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The linear stability of layered two-phase Poiseuille flows through soft-gel-coated parallel walls is studied
in this work. The focus is on determining the effect of the elastohydrodynamic coupling between the fluids
and the soft-gel layers on the different instabilities observed in flows between parallel plates. The fluids are
assumed Newtonian and incompressible, while the soft gels are modeled as linear viscoelastic solids. A long-wave
asymptotic analysis is used to obtain an analytical expression for the growth rate of the disturbances. A Chebyshev
collocation method is used to numerically solve the general linearized equations. Three distinct instability
modes are identified in the flow: (a) a liquid-liquid long-wave mode; (b) a liquid-liquid short-wave mode; (c) a
gel-liquid short-wave mode. The effect of deformability of the soft gels on these three modes is analyzed.
From the long-wave analysis of the liquid-liquid mode a stability map is obtained, in which four different
regions are clearly demarcated. It is shown that introducing a gel layer near the more viscous fluid has a
predominantly stabilizing effect on this mode seen in flows between rigid plates. For parameters where this
mode is stable for flow between rigid plates, introducing a gel layer near the less viscous and thinner fluid
has a predominantly destabilizing effect. The liquid-liquid short-wave mode is destabilized by the introduction
of soft-gel layers. Additional instability modes at the gel-liquid interfaces induced by the deformability of
the soft-gel layers are identified. We show that these can be controlled by varying the thickness of the gel
layers. Insights into the physical mechanism driving different instabilities are obtained using an energy budget
analysis.
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I. INTRODUCTION

Layered flows through channels lined with soft deformable
gels are encountered in a wide variety of microfluidic ap-
plications [1]. Soft materials are often used in fabrication of
microchannels [2,3]. An understanding of the physics behind
the interaction between the walls of the soft gel and the
two-phase flow past the gel will help in accurate design
and development of lab on chip applications. There has
been extensive experimental and theoretical work focusing
on stability of two-phase flows through rigid channels. Two-
phase layered flows are unstable to a viscosity induced long-
wave interfacial instability [4]. Energy transfer from the base
state to perturbed flow can arise due to density stratification,
shape of velocity profile, viscosity stratification, shear effects,
and a combination of viscosity and shear effects in these
flows. A long-wave interfacial instability was first identified
by Yih [5]. For higher Reynolds numbers a shear instability
was observed as reported in [6]. This Tollmien-Schlichting
mode was primarily caused by shear stresses generated near
the walls. The study of two-phase layered flows between rigid
channels reported in [6] was extended by the authors of [7] to
study the effect of channel height and thickness of the fluids.
Instabilities arising due to viscosity stratification are discussed
in [8]. Interfacial instabilities in two-phase layered flows were
experimentally studied in [9–12].

The dynamics of fluid flow past a deformable soft gel is
different from that of the fluid flow past a rigid surface due to
the elastohydrodynamic coupling between the soft gel and the
fluid. This coupling gave rise to instabilities in single-phase
Couette flow over a linear viscoelastic gel layer in the creeping
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flow limit [13]. It was shown that the instability arose from the
work done by the mean flow at the interface which resulted
in energy transfer from the mean flow to the fluctuations.
The stability of a pressure driven flow in a circular pipe
lined by a linear viscoelastic material was studied [14]. Here
the gel-liquid interface becomes unstable when the gel was
sufficiently deformable in the creeping flow limit. Stability of
pressure driven flows through cylindrical tubes lined with a
linear viscoelastic material for intermediate Reynolds number
was studied [15,16]. It was shown that the transition from
laminar to turbulent flow in a gel lined tube occurs at a much
lower Reynolds number than in a rigid-walled tube. Linear
stability of flow through a flexible pipe and Couette flow
over a flexible gel were studied [17]. The different instabilities
were classified into three significant modes depending on the
underlying cause: viscous modes, wall modes, and inviscid
modes. A neo-Hookean solid model was used to study linear
stability of different flow systems [18–21,22]. It was shown
that a first normal stress difference in the base state leads
to an instability that is different from that observed in linear
viscoelastic solids.

