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Ionization-potential depression and dynamical structure factor in dense plasmas
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The properties of a bound electron system immersed in a plasma environment are strongly modified by the
surrounding plasma. The modification of an essential quantity, the ionization energy, is described by the electronic
and ionic self-energies, including dynamical screening within the framework of the quantum statistical theory.
Introducing the ionic dynamical structure factor as the indicator for the ionic microfield, we demonstrate that
ionic correlations and fluctuations play a critical role in determining the ionization potential depression. This is,
in particular, true for mixtures of different ions with large mass and charge asymmetry. The ionization potential
depression is calculated for dense aluminum plasmas as well as for a CH plasma and compared to the experimental
data and more phenomenological approaches used so far.
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I. INTRODUCTION

In the context of new experimental facilities exploring warm
dense matter (WDM) and materials in the high-energy density
regime, a detailed theoretical investigation of thermodynamic,
transport, and optical properties of strongly coupled and nearly
degenerate Coulomb systems becomes of emerging interest.
This is of relevance not only for material science inves-
tigating matter under extreme conditions (Mbar pressures,
temperatures of 1 eV up to 1 keV), like inertial confinement
fusion implosions in laboratory experiments, but also for
understanding the structure and evolution of the increasing
number of known planets as well of other astrophysical objects.

A fundamental phenomenon is the modification of bound-
state levels as well as of continuum states owing to the
surrounding warm and dense medium. Here, we are interested
in the ionization potential depression (IPD), which is relevant
for the composition of the plasma, and, in this way, for
the thermodynamic and transport properties. We focus on
experiments showing the dissolution of spectral lines due to
the IPD which determines the ionization degree of WDM.
Accurate predictions are necessary for simulation codes
such as FLYCHK [1] which model plasmas under extreme
conditions.

Being a long-standing problem in plasma physics, IPD
experiments [2–7] have been performed recently using the new
possibility to produce highly excited plasmas at condensed
matter densities by intense short-pulse laser irradiation. Com-
parisons of observed optical spectra with simulations using
traditional expressions for the IPD given by Ecker and Kröll
(EK) [8] or Stewart and Pyatt (SP) [9] have been performed.
Neither of them leads to a satisfying description for all of the
available experiments. While, on one hand, Hoarty’s results [2]
on the disappearance of spectral lines seem to favor SP, and,
on the other hand, the direct measurements on the ionization
energy of the K-shell in aluminum and the subsequent Kα lines
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by Ciricosta et al. [3,4] tend to confirm EK, recently reported
results by Kraus et al. [7] cannot be understood by either of
the two approaches. A more systematic and accurate theory is
demanded to describe the measurements.

The commonly used expressions for the IPD derived by
Ecker and Kröll [8] or Stewart and Pyatt [9] interpolate
between the Debye (DH) limit for low densities and an ion
sphere (IS) expression, see Ref. [10], for high densities. They
are based on simplified assumptions such as the introduction
of an average static potential to perform Thomas-Fermi
calculations. A critical discussion of these approaches and their
applicability for the experiments given above was presented in
Ref. [11]. Other approaches use Hartree-Fock-Slater calcula-
tions [12], Monte Carlo simulations [13], molecular dynamics
simulations [14], density-functional theory calculations [15],
microfield concepts and a detailed configuration accounting
description [17,18], or the theory of disordered solids where
itinerant band electrons become localized below a mobility
edge [19].

A systematic approach to describe the properties of dense
plasmas is given by the quantum statistical many-body theory,
in particular the use of the Green function method [20]. It has
been applied to optical properties [21] by calculating shifts
and broadening of spectral lines in a plasma environment. The
shift of bound states and the continuum edge in dense plasmas
has also been considered in Refs. [22–24].

Already some decades ago, the shifts both of the continuum
edge and of the bound-state levels have been discussed for the
electron-hole plasma in excited semiconductors [20,23–26].
Depending on the density and temperature of the electron-hole
plasma, excitons are modified by medium effects and merge
with the lowered continuum at the Mott density. Thus, an
exciton gas is transformed into an electron-hole liquid. A
highly sophisticated theory describing dynamical screening
and degeneracy effects by the fermionic plasma constituents
had been worked out, explaining precise measurements in
excited semiconductors. However, because the ions are heavier
compared to the effective mass of holes, a simple transfer
of the physics of excited semiconductors to WDM is not
possible. The ions remain classical within a large density
region, forming strong correlations, which are described by
the dynamical ionic structure factor (SF) Sii(q,ω).
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In the following, we will give a relation between the IPD
and the ionic structure factor. Thus, mean-field (average atom)
approaches are improved taking into account fluctuations of
the ionic microfield. Further systematic improvements would
be possible, considering higher order Feynman diagrams in
the Green function approach.

