dependence of the beam wave with the dispersion curves
of the bulk-surface wave E02 and with the Е-type surface wave,
respectively.

where v̄gr = −( ∂	E

∂q̄z
)q̄z,res,ω̄res (

∂	E

∂ω̄
)−1
q̄z,res,ω̄res

is the dimensionless
group velocity (in units of the velocity of light in vacuum) of
the electromagnetic wave; the values of (∂	E/δq̄z)q̄z,res,ω̄res and
(∂	E/δω̄)q̄z,res,ω̄res are the corresponding partial derivatives of
	E calculated at the resonance point (q̄z,res,ω̄res). It is worth-
while to emphasize that only symmetric Е-type eigenmodes
(when n = 0) are unstable because their electromagnetic fields
have nonzero components of the electric field Ez. Note
that only these components cause the interaction between
the metamaterial eigenmodes and the nonrelativistic beam
electrons. All further results remain valid for the excitation
of unsymmetrical eigenmodes (n �= 0) near the corresponding
resonance points.

Let us consider the instability regions of the electrodynamic
system under consideration near the points of intersection of
the dispersion dependence for the beam wave (ω̄ = q̄zβ) with
the dispersion curves of symmetric Е-type bulk-surface waves
and with the dispersion curve of the Е-type surface wave.

Figure 5 presents the dispersion dependencies of the
symmetric eigenmodes and the beam wave. Line 1 refers to the
light line in vacuum (ω̄ = q̄z), curve 2 is for κ̄ = 0, and line 3
is for the beam wave (ω̄ = q̄zβ). Curves 4 and 5 correspond to
the bulk-surface waves H02 and E02, respectively, and curves 6
and 7 are for the surface waves of H and E type, respectively.
Points A and B correspond to the intersection of the dispersion
dependence of the beam wave with the dispersion curve of
the bulk-surface wave E02 and with the Е-type surface wave,
respectively.

Figure 6 presents the dispersion dependencies of the wave
[which are the solutions of Eq. (33)] excited by the beam
in a small area in the vicinity of point A with coordinates
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FIG. 6. Dispersion curves of the wave E02 excited by the beam in
a small area in the vicinity of point A with coordinates q̄z,res = 1.025
and ω̄res = 3.42. Lines 1 and 2 refer to the values δq̄z = 0 and δω̄ = 0,
line 3 is for the asymptote δω̄ = v̄gr δq̄z, line 4 is for δω̄ = βδq̄z, and
curves 5 and 6 are for the wave E02 excited by the beam. It is seen
that the absolute instability occurs.

q̄z,res = 1.025 and ω̄res = 3.42. Lines 1 and 2 refer to the values
δq̄z = 0 and δω̄ = 0, line 3 is for the asymptote δω̄ = v̄grδq̄z,
line 4 is for δω̄ = βδq̄z, and curves 5 and 6 are for the wave
E02 excited by the beam.

Since the dispersion equation, Eq. (33), is a cubic one, then,
as known, it has three different real roots or one real root and
two complex-conjugate roots [56]. As one of these complex
roots has a positive imaginary part, the instability develops.
As seen from Fig. 6, the instability occurs at all values of
δqz that are greater than δqz,0. It is also seen that asymptotes
3 and 4 are inclined in different directions with respect to
line 2. The negative slope of asymptote 3 is caused by the
negative value of the group velocity of corresponding mode
(v̄gr ≈ −4.2 × 10−3). In accordance with the first Sturrock
rule (see Ref. [51,55]) this signifies the occurrence of the
absolute instability.

Figure 7 shows the dispersion dependencies of the E-type
surface wave excited by the beam in a small area in the vicinity
of point B with coordinates q̄z,res ≈ 4.39 and ω̄res ≈ 1.32.
Lines 1–4 have the same meaning as those in Fig. 6. Curves 5
and 6 correspond to the dispersion curves of the E-type surface
wave excited by the beam.