Linear stability of a two-layer plane Couette flow of a
Maxwell fluid past a linear viscoelastic solid was studied
[21]. It was shown that the effect of the gel on the stability
of the two-fluid interface depends on the viscosity ratio
of the fluids. Linear stability of a two-layer Couette flow
over a deformable gel was studied [23]. They found two
different interfacial modes. The first arose from the viscosity
stratification at the liquid-liquid interface. The second was
caused by a sudden jump in the shear modulus at the solid-
liquid interface. It was shown that when the more viscous fluid
had a smaller thickness, the solid layer completely stabilized
the liquid-liquid interfacial mode. When the more viscous fluid
had a larger thickness, the solid layer could either stabilize
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or destabilize the flow depending on the thickness of the
solid layer. The role of wall deformability on the interfacial
instabilities in gravity driven two-layer flows with a free
surface was studied [24]. It was shown that three different
interfacial modes evolve, i.e., gas-liquid, liquid-liquid, and
solid-liquid modes. The solid deformability had a stabilizing
effect on both gas-liquid and liquid-liquid modes when the
more viscous liquid layer was near the deformable wall. When
the less viscous liquid was adjacent to the deformable wall,
the deformability always had a destabilizing effect on the
liquid-liquid interfacial mode. Further increase in the solid
deformability rendered all three interfacial modes unstable.
Linear stability of core annular flows through deformable gel
layers was studied [25]. It was shown that the gel layer had
a stabilizing effect when the more viscous fluid was in the
annular region.

From the above survey of the literature it is clear that
very few studies have focused on two-phase pressure driven
layered flows through soft-gel-coated walls. Understanding
the underlying physics of this flow configuration is necessary
to help in optimal design of microfluidic devices. In these
systems the material is usually soft, like PDMS, and flows are
typically pressure driven. Keeping this in mind our objective
in this work is to carry out a linear stability analysis of two-
phase layered flows through soft-gel-coated walls. Operating
conditions which have a stabilizing or destabilizing effect on
the liquid-liquid interfacial instability are identified. Insight
into the dominant physical cause of different instabilities
which occur is obtained using an energy budget analysis. In the
present analysis we restrict ourselves to a linear viscoelastic
model for the soft gel.

The outline of the paper is as follows. The governing
equations, the steady state velocity fields of the fluids, and the
displacement fields of the soft gels are presented in Secs. II
and III. A description of linear stability analysis and energy
budget analysis is given in Secs. IV and V. Section VI A
discusses asymptotic results obtained by solving the governing
equations in the long-wavelength limit. Appendix provides
details of the asymptotic analysis used to obtain the growth
rate in the long-wave limit. The numerical method used to
obtain the dispersion curves and a comparison of the numerical
method with the asymptotic analysis is discussed in Sec. VI B.
Influence of gel layers on the stability characteristics of the
long-wave mode is detailed in Sec. VI C. The Supplemental
Material [26] details the results obtained using energy analysis
for different operating conditions. The effect of parameters
on different types of instabilities that arise are discussed in
Secs. VI D, VI E, and VI F. Finally the key conclusions are
summarized in Sec. VII.

II. GOVERNING EQUATIONS

The system being analyzed is a pressure driven layered flow
of two immiscible liquids, “fluid 1” and “fluid 2,” between two
deformable soft-gel layers lining two parallel rigid surfaces.
The schematic of the flow configuration is shown in Fig. 1.
The two deformable soft-gel layers are assumed to be linear
viscoelastic. The liquids are assumed to be incompressible and
Newtonian. The nondimensional continuity and Navier-Stokes

FIG. 1. Schematic of the flow configuration under study. At the
base state, the liquid-liquid interface is at y = 0, top gel-liquid
interface is at y = 1, and the bottom gel-liquid interface is at y =
−n21. The perturbed liquid-liquid interface is given by y = f (x,t),
the perturbed top gel-liquid interface is at y = 1 + g(x,t), and the
perturbed bottom gel-liquid interface is given by y = −n21 + h(x,t).
The parabolic velocity profile in the base state for the two fluids is
also shown.

equations governing the flow are

∂xuj + ∂yvj = 0, (1)

Re1ρj1

μj1
(∂tuj + uj∂xuj + ∂yujvj ) = −Re1

μj1
∂xpj +∇2uj , (2)

Re1ρj1

μj1
(∂tvj + uj∂xvj + vj∂yvj ) = −Re1

μj1
∂ypj + ∇2vj , (3)

where j = 1, 2 refers to the top and bottom fluids and ∂t is ∂/∂t

and ∂x , ∂y are similarly defined. The Laplacian ∇2 = ∂2
x + ∂2

y .
The variation of the dependent variables in the z direction is
neglected as the system extends to infinity in that direction.
We restrict ourselves to two-dimensional disturbances in the
x-y plane in the present study.