II. THE IN-MEDIUM TWO-PARTICLE PROBLEM

We consider a two-particle system, consisting of an electron
(charge −e, mass me) and an ion (charge (Zi + 1)e, mass mi)
embedded in a surrounding plasma. In vacuum, the solution of
the Schrödinger equation for the Coulomb interaction is well
known. Bound states are found at negative energies, whereas a
continuum of scattering states is observed at positive energies.
The simple case of the hydrogen atom can be generalized to a
two-particle system with total charge Zie, consisting of a core
ion with charge number Zi + 1 and an electron, charge number
Ze = −1. According to these definitions, the notations Zi and
Zi + 1 denote the charge number of the ions before and after
the ionization, respectively. (Note that the charge number Zi

is at least by one smaller than the nuclear charge number of
the corresponding atom. For neutral atoms before ionization,
we have obviously Zi = 0.)

If the two-particle system is embedded in a plasma, bound-
state energies and wave functions as well as the scattering
states are modified. A systematic quantum statistical approach
to describe these medium effects is given by the method of
thermodynamic Green functions [20,26]. In particular, the
following in-medium Schrödinger equation (or Bethe-Salpeter
equation) can be derived [20,23,24,26]:[

E(1) + E(2) +
∑

q

[f (1 + q) + f (2 − q)]V12(q)

+�V eff(1,2,q,z)

]
ψ(1,2,z) +

∑
q

{[1−f (1)−f (2)]V12(q)

+�V eff(1,2,q,z)}ψ(1 + q,2 − q,z) = h̄z ψ(1,2,z). (1)

Here, the single particle states 1 = {h̄p1,σ1,c1} are given
by momentum, spin, and species, respectively, E(1) =
h̄2p2

1/(2m1). In the case considered here, c1 and c2 denote
the electron and the core ion, respectively. For the interaction
we assume the Coulomb potential V12(q) = Zc1Zc2e

2/(ε0q
2)

which contains the charge numbers of the interacting particles,
in our case Zc1Zc2 = −(Zi + 1).

The complex variable z describes the analytical continua-
tion of the functions, defined for the Matsubara frequencies,
into the entire z plane. Of interest is the behavior of the
functions near the real axis, z = ω ± iε.

Neglecting in Eq. (1) the medium effects arising from the
effective interaction �V eff(1,2,q,z) as well as the Fermi dis-
tribution functions f (i) = {exp β[E(i) − μ(i)] + 1}−1 with
β = 1/(kBT ) and μ(1) denoting the chemical potential of
species c1, the equation

[E(1) + E(2)]ψ(1,2,z) +
∑

q

V12(q)ψ(1 + q,2 − q,z)

= h̄z ψ(1,2,z) (2)

has eigensolutions ψn(1,2) at energies h̄z = En, well known
from hydrogen-like ions. For more complex ions consisting
of a nucleus and some bound electrons, a pseudopotential can
be introduced to describe the effect of the electrons within the
core ion.

The in-medium Schrödinger Eq. (1) describes the influence
of the medium by two effects, Pauli blocking and screening.
Pauli blocking is caused by the antisymmetrization of the
fermionic wave function. States which already are occupied
by the medium are blocked and can not be used for the two-
particle system under consideration. The blocking is described
by the Fermi distribution function. Pauli exclusion principle
is acting as Fock shift

∑
q f (1 + q) V12(q) in addition to the

single particle energy E(1) in Eq. (1) (for charge-neutral plas-
mas, the Hartree term vanishes). Also in the interaction term,
Pauli blocking gives the contribution −∑

q f (1)V12(q)ψ(1 +
q,2 − q,z). Both in-medium contributions are caused by the
degeneracy of the plasma particles. In the plasmas considered
here, electrons may be degenerate because of their small mass
me. The ions are nondegenerate and can be treated as classical
particles.

Considering only the Pauli blocking effects, the effective
(non-Hermitean) Hamiltonian of Eq. (1) remains real and
can be symmetrized. The energy eigenvalue problem can be
solved, and the bound-state energies as well as the edge of
continuum states are shifted. At a certain density, the bound
states merge with the continuum of scattering states and
disappear. Within this approximation, which is essentially a
mean-field approximation, a sharp value for the lowering of
the continuum edge and for the IPD can be calculated.