From Fig. 7 it follows that the instability occurs at all values
of δqz greater than δqz,0. Unlike the case shown in Fig. 6,
asymptotes 3 and 4 are inclined in the same direction with
respect to line 2. The positive slope of asymptote 3 is caused by
the positive value of the group velocity of corresponding mode.
In accordance with the first Sturrock rule (see Refs. [51,55])
this means the occurrence of the convective instability.

C. Analysis of instability increments

Let us dwell on the dependences of instability increments
δω̄ for bulk-surface waves on the values of azimuthal n and
radial s mode indices. These increment values are calculated
using the formula Eq. (29). Before moving on, we want to

FIG. 7. Dispersion curves of the E-type surface wave excited by
the beam in a small area in the vicinity of point B with coordinates
q̄z,res ≈ 4.39 and ω̄res ≈ 1.32. Lines 1 and 4 have the same meaning
as those in Fig. 6. Curves 5 and 6 correspond to the dispersion curves
of the E-type surface wave excited by the beam. It is seen that the
convective instability occurs.

briefly remark on the type of waves excited by a beam. As noted
above, if n = 0 the beam excites the symmetric E0s modes with
radial indices s � 2. If n � 1 the cylinder eigenmodes have
nonzero values of all electromagnetic field components and,
therefore, they are the hybrid-type modes. In Refs. [49,57], a
method was provided for the separation of such modes into the
so-called HEns and EHns modes depending on the predomi-
nant axial component of the electromagnetic field, i.e., the ratio
of the maximum values of field components |Ezn(ρ,qz,ωp)|max

and |Hzn(ρ,qz,ωp)|max. If the axial component of the electric
field dominates (|Ezn(ρ,qz,ωp)|max/|Hzn(ρ,qz,ωp)|max > 1),
the eigenmode is the HEns mode (E type); otherwise it
is the EHns mode (H type). Numerical analysis of excited
modes with azimuthal indices n � 1 shows that in the
resonance points, in which q̄z = q̄z,res and ω̄p = ω̄res, we
have |Ezn(ρ̄,q̄z,res,ω̄res)|max/|Hzn(ρ̄,q̄z,res,ω̄res)|max > 1. This
implies that in a cylinder made of a metamaterial with
ε(ω̄) < 0 and μ(ω̄) < 0 the nonrelativistic (β � 1) electron
beam excites the E-type eigenmodes.

As a matter of fact, the analytic estimations of the ratio
|Ezn(ρ̄,q̄z,res,ω̄res)|max/|Hzn(ρ̄,q̄z,res,ω̄res)|max for the modes
with n � 1 and s � 1 show that if β → 0 (that is equivalent
to q̄z → ∞) we have

|Ezn(ρ̄,q̄z,res,ω̄res)|max

|Hzn(ρ̄,q̄z,res,ω̄res)|max
∝

√
μ(ω̄)

ε(ω̄)
.

Since |μ(ω̄)| → ∞ and ε(ω̄) remains a finite quan-
tity if q̄z → ∞ and ω̄(q̄z) → ω̄r (i.e., the dispersion
curves of bulk-surface waves approach the straight line
ω̄ = ω̄r asymptotically), we have |Ezn(ρ̄,q̄z,res,ω̄res)|max/

|Hzn(ρ̄,q̄z,res,ω̄res)|max → ∞. This explains the fact that at
the resonance points (q̄z,res,ω̄res), if q̄z,res > 1, we have
|Ezn(ρ̄,q̄z,res,ω̄res)|max/|Hzn(ρ̄,q̄z,res,ω̄res)|max > 1.