In the governing equations (2) and (3) Re1 = ρ1U0d1/μ1,
μj1 = μj/μ1, and ρj1 = ρj/ρ1, where d1 is the thickness of
fluid 1 and U0 is the liquid-liquid interface velocity at the base
state. The total stress tensor in the fluid layers is a combination
of isotropic pressure and the deviatoric stresses. The liquid-
liquid interface is located at y = 0 in the base state and the
rigid walls are located at y = n31, y = −n41. The soft-gel
layers extend from 1 < y < n31 and −n41 < y < −n21.

The displacement fields in the deformable solid layers are
considered to be small, justifying the linear viscoelastic solid
model used here to capture the dynamics in the gel layers
[14]. This deformation is characterized by the displacement
fields Xj and Yj , which represent the deviation of the material
points from their unstrained reference state in the x and y di-
rections, respectively. The velocity field in the deformable gel
layer is given by uj = ∂tXj , vj = ∂tYj . The nondimensional
continuity and momentum equations for the top and bottom
deformable solid layers are

∂xXj + ∂yYj = 0, (4)

−Re1

μj1
∂xpj + 1

Wij
∇2Xj + ∂t∇2Xj = 0, (5)

−Re1

μj1
∂ypj + 1

Wij
∇2Yj + ∂t∇2Yj = 0, (6)
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where j = 3, 4 refers to the top and bottom deformable
soft-gel layers. The stress in the deformable layers comprises
the isotropic pressure, elastic stresses, and viscous stresses. In
Eqs. (5) and (6), the second and third terms represent the elastic
stresses and the viscous stresses in the soft-gel layers. Here
μj1 = μj/μ1 is the ratio of gel viscosity to fluid 1 viscosity.
Here, the nondimensional parameter Weissenberg number
Wij = μjU0/Gjd1 is a measure of the deformable nature of
the gel layers. The shear modulus Gj and viscosity μj are of
the soft-gel layer under consideration. A higher Weissenberg
number represents a higher deformability of the soft-gel
layers. When the Weissenberg number approaches zero the
deformable soft gels mimic the behavior of rigid solids.

The governing equations (1)–(6) are solved subject to the
classical boundary conditions: At the liquid-liquid and gel-
liquid interface, we use the continuity of velocities, tangential
stresses, and normal stresses. The displacement field of the
soft gel defines the shape of the perturbed interface. However,
motion of the liquid-liquid interface y = f (x,t) is captured by
the kinematic boundary condition

Dtf = 0. (7)

III. BASE STATE

The deformable soft-gel layers are considered to be at rest
in the base state and the no-slip condition is employed at the
gel-liquid interface. Also the gel layers are nonporous and fluid
cannot penetrate the gel-liquid interfaces. The base velocity
consists of parabolic profiles in each fluid. When nondimen-
sionalized by the interfacial velocity U0, this results in

U1 = 1 + a1y + b1y
2, (8)

U2 = 1 + a2y + b2y
2, (9)

where

a1 = μ21 − n2
21

n2
21 + n21

, b1 = −μ21 + n21

n2
21 + n21

, (10)

a2 = a1

μ21
, b2 = b1

μ21
, (11)

where n21 = d2
d1

is the thickness ratio of fluid 2 to fluid 1.
The base state velocity expressions are identical to that of
two-phase layered flow between rigid plates [27].