Screening of the interaction by the medium is described by
the effective interaction

�V eff(1,2,q,z)

= −V12(q)
∫ ∞

−∞

dω′

π
Im ε−1(q,ω′ + i0)

× [nB (ω′) + 1]

[
h̄

h̄z − h̄ω′ − E(1) − E(2 − q)

+ h̄

h̄z − h̄ω′ − E(1 + q) − E(2)

]
, (3)

where terms ∝f (1), which give corrections in higher orders of
the density, are neglected. nB (ω) = [exp(βh̄ω) − 1]−1 is the
Bose distribution function. The dynamical properties of the
surrounding plasma are contained in the dielectric function
ε(q,z) to be taken at the real axis, z = ω′ + i0. In general,
this is a complex, frequency-dependent quantity, with a jump
of the imaginary part at the real axis. Often the random-phase
approximation (RPA) is taken, and in the static limit ω → 0 the
Debye screening is obtained. In this work, we show that these
simple approximations have to be improved in a systematic
way, which is obtained from the quantum statistical approach.

Including the effective potential, the effective Hamiltonian
in the in-medium Schrödinger Eq. (1) becomes complex and
frequency dependent. As a consequence, the eigenstates are no
longer stationary states with sharp energy levels that are shifted
by the polarization of the medium, but have a finite lifetime
given by the imaginary part of the effective Hamiltonian. This
can be interpreted as collisions with the plasma particles and
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leads to a broadening of the energy levels. The corresponding
quantum statistical approach to plasma line shapes based on
the treatment of the polarization function has been worked out
[21] and will not be investigated in the present work.

Subsequently, sharp level shifts and a sharp shift of
the continuum edge are only obtained from a mean-
field approximation. Any frequency dependence beyond the
mean-field approximation gives imaginary parts and, in this
way, a broadening of the continuum edge and the energy levels.
The latter problem has been considered also earlier [22,24],
where both real part and imaginary part of the energy levels
of the in-medium two-particle problem are calculated. As a
consequence, only the spectral function has a unique physical
meaning, showing the spectral line profiles and the smooth
transition to the continuum. However, within this work we
will focus on the shifts that are obtained from the real part of
the effective Hamiltonian.

As shown in Refs. [20,22–24,26], density effects arise from
dynamical screening in the effective potential, expressed by the
inverse dielectric function ε−1(q,z) of the medium in Eq. (3).
For bound states, Pauli blocking as well as the screening in the
self-energy term [�V eff in the first square bracket of Eq. (1)]
and the effective interaction partially compensate each other so
that the bound-state energy levels are only weakly dependent
on the density. In contrast, the energy shift of the continuum
states is determined only by the self-energy contribution.
Therefore, in leading order of the density, the medium modifi-
cation of the IPD is given by the shift of the edge of continuum
states. For a more extended discussion, see Refs. [20,22–26].

A standard expression for the dielectric function ε(q,z) is
the random phase approximation (RPA). From the real part

of the self-energy, the Debye shift of the continuum edge is
immediately observed. Here we discuss improvements beyond
RPA to evaluate the shift of the continuum edge occurring
at p1 = p2 = 0. Thus, our approach, which is based on a
systematic quantum statistical approach, can be regarded as an
improvement of the Debye theory or other approaches using
semiempirical assumptions such as the ion sphere model.

III. SHIFT OF SINGLE-PARTICLE STATES

A. Self-energy of single-particle states

In the single-particle picture, the influence of the plasma
environment on the properties of the investigated particle is
merged into the self-energy �c(1,z). It can be represented by
Feynman diagrams, in lowest approximation by the diagram
(also known as V sG or GW approximation) with the dressed
propagator G and the screened potential V s ,

�c(1,z) =
∑
q,ω

Gc(p − q,z − ω) · V s(q,ω)

= = �HF
c (1,z) + �corr

c (1,z). (4)

The Hartree-Fock (HF) contribution to the self-energy has been
investigated elsewhere, see Ref. [20], and will not be discussed
here. The correlation part of the self-energy �corr

c (1,z) contains
the contribution of the interaction with electrons, as well as the
interaction with ions. We are interested in the real part of the
self-energy since it describes the continuum shift. It follows
from Eq. (3) by renaming, e.g., h̄z − E(2) = h̄ω in the last
term of Eq. (3). Then we have

Re �corr
c (p,ω) = −P

∫
d3q

(2π )3

∫
dω′

π
Vcc(q)Im ε−1(q,ω′ + i0)

1 + nB (ω′)
ω − ω′ − Ec,p+q/h̄

. (5)

(P denotes the principal value.) In general, the dielectric function is connected to the dynamical SF via the fluctuation-dissipation
theorem. For a two-component plasma (free electrons with charge −e, ions with effective charge Zie and charge neutrality
Zini = ne), the imaginary part of the inverse dielectric function can be expressed via the dynamical SFs, see also Ref. [27],