Consequently, in the electrodynamic system under study,
the tubular electron beam excites coupled bulk-surface
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(a) (b)

FIG. 8. Instability increment values of an electrodynamic system with the bulk-surface modes corresponding to the low-frequency (a) and
high-frequency (b) branches of the pairs of dispersion dependences for cylinder eigenmodes. In Fig. 8(a), the dependences of the increment
values of the E0s and the HE−

ns modes with the radial indices s = 1, 2, 3 on the azimuthal index n are labeled by the numbers 1, 2, and 3,
respectively. In Fig. 8(b), the numbers 1, 2, and 3 are for the dependences of the increment values of the HE+

ns modes with s = 3, 5, 7 on the
azimuthal index n, respectively.

symmetric E0s modes with radial indices s � 2 and hybrid
HE±

ns modes with radial indices s � 1, where the subscripts
“–” and “+” refer to the low- and high-frequency branches
of the pairs of dispersion dependencies for cylinder eigen-
modes, respectively. In doing so, it is supposed that the
cylinder is made of the metamaterial, which possesses left-
handed properties in the frequency range of interest. In this
case, the absolute instability of the aforementioned modes
occurs.

Figure 8 shows the increment values Imω̄ of excited
bulk-surface modes with azimuthal indices in the range n =
0 · · · 20. In Figs. 8(a) and 8(b), these values correspond to the
low- and high-frequency branches of the pair of dispersion
curves, respectively. Note that in Figs. 3 and 4 the dispersion
dependences for the modes with n = 0, 1 and s = 1, 2 are only
shown. The increment values are grouped in accordance with
the radial index s of cylinder eigenmodes, which is determined
by the order number of the pair of dispersion curves. In
Fig. 8(a), the dependences of the increment values of the E0s

and HE−
ns modes with the radial indices s = 1, 2, 3 on the

azimuthal index n are labeled by the numbers 1, 2, and 3,
respectively. In Fig. 8(b), the numbers 1, 2, and 3 are for the
dependences of the increment values of the HE+

ns modes with
s = 3, 5, 7 on the azimuthal index n, respectively.

The analysis of the instability shows that the symmetric
bulk-surface E0 2 mode has the maximum increment. In Fig. 8
the increments Imω̄ decrease with increasing n because both
the value of |μ(ω̄res)| and its frequency derivative in the
denominator of Eq. (29) increase with frequency. In fact, with
increasing n at a fixed value of s the resonant frequencies ω̄res

tend to the frequency ω̄r at which the cylinder permeability
increases indefinitely. As shown in Fig. 8(b), the value of
azimuthal index n that corresponds to the maximum increment
of the HE+

ns mode increases with radial index s. Therefore,
on curve 3 the HE+

10 7 mode has maximum increment. This
enables the excitation of the weak decaying whispering

gallery modes with large values of azimuthal index n in the
electrodynamic system under study.

IV. CONCLUSIONS

The instability of a nonrelativistic tubular electron beam
that moves above a dispersive metamaterial of cylindrical
configuration has been theoretically examined. It has been
assumed that the metamaterial possesses negative permittivity
and negative permeability simultaneously over a certain
frequency range where it behaves like a LHM. The dispersion
equations for eigenmodes of the cylinder and for the coupled
modes of the system as well as the instability increments
have been derived. The instability is shown to be caused by
Cherenkov or anomalous Doppler effects depending on the
radial distance between the cylinder and the beam.

The numerical analysis of the dispersion curves of the
eigenmodes of the cylinder and the coupled modes excited
by the beam in the frequency region where the metamaterial
demonstrates the left-handed behavior has been performed. It
has been revealed that the parts of the dispersion curves of the
bulk-surface waves with anomalous dispersion emerge. The
latter implies negative group velocities of corresponding waves
and results in the absolute character of the beam instability. It
has been found that the resonance behavior of the magnetic
permeability of the metamaterial leads to the fact that all
bulk-surface waves excited by the beam are the E-type waves
for the resonance values of frequencies and wave vectors.
The numerical analysis of the dependencies of the instability
increments on azimuthal and radial mode indices has been
performed. We have shown that the HE+

ns modes with large
radial indices (s 	 1) are the whispering gallery modes for
which n 	 1.

Thus this suggests applications of LHMs as delaying media
for the generation of bulk-surface waves and eliminates the
need for creating artificial feedbacks in slow-wave structures.
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