The base displacement fields in the top and bottom soft gels
are given, respectively, by

Xss
3 = dxp0d1

2G

{
y2 +

[
n2

21 − μ21

n21 + μ21

]
y

− n31[n21(n21 + n31) + μ21(n31 − 1)]

n21 + μ21

}
, (12)

Xss
4 = dxp0d1

2G

{
y2 +

[
n2

21 − μ21

n21 + μ21

]
y

− n41[n21(n41 − n21) + μ21(n41 + 1)]

n21 + μ21

}
, (13)

where XSS
3 and XSS

4 represent the base state displacement fields
and dxp0 is the pressure gradient in the flow direction in the
gel. The displacements in the gel in the y direction are zero;
i.e., Y ss

3 = Y ss
4 = 0. The expressions in Eqs. (12) and (13) are

obtained by imposing no displacement of the soft gel in the
flow direction at the rigid walls y = n31 and y = −n41 and
continuity of tangential stress at the gel-liquid interfaces at
y = 1 and y = −n21.

IV. LINEAR STABILITY ANALYSIS

A temporal linear stability analysis is used to analyze the
stability of the steady state. Small perturbations in normal
mode form are imposed on all the variables (denoted by the
tilde), ⎧⎨

⎩
ui

vi

pi

⎫⎬
⎭ =

⎧⎪⎨
⎪⎩

uss
i + εũi

vss
i + εṽi

pss
i + εp̃i

⎫⎪⎬
⎪⎭, where i = 1,2, (14)

and ⎧⎨
⎩

Xj

Yj

pj

⎫⎬
⎭ =

⎧⎨
⎩

Xss
j + εX̃i

Y ss
j + εỸi

pss
j + εp̃j

⎫⎬
⎭, where j = 3,4. (15)

The perturbed quantities are expanded as Fourier modes
along the x direction with an exponential dependence on time.
The perturbation for the axial component of velocity uj is of
the form

ũj = ūj (y) exp [ik(x − ct)]. (16)

A similar form of perturbation is used for all the other
variables. Here k is real and is the wave number and c is a
complex wave speed. ūi is obtained as the eigenfunction of
a linearized eigenvalue problem. The complex wave speed
c = cR + icI . Here cR represents the phase velocity of the
perturbation and cI represents the growth or decay rate of
the perturbations. The base state around which linear stability
analysis is carried out is temporally unstable when kcI > 0.

The linearized governing equations (1)–(3) for the fluids
after substituting the form of perturbations in Eq. (16) (the bar
is dropped for convenience) for j = 1, 2 are

ikuj + dvj

dy
= 0, (17)

Re1ρj1

μj1

[
−ikcuj + Uj ikuj + dUj

dy
vj

]

= −ikRe1

μj1
pj +

[
d2uj

dy2
− k2uj

]
, (18)

Re1ρj1

μj1
[−ikcvj + Uj ikvj ]

= −ikRe1

μj1

dpj

dy
+

[
d2vj

dy2
− k2vj

]
. (19)

In a similar way, the linearized equations for the top and
bottom deformable soft gels for j = 3, 4 are

ikXj + dYj

dy
= 0, (20)
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−Re1

μj1
ikpj + 1

Wij

[
d2Xj

dy2
− k2Xj

]
+

[
ick3Xj − ikc

d2Xj

dy2

]
= 0, (21)

−Re1

μj1

dpj

dy
+ 1

Wij

[
d2Yj

dy2
− k2Yj

]
+

[
ick3Yj − ikc

d2Yj

dy2

]
= 0. (22)

The boundary conditions at the perturbed liquid-liquid
interface,

y = f (x,t) = εδ exp [ik(x − ct)], (23)

are obtained using domain perturbation [28]. Here δ is
the amplitude of the perturbed liquid-liquid interface. The
continuity of velocity yields

u1 + dU1

dy
δ = u2 + dU2

dy
δ, (24)

v1 = v2. (25)

The continuity of shear stress gives

du1

dy
+ ikv1 = μ21

(
du2

dy
+ ikv2

)
. (26)

The normal stress boundary condition yields

Re1(p2 − p1) + 2
dv1

dy
− 2μ21

dv2

dy
= Re1S21k

2δ. (27)

The kinematic boundary condition yields

δ(ikc − U1ik) + v1 = 0. (28)

The nondimensional parameter S21 in Eq. (27) is defined
as S21 = σ21/ρ1d1U

2
0 . It represents the ratio of forces due to

surface tension (σ ) between the liquids due to the inertial
forces. The above equations (24)–(28) are evaluated at y = 0,
the unperturbed interface.