Im ε−1(q,ω + i0) = e2

ε0 q2

π

h̄ (1 + nB (ω))

[
Z2

i niSii(q,ω) − 2Zi

√
neniSei(q,ω) + neSee(q,ω)

]
. (6)

The dynamical SFs Scd (q,ω) characterize the plasma
in response to any perturbation. For instance, they have
been investigated to describe x-ray Thomson scattering; see
Ref. [28]. Other plasma properties, such as the electrical
conductivity, are also governed by the dynamical SF. The
dynamical SFs are related to the density-density correlation
functions 〈δnc(r,t)δnd (0,0)〉 via Fourier transformation. Note,
that it is also connected to the symmetrized correlation function
of the longitudinal microfield fluctuations 〈δEδE〉q,ω [26],

〈δEδE〉q,ω = 2π
(
Z2

i e
2/q2

)
Sii(q,ω). (7)

For further discussion of the general expressions Eqs. (5)
and (6), we perform exploratory calculations using model
approaches for the dynamical SFs. Following the relations

for the dynamical SFs reported in Refs. [27,28],

Sei(q,ω) = qsc(k)√
Zi

Sii(q,ω),

See(q,ω) = S0
ee(q,ω) + |qsc(k)|2

Zi

Sii(q,ω), (8)

the decomposition of the dynamical SF as introduced in Eq. (6)
can be divided into S0

ee(q,ω) of the fast moving free electrons
and the ionic part SZZ

ii (q,ω), which includes also the screening
cloud of the slowly moving electrons following the ionic
motion, denoted by qsc(k),

ZiSii(q,ω) − 2
√

ZiSei(q,ω) + See(q,ω)

= Zi S
ZZ
ii (q,ω) + S0

ee(q,ω), (9)
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with SZZ
ii (q,ω) = (1 − qsc(k)/Zi)2Sii(q,ω). The electronic

contribution to the continuum lowering is described by
the electronic SF S0

ee and has been widely discussed; see
Refs. [20,26]. Results in the Montroll-Ward approximation
are well known. Compared to the ionic contribution (∼Z2

i e
2),

the electronic contribution (∼e2) is usually quite small for
highly charged states.

Following Eqs. (5) and (6), we now discuss the ionic
contribution to the correlation shift of the continuum edge
Re �corr

e (0,ω) + Re �corr
i (0,ω). It is expressed as

Re �corr, ion
c (p = 0,ω) = �ion

c (0,ω)

= −P
∫

d3q
(2π )3

∫
dω′

π

Vcc(q)

ω − ω′ − Ec,q/h̄

× πZie
2 ne

h̄ε0 q2
SZZ

ii (q,ω′). (10)

Thus, the ionic contribution to the continuum shift is related
to the dynamical SF of the ions. The quasiparticle shift has
to be defined self-consistently at ω = �ion

c (0,ω), but this shift
is compensated in the denominator of the integrand by the
energy Ec,q, which is shifted too. Then the ionic contribution
�ion

c (0,ω) is given by �ion
c (0,0), later denoted as �ion

c .

B. Plasmon pole approximation

Under WDM conditions considered here, the ions are
strongly coupled, so that the SF SZZ

ii should not be taken
in the Debye limit. However, the plasma ions can be
treated classically. Therefore, for �ion

c (0,0), see Eq. (10),
we consider the limit h̄ → 0 in the propagator 1/[−ω′ −
h̄q2/(2mc)]. In addition, the ions move very slowly in
comparison to the electrons, which indicates that it is
reasonable to replace the dynamical SF of ions by the
static SF within some approximations. We use the plasmon
pole approximation Im ε−1

ion(q,ω) = −πω2
i {δ(ω − ωq,i) −

δ(ω + ωq,i)}/(2ωq,i), where ω2
q,i = (q2 ω2

i )/(κ2
i SZZ

ii (q)) is ful-
filling the f-sum rule [28] with the ionic plasmon frequency
ω2

i = Z2
i nie

2/(ε0mi) and the inverse Debye screening param-
eter κ2

i = ω2
i mi/kBT . Then we find the following expression:

SZZ
ii (q,ω) ≈ SZZ

ii (q)
δ(ω − ωq,i) + δ(ω + ωq,i)

1 + e−h̄ω/(kBT )
. (11)

The physical meaning of the replacement of the dynamical
SF by the static SF in Eq. (11) is that the ions are considered
to have a fixed distribution in the plasma neglecting temporal
fluctuations.

For the ionization process i
Zi

→ e + i
Zi+1 , the IPD can be

given by the difference between the self-energy before and
after the ionization of the investigated system; i.e., �ion

IPD
=

�ion
i − (�ion

e + �ion
i+1). We assume that the ionic structure

of the plasma environment does not change during the
ionization. Therefore, we insert Eq. (11) into �ion

c ; see Eq. (10).
Performing the approximations as discussed in context with
Eq. (10), we obtain for the IPD,

�ion
IPD

= − (Zi + 1)e2

2π2ε0

κ2
i

kF,i

∫ ∞

0

dq0

q2
0

SZZ
ii (q0), (12)

where q0 = q/kF,i is the reduced wave number with kF,i =
(3π2ni)

1/3
. Considering the ion-ion SF SDH

ii (q) = q2/(q2 +
κ2

i ) of a one-component plasma (OCP), valid in the low
density and the high temperature limits, the DH result �ion

DH
=

−(Zi + 1)e2κi/(4πε0) is recovered for the ionic contribution
to the IPD. Equation (12) shows a strong dependence on
the temperature indicated by the inverse Debye length κi

appearing in the frequency ωq,i ∼ κ−1
i in Eq. (11), and also

by the static ionic SF. The screening parameter κ2
i ∝ 1/(kBT )

follows from the linearized Debye theory for classical systems.
Nevertheless, with increasing coupling parameter, the plasma
starts to crystallize and forms a periodic structure. In this
case, the frequency ωq,i is determined by the Wigner-Seitz
radius rWS = (4πni/3)−1/3, as discussed, e.g., in Ref. [29].
Consequently, the parameter κ2

i occuring in ωq,i should be
replaced by a more general expression κ̃2

i (�i) depending on
the ionic coupling parameter �i = Z2

i e
2/(4πε0kBT rWS ). We

can express Eq. (12) in the form

�ion
IPD

= − (Zi + 1)e2

2π2ε0rWS

S(�i), (13)

introducing the parameter function

S(�i) = F (�i)
∫ ∞

0

dq0

q2
0

SZZ
ii (q0). (14)

From the Debye-Hückel theory follows

F (�i) = κ2
i rWS

kF,i

=
(

4

9π

)1/3

r2
WS

κ2
i = �i

(
12

π

)1/3

, (15)

valid for weakly coupled system �i � 1. For strong coupling,
a similar type of expression, F (�i) = 3

√
4/(9π )r2

WS
κ̃2

i (�i) can
be defined and will be discussed in detail in the next section.
One should keep in mind that, for a fixed charge state Zi ,
the parameter function S(�i) should gradually tend to a
constant due to crystallization of the plasma with increasing
coupling parameter [29]. At a fixed temperature and density,
the parameter function S(�i) slightly depends on the charge
number since the dependence on charge number Zi in the static
ionic SF SZZ

ii (q0) compensates with that of the function F (�i).
The approach presented in this work shows a close connec-

tion of the IPD to the detailed structure of the plasma system.
The general expression Eq. (13) with Eq. (14) should work
within the valid range of the fluctuation-dissipation theorem
for both equilibrium and non-equilibrium systems described
by the static SF of the quantum many-body system. Once the
SF is known from other methods, for instance, simulations or
Thomson scattering measurements, the IPD can be directly
evaluated. In this work, the local thermodynamic equilibrium
is assumed for the calculation. Further investigations are
needed to describe nonequilibrium situations, for instance,
after irradiations by strong short-pulse laser beams.
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FIG. 1. IPD for Al11+ at 600 eV as function of the density,
calculated using our model (SF) and by different theoretical models.

IV. RESULTS AND DISCUSSION

A. Model calculation: comparison to other approaches

To determine the function F (�i) in the parameter function
S(�i), Eq. (14), the implicit normalization relation [20],∫ ∞

0
dxx2

{
1 − exp

[
−�i

x
exp(−κ̃i(�i)rWS x)

]}
= 1

3
, (16)

according to the nonlinear Debye theory is used, which avoids
negative densities of the screening cloud. The Debye-Hückel
theory can be recovered by expanding the exponential function
outside of the square brackets up to the first order in �i ;
see Eq. (15). For intermediate and strong coupling, Eq. (16)
has to be solved numerically. In this work, we introduce the
following expression:

F (�i) = 3

√
4

9π
r2

WS
κ̃2

i (�i) = 3�i√
(9π/4)2/3 + 3�i

, (17)

as an approximation that reproduces the Debye-Hückel limit
Eq. (15) as well as the numerical solutions of Eq. (16) in the
strong coupling regime of interest.