The shapes of the perturbed top and bottom gel-liquid
interfaces are given by

y = 1 + εg(x,t) = 1 + εY3 exp [ik(x − ct)],

y = −n21 + εh(x,t) = −n21 + εY4 exp [ik(x − ct)]. (29)

The boundary conditions at the perturbed gel-liquid inter-
face at y = 1 are obtained after linearization and applying
domain perturbation. These yield, at y = 1,

u1 + dU1

dy
Y3 = −ikcX3, (30)

v1 = −ikcY3, (31)

1

μ31

(
du1

dy
+ ikv1

)

= 1

Wi3

[
dX3

dy
+ ikY3

]
+

[
−ikc

dX3

dy
+ k2cY3

]
, (32)

Re1(p1 − p3) + 2μ31

Wi3

dY3

dy
+ 2

(
μ31ikc

dY3

dy

)
− 2

∂v1

∂y

= Re1S31k
2Y3. (33)

Similar boundary conditions are applicable at the gel-liquid
interface at y = –n21. In Eq. (33) the dimensionless parameter
S31 is defined as S31 = σ31/ρ1d1U

2
0 . At y = n31 and y = –n41

we have rigid walls on which the gel layers are coated. This
yields

X3 = 0; Y3 = 0 at y = n31,

X4 = 0; Y4 = 0 at y = −n41. (34)

The stability of layered flow between two walls with a soft-
gel lining is completely defined by the governing equations
(17)–(22) and boundary conditions given by Eqs. (23)–(34).
The growth rate of the disturbance kcI is a function of n21,
n31, n41, ρ21, μ21, μ31, μ41, S21, S31, S41, Wi3, Wi4, Re1, and
k. The above equations give rise to a generalized eigenvalue
problem for c.

Ax = cBx. (35)

The linearized equations are solved numerically using the
Chebyshev collocation technique for a range of k. kcI , which
corresponds to the growth rate of the disturbance, is analyzed
to determine the stability of the flow.

V. ENERGY BUDGET

To understand the physical origin of the different modes
of instability in the problem, we carry out an energy budget
analysis. A detailed description of the theory behind energy
analysis is given in [4,29]. Here we take the inner product
of the vectorial form of the Navier-Stokes equation with the
velocity vector and integrate throughout the domain in each of
the fluid and solid layers. The entire equation is averaged over
the axial wavelength λ = 2π/k and time period T = 2π/kcR .
The stress terms in the energy analysis are analyzed using the
Gauss divergence theorem. This gives rise to the following
equation:

2∑
j=1

EKE,j =
2∑

j=1

EREY,j +
3∑

j=1

ENOR,j +
3∑

j=1

ETAN,j +
4∑

j=1

EDIS,j , (36)

EKE,j = ρj1

λ

∫ T

0

∫ λ

0

∫ βj

αj

[
d

dt

(
u2

j + v2
j

2

)]
dydxdt, (37)

EREY,j = −ρj1

λ

∫ T

0

∫ λ

0

∫ βj

αj

[
ujvj

dUj

dy

]
dydxdt, (38)

EDIS,j = −μj1

Re1λ

∫ T

0

∫ λ

0

∫ βj

αj

[
2

(
∂uj

∂x

)2

+ 2

(
∂vj

∂y

)2

+
(

∂uj

∂y
+ ∂vj

∂x

)2
]
dydxdt. (39)
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The above three expressions are valid for j = 1, 2. For j = 3, 4 we have

EDIS,j = −μj1

Re1λ

∫ T

0

∫ λ

0

∫ βj

αj

[
2

(
1

Wij
+ ∂

∂t

)(
∂Xj

∂x

∂2Xj

∂x∂t
+ ∂Yj

∂y

∂2Yj

∂y∂t

)]

+
{(

1

Wij
+ ∂

∂t

)(
∂Xj

∂y
+ ∂Yj

∂x

)[
∂

∂t

(
∂Xj

∂y
+ ∂Yj

∂x

)]}
dydxdt. (40)

The terms at the different interfaces are

ENOR,1 = 1

λ

∫ T

0

∫ λ

0

[
p1v1 − p2v2 − 2v1

Re1

dv1

dy
+ 2μ21v2

Re1

dv2

dy

]
y=0

dxdt, (41)