In general, the pair correlation function exhibits a peak
near rWS when approaching the liquid state, which would
be reasonably well described by a Percus-Yevick SF. In the
intermediate density region, an interpolation formula for the
ionic SF can be applied; see Ref. [28]. In the following, we
use Eq. (13) together with Eq. (17) and the static ionic SF as
given in Ref. [28] to evaluate the ionic contribution to the IPD
in the plasma.

As an exploratory calculation to compare to other theoret-
ical models, we consider the IPD of the ion Al11+ (Zi = 11)
at a temperature of 600 eV. Figure 1 shows the IPD calculated
using different theoretical models. It can been seen, that the
IPD from SP [9], original EK (oEK) [8] and our result are in
good agreement with the DH shift in the low-density region.
Above the critical density ncrit

EK
= 3/(4π )[4πε0kBT /(Z2e2)]3

with the nuclear charge Ze, the underestimation of the IPD
by the SP model and the overestimation by the modified EK
(mEK) model [3] can be seen in comparison to the original IS

1 2 3 4 5 6 7 8 9
density (g/cm3)

-400

-350

-300

-250

-200

-150

-100

IP
D

 (e
V

)

SF
SP
mIS
mEK
Crowley
expt. [2]

FIG. 2. IPD for Al11+ in aluminum plasma at 600 eV for the
density as relevant for the experiment [2], calculated by different
theoretical models, i.e., SP [9], mEK [3], and mIS as well as Crowley’s
calculation [11]. The horizontal line indicates the unperturbed
ionization potential of the upper level of the Al11+ Heβ line [30].
The full line (diamond with error bar) marks the critical density
range observed experimentally [2]. The (red) shaded area shows the
result from our model (SF) for temperatures in the range of 550 to
700 eV.

(oIS) model. Note that, with increasing density, corresponding
to increasing coupling parameter �i (�i = 0.16 for the density
0.001 g/cm3 and �i = 7.28 for the density 100 g/cm3), our
result shows, on one hand, a transition from SP at low densities
(weakly and moderately coupled) to mEK at large densities
(strongly coupled), and, on the other hand, a good agreement
with the oIS model in the intermediate density region.

B. Numerical results for experimental conditions

We now discuss the application of our model calculation
to conditions observed in experiments. In the experiments of
Hoarty et al. [2,16], the spectral lines emitted from Al11+ were
observed. The investigated density range is 1.2 to 9 g/cm3 at
electron temperatures in the range of 550 to 700 eV. The disap-
pearance of the Heβ line would be due to the dissolution of n =
3 levels. The assumption of local thermodynamic equilibrium
is believed to be valid for the high densities [16], which implies
the ionic coupling parameter is estimated to be in the range of
2–4. In such a moderate coupling regime, the SP and IS models
should result in the best agreement with the experiment, as can
be seen by looking at the relevant density range in Fig. 1.

The latter is shown in Fig. 2 for a more detailed discussion.
The horizontal line denotes the unperturbed ionization poten-
tial (220 eV) of the upper level of the Al11+ Heβ line [30].
The density range, in which the disappearance of Lyβ and
Heβ lines in aluminum plasma [2] was measured, is marked as
solid line. It occurs at a density somewhere between 5.5 and
9 g/cm3, which is in reasonable agreement with the predictions
by FLYCHK [1] using the SP model. According to calculations
based on a generalized ion-cell model by Crowley [11], for
this range of densities, the modified IS (mIS) model is most
suitable. This is consistent with predictions for spectra using
the CASSANDRA opacity code with an IS model for the
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FIG. 3. IPD for aluminum plasma at solid density 2.7 g/cm3 as
function of different charge states. Shown are experimental results
[3,4] in comparison to our model (SF) and other theoretical models.
(Lines to guide the eye.)

IPD [16], where the dissolution of lines from n = 3 levels is
indicated to take place between the density of 6 ∼ 8 g/cm3.
As shown in Fig. 2, the EK model results in much larger IPD
values in comparison to the SP model, and hence leads to
a disappearance of spectral lines at a lower density of about
2 g/cm3. A similar estimate was given in the calculation by
Crowley [11]. Our approach, predicting a critical density be-
tween 7 ∼ 8 g/cm3 for the disappearance of n = 3 levels, gives
also an excellent agreement with the experimental data and
with the predictions by the CASSANDRA opacity code [16].

Using FEL [3,4], further experiments have been performed
recently. An aluminum sample at solid density was isochori-
cally heated up to electron temperatures of 200 eV, indicating
a strongly coupled plasma, and the IPD was directly measured
for different charge states. The LCLS pulse duration in this
experiment was estimated to be less than 80 fs. The ionic
plasma frequency ωion

pl in this laser-produced plasma is found
to be in the order of 1014/s. In contrast, the response of the
electrons to the laser field is much faster and can be described
by the electron frequency ωel

pl ∼ 1016/s. In comparison to
the laser pulse, the electrons have enough time to exchange
energy between each other and with the laser field and
are isochorically heated to a high temperature. Because of
the large mass of the ions, the response of the ionic subsystem
to the external fluctuations is so slow that the ions in the
plasma are weakly excited by the photons and by fast moving
electrons, which implies that the ions are colder than the
electrons. Of essential importance in the measurement is that
the IPD for distinct charge states, inferred from the triggering
energy of the photoionization, is measured at different time
stages. This fact indicates that the ions are heated during the
time evolution and local thermal equilibrium may be achieved.

Figure 3 shows the experimental results in comparison
to several calculations using different theoretical models.
The direct measurement of the IPD in aluminum plasma
can be explained reasonably well by the mEK model as
discussed in Ref. [3]. Vinko et al. [15] performed detailed
calculations on electronic structures of Al ions in a plasma
via the finite-temperature DFT method. They found that the

TABLE I. IPD in eV and mean charge for CH
mixture at density 6.74 g/cm3 and T = 86 eV [7].
The ionization energies for different charge states are
I [C3+] = 64.5 eV,I [C4+] = 392.1 eV,I [C5+] = 490.0 eV. We
have taken in our calculation an effective SF, where x is the carbon
ratio. (For Refs. see Fig. 1.)

�������Model
Charge

C3+ C4+ C5+ Mean charge

DH 261.3 326.7 392.0 4.91
SP 91.7 108.3 123.9 4.18
IS 103.2 119.7 135.2 4.21
mEK 116.0 145.0 174.0 4.24
SF (x = 0.75) 237.3 296.6 355.9 4.79
SF (x = 1) 99.0 123.7 148.4 4.19
Expt. 4.92 ± 0.15

IPD for a given charge state could be well understood in
terms of the electronic structure of valence electron states near
core-excited ions within a pseudoneutral atom approximation.
The results from the two-step Hartree-Fock calculations by
Son et al. [12] and from the calculations by Crowley [11] are
less satisfying. However, as shown in Fig. 3, the experimental
data can also be reproduced by our approach, where the effect
of the surrounding plasma on the ions is directly accounted for
by the screened ionic SF. In our calculation, the LTE condition
was assumed. This might not be suitable for the experimental
measurements where the ions remain relatively cold because
of the femtosecond nature of the x-ray pulse [15]. For this
nonequilibrium case, the ionic SF under non-LTE conditions
should be taken into account. However, detailed calculations
of the ionic SF in the non-LTE case are rather intricate and are
still in progress.

The application of simple IPD models (e.g., SP) to a
mixture of different ions is problematic as displayed by recent
measurements on a CH mixture at NIF [7]. The obtained mean
charge state can not be explained by either the SP or the
mEK models, as shown in Table I. Although the DH shift
is inappropriate under the experimental conditions [strong
coupling of the carbon ions (�C ∼ 4)], it results in larger IPDs
and therefore gives a more reasonable agreement with the
experiment than all other models. This fact can be attributed to
the deficiency to account for strong correlation and fluctuation
effects in these models.

For the CH mixture, the influence of a different chemical
species, the protons from the fully ionized hydrogen, on the
properties of the carbon ions is, within SP and EK models,
described by an additional electron density. In our approach,
this effect can be more consistently taken into account by
the ionic SF, which includes the response of all charged
particles in the plasma. We applied the linear mixing rule
[31] for the SF of a multicomponent plasma, SZZ

ii
(q0) =

x SZZ
CC

(q0) + (1 − x) SDH
HH

(q0). For the ratio x = 0.75 of carbon,
an estimated mean charge of 4.79 and therefore a close match
with the experimental value of 4.92 ± 0.15 [7] is found. Under
the experimental conditions [7], the carbon ions are strongly
coupled while the protons are weakly correlated. The SF of
the protons modifies the structure of the integrand in Eq. (14)
leading to higher IPD values for the carbon ions, and therefore
push the carbon ions to a higher charge state.

013202-6



IONIZATION-POTENTIAL DEPRESSION AND DYNAMICAL . . . PHYSICAL REVIEW E 96, 013202 (2017)

Calculations for a pure C plasma at the same conditions
(same ionic density of carbon and same temperature), lead to
the mean ionization degree of 4.2. For the CH plasma, the
asymmetry of the charges and masses of protons and carbon
ions lead to strong fluctuations and hence significantly enhance
the ionization. Future discussions on experiments with pure C
targets may test this effect.