ENOR,2 = 1

λ

∫ T

0

∫ λ

0

[
p3

∂Y3

∂t
− p1v1 + 2v1

Re1

dv1

dy
− 2μ31

Re1

∂Y3

∂t

(
1

Wi3

∂Y3

∂y
+ ∂

∂t

∂Y3

∂y

)]
y=1

dxdt, (42)

ENOR,3 = 1

λ

∫ T

0

∫ λ

0

[
−p4

∂Y4

∂t
+ p2v2 − 2μ21v2

Re1

dv2

dy
+ 2μ41

Re1

∂Y4

∂t

(
1

Wi4

∂Y4

∂y
+ ∂

∂t

∂Y4

∂y

)]
y=−n21

dxdt, (43)

ETAN,1 = 1

Re1λ

∫ T

0

∫ λ

0

[
(u2 − u1)

(
∂u1

∂y
+ ∂v1

∂x

)]
y=0

dxdt, (44)

ETAN,2 = 1

Re1λ

∫ T

0

∫ λ

0

[
u1

(
∂u1

∂y
+ ∂v1

∂x

)
− μ31

Wi3

(
∂X3

∂y
+ ∂Y3

∂x

)
− ∂

∂t

(
∂X3

∂y
+ ∂Y3

∂x

)]
y=1

dxdt, (45)

ETAN,3 = 1

Re1λ

∫ T

0

∫ λ

0

[
−μ21u2

(
∂u2

∂y
+ ∂v2

∂x

)
+ μ41

Wi4

(
∂X4

∂y
+ ∂Y4

∂x

)
− ∂

∂t

(
∂X4

∂y
+ ∂Y4

∂x

)]
y=−n21

dxdt. (46)

In Eqs. (37)–(46) α1 = 0, β1 = 1, α2 = 0, β2 = −n21, α3 =
1, β3 = n31, α4 = −n21, β4 = −n41. The term on the left-hand
side of Eq. (36) represents the kinetic energy of the disturbance
in the system. We do not consider the inertial terms in the linear
viscoelastic model for the deformable gels. Hence the gels do
not contribute to the kinetic energy in the energy budget. A
positive value of this term indicates the flow is unstable. The
four terms on the right-hand side are contributions from the
Reynolds stresses, normal stress, tangential stress, and viscous
dissipation. The term

∑2
j=1 EEREY,j

represents the total energy
transferred from the base state to the perturbed state due to
Reynolds stresses in the fluids. This term is significant at
higher Re1. Since, we do not incorporate inertial effects of
the deformable gels in the linear viscoelastic model, Reynolds
stresses of the gel layers do not contribute to the total energy.
The term

∑2
j=1 EDIS,j represents the viscous dissipation in the

fluids and is always negative. The term
∑4

j=3 EDIS,j represents
the viscous dissipation in the deformable solid layers due to
its liquidlike nature and is always negative. The term ENOR,1

represents the capillary forces at the liquid-liquid interface,
whereas the terms ENOR,2, ENOR,3 represent the capillary
forces at the top and bottom gel-liquid interfaces. The term
ETAN,1 is associated with the viscosity difference between the
fluids, as a result of which energy is transferred from the base
state to the perturbed state and can cause an instability at low
Re1 [5]. The terms ETAN,2 and ETAN,3 not only arise from a
viscosity difference but also from a discontinuity in the shear
modulus across the gel-liquid interfaces. This discontinuity in
the shear modulus gives rise to additional instabilities in the
flow.

The energy budget helps us to understand the dominant
physical mechanism which causes the instability. The eigen-

functions obtained by solving the linearized equations are
substituted into the expressions in (36)–(46). The term with
the largest magnitude dominates the energy signature. If the
contribution of an energy term is negative (positive) this
implies it has a stabilizing (destabilizing) effect on the system.
The largest positive term indicates the primary or dominant
cause of the instability.

VI. RESULTS

In this section, the stability of the base flow configuration
to arbitrary disturbances is analyzed. The effect of varying
parameters on dispersion curves is studied systematically. An
energy budget analysis is used to obtain insights into the
physical mechanism causing the different instabilities for the
most unstable growth rate.