More recently, a new experimental study on the ionization
states of warm dense aluminum (Te ∼ 20–25 eV and ρ ∼
2.7 g/cm3) was performed [32]. It was found that the observed
time-dependent absorption spectra are better described using
the mEK model for the IPD than using SP and IS models. This
result agrees with our findings. For the given experimental
conditions, the ion charge states Al4+ and Al5+ are clearly
seen, which indicates an ion coupling parameter of �i ∼ 7.
As discussed for Fig. 1, in such strongly coupled systems, the
mEK model should lead to a better description for the IPD.

V. CONCLUSIONS AND FURTHER IMPROVEMENTS

We treated the in-medium two-particle problem Eq. (1)
within a quasiparticle approach and obtained the contribution
of the shift of the continuum edge to the IPD. In addition to the
continuum edge, also the bound-state energy levels are shifted.
Although their shifts are small as compared to the continuum
lowering, see Refs. [20,22–24,26], these bound-state level
shifts should also be considered in a detailed calculation for
the IPD. Note that the shift of bound-state levels has been
observed in the shift of spectral lines, and quantum statistical
calculations [21] agree well with experimental data.

A more serious problem is the use of the quasiparticle
approximation. Within a sophisticated Green function ap-
proach, the quasiparticle propagators are replaced by spectral
functions, see, e.g., Ref. [33], which describe also the finite life
time of the quasiparticle excitations. This leads to the fact that
the energy gaps between the optical lines describing bound-
state transitions are washed out (Inglis-Teller effect [34]).

In his monograph, Griem [35] described the broadening
of spectral lines by the Stark effect leading to a shift of the
observed series limit. The latter is described by

nz−1
s = 1

2z3/5
(
a3

0Ne

)−2/15
, (18)

with ns the main quantum number and Ne the electron number
density. Equation (18) was determined by a fit to a Holtsmark
profile [36] and corresponds to Eq. (4) in Ref. [34]. Griem
mentions that the shift of the series limit where lines fully
overlap does not have a direct relation to the lowering of the
ionization potential (last paragraph of Sec. 5.7 in Ref. [35]). As
discussed in Sec. II, definite values for the plasma parameters,
where the ionization potential vanishes, can only be given
within a quasiparticle (mean field) approximation which gives
sharp energy levels. As soon as the imaginary part of the
effective Hamiltonian Eq. (3) is taken into account, the
sharp energy levels become broadened as a consequence of
their finite life time owing to collisions with the plasma
particles. Consequently, the rigorous discrimination between
bound states (having a finite life time) and continuum states
(including resonances) is no longer possible, and, strictly
speaking, the concept of IPD based on sharp quasiparticle
energy levels becomes obsolete.

We performed exploratory calculations using a simple
model for the dynamical SF Eq. (11). As a main result, we
found that correlations that are described by the ionic SF are
indeed relevant for the IPD. As proposed, it would be of interest
to perform experiments with pure substances like C. Compared
to the large IPD seen in CH experiments [7], a lower IPD
is expected for a pure C plasma. More details of the ionic
subsystem may be incorporated, in particular, the relaxation
of the ionic subsystem and collective excitations (plasmons,
phonons) can be treated. For a discussion, see also Ref. [11].

Our approach is based on a Born approximation for the
interaction of the two-particle system with the plasma ions.
The internal structure and dynamics of the plasma is described
by the dielectric function which contains the polarization
function �(q,ω),

ε(q,ω) = 1 − 1

ε0q2
�(q,ω). (19)

Improving the RPA expression for the polarization function,
two-particle correlations are included, see also [37]. In partic-
ular, the ionic dynamical structure factor is taken into account
if the cluster decomposition of the polarization function is
considered, here the two-ion distribution. Similar approaches
have been used for the optical spectra [21] where also a
cluster decomposition of the polarization function has been
considered.

This discussion gives a conception of how to improve
our approach. The Born approximation has to be completed
accounting for multiple interaction (so-called T matrix). A
more general diagram for the self-energy looks like

where the double line denotes the two-ion propagator, and the
screened interaction with the investigated particle is considered
in ladder approximation. The approximation Eq. (4) for the
self-energy results from the first contribution of the ladder
sum which contains only two electron-ion interaction lines.

Starting from the general expression Eq. (4), we obtain a
rather simple formula Eq. (13) for the IPD containing the ionic
static structure factor. We emphasize that this result could now
be improved by systematically removing again some of the
approximations for the dynamical SF Eq. (11). In particular,
the plasmon pole approximation in handling the dynamical
SF is a model assumption which can be improved, e.g., by
numerical simulations. Finally, an advantage of our quantum
statistical approach is that any degeneracy effect can be taken
into account in a systematic way, which becomes of interest at
increasing densities.
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