We begin by summarizing the results of layered flows
between rigid-walled channels [27]. From the long-wave
analysis of [27], we conclude that the flow is unstable
when (μ21 − n2

21)(μ21 − 1) > 0. This long-wave instability
is also referred to as an interfacial mode and results in the
destabilization of the liquid-liquid interface. This is labeled
as the “LL long-wave mode.” The parameter space μ21-n21 is
divided into four different regions by curves across which the
stability to this mode changes as shown in Fig. 2. In regions 1
and 3, the steady state is unstable to the LL long-wave mode
while in regions 2 and 4 it is stable.

The flow can also be unstable to short-wave modes. This
is referred to as shear mode of the Tollmien-Schlichting type,
which occurs for a relatively large Reynolds number. We label
this as the “LL short-wave mode.”
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FIG. 2. Stability features in different regions in μ21-n21 parameter
space for two-phase layered flow between rigid flat plates.

Apart from these, the deformable gels at the top and bottom
walls can give rise to an additional short-wave instability at
the gel-liquid interface as reported in [13,23]. We call this the
“GL short-wave mode.”

A. Long-wave analysis for gel-coated walls

We use a long-wave analysis as discussed in [27] and obtain
an asymptotic solution to the eigenvalue problem using a series
expansion in k, in the limit of long-wavelength (k → 0). This is
used to obtain physical insight on the effect of deformability of
soft-gel layers on the stability of the base state to the LL long-
wave mode. In the asymptotic analysis the primary assumption
is that the wavelength of the disturbance is much larger than
the thickness of various layers of the fluids and gels present;

i.e., k � 1
n31+n41

. The complex wave speed is expanded in an
asymptotic series in k as

c = c(0) + kc(1) + · · · . (47)

To focus on the effect of gel on the stability of the liquid-
liquid interface, we assume Re1 and Wi3, Wi4 to be O(1). We
set vj ∼ O(1). Then the continuity Eq. (17) implies uj ∼ vj/k

and the x momentum Eq. (18) implies pj ∼ vj/k
2. Using this,

the velocities and the pressure in the liquids are expanded in
an asymptotic series in k as

vj = v
(0)
j + kv

(1)
j + · · · , (48)

uj = u
(0)
j

k
+ u

(1)
j + · · · , (49)

pj = p
(0)
j

k2
+ p

(1)
j

k
+ · · · . (50)

For our system the first order term c(1) in Eq. (47) helps
capture the effect of k on the stability of the system for low
wave numbers. The displacement fields and pressure in the
soft gels are expanded in an asymptotic series in k as

Yj = Y
(0)
j + kY

(1)
j + · · · , (51)

Xj = X
(0)
j

k
+ X

(1)
j + · · · , (52)

pj = p
(0)
j

k2
+ p

(1)
j

k
+ · · · . (53)

The leading order displacement fields and pressure fields for the soft-gel layers suffice to carry out the long-wave asymptotic
analysis. To first order we obtain, for the growth rate,

kc = kc(0) + k2c(1),

kc = k

{
1 +

[
2
(
μ21 − n2

21

)
(μ21 − 1)

(
n3

21 + n2
21

)
(
n2

21 + n21
)(

n4
21 + 4n3

21μ21 + 6n2
21μ21 + 4n21μ21 + μ2

21

)
]}

+ k2c(1). (54)

The details of the derivation of this expression are given
in Appendix. The term in the square braces in Eq. (54) is the
wave speed of the disturbance of wave number k. The growth
rate of the disturbance to this order is given by the imaginary
part of kc. This is a function of all parameters which describe
the system. To gain insight into the influence of the elasticity
of the gels, we fix ρ21, n21, μ21, μ31, μ41, n31, and n41. The
dependency of growth rate explicitly on Re1, Wi3, and Wi4 is
of the form

Im(c(1)) = a1Re1 + b3Wi3 + b4Wi4. (55)

Here a1, b3, and b4 are coefficients which depend on ρ21,
n21, μ21, μ31, μ41, n31, and n41. In the long-wavelength limit,
the parameters S21, S31, and S41 do not influence a1, b3, and b4.

B. Comparison of long-wave analysis and numerical results

We follow [30,31] and use a Chebyshev collocation tech-
nique to numerically solve the eigenvalue problem for arbitrary

wave numbers. The variables uj , vj , Xj , Yj are expressed as
a sum of Chebyshev polynomials up to degree N and the
pressures in the fluids and the solids are expressed as a sum of
Chebyshev polynomials up to degree N–2 [32]. Equations for
the coefficients in the expansions are obtained by collocating
the governing equations in the internal Gauss-Lobatto points
and the boundary conditions are evaluated at the end nodes of
the Gauss-Lobatto grid. This results in a generalized matrix
eigenvalue problem of the form Ax = cBx. The eigenvalues
are obtained using the QZ algorithm. Numerical calculations
were carried out for N = 20, 30, and 40. The eigenvalues
computed were found to be invariant for N beyond 30.
All the results presented here are for N = 30. In the limit
of Wi3 → 0 and Wi4 → 0, the present flow configuration
reduces to layered flow between rigid flat plates described
in [27]. The results obtained from the numerical simulations
in this limit are validated by comparing our results with those
mentioned in [27]. A comparison of the dispersion curves
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FIG. 3. Comparison of dispersion curves obtained from long-
wave asymptotic analysis and numerical simulations for Re1 =
6,8. The arrow points in the direction of increasing Reynolds
number. Other parameters: n21 = 1, n31 = 1.5, n41 = 1.5, μ21 =
0.1, μ31 = 1, μ41 = 1, ρ21 = 1.16, S31 = S41 = 0.0001, S21 = 829

Re2
1
,

Wi3 = Wi4 = 0.5.

obtained numerically with those obtained from the long-wave
asymptotic analysis using Eq. (54) is shown in Fig. 3. It can be
seen that the first order correction in the asymptotic analysis
captures the growth rate accurately for k < 0.055 for Re1 = 6
and k < 0.045 for Re1 = 8.

C. Influence of gel on the stability of the behavior
of LL long-wave mode

In Fig. 4(a) the parameter space μ21-n21 is divided into
different regions by curves across which the coefficients b3

and b4 multiplying Wi3 and Wi4 in Eq. (55) change sign
for a fixed ρ21, n21, μ21, μ31, μ41, n31, and n41. A region
where a coefficient is positive (negative) indicates that the
corresponding gel layer may have a destabilizing (stabilizing)
effect on the LL long-wave mode.

In regions (i), (iii), and (vi) both the coefficients are negative
indicating a stabilizing effect of the gels on the LL long-wave
mode. In region (ii) b3 is positive and b4 is negative, indicating
that the top (bottom) gel has a destabilizing (stabilizing) effect.

FIG. 4. (a) Division of parameter space into different regions where each region has a specific sign of coefficients b3 and b4 in Eq. (55).
(b) Dominant influence on stability in different regions. Parameters: n31 = 2, n41 = 2, μ31 = 1, μ41 = 1, ρ21 = 1.16.
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In regions (iv), (vii), and (ix) both the coefficients are positive,
indicating that both have a destabilizing effect on this mode. In
regions (v) and (viii) b3 is negative and b4 is positive, indicating
that the top (bottom) gel has a stabilizing (destabilizing) effect
on the LL long-wave mode. In regions (i), (ii), and (iii) our
numerical calculations show that the bottom gel has a strong
stabilizing effect since |b4| > |b3|. Similarly in region (iv) the
top gel has a predominantly destabilizing effect since |b3| >

|b4|. In regions (v) and (vi) the top gel has a strong stabilizing
behavior as |b3| > |b4|. In regions (vii), (viii), and (ix) the
bottom gel has a predominantly destabilizing effect as |b4| >

|b3|. On the basis of the observations based on numerical
evaluations the parameter space in Fig. 4(b) is divided into
different regions showing the predominant effect of the gels
on stability. In region 1 and region 3 the LL long-wave mode is
unstable for two-phase layered flows between flat plates. Here
having a gel close to the more viscous fluid has a stabilizing
effect on the LL long-wave mode. In region 2 and region 4 the
LL long-wave mode is stable for two-phase flow between rigid
flat plates. Here the gel closer to the less viscous and narrower
fluid has a destabilizing effect on the LL long-wave mode.
Typical values of the coefficients b3, b4 for the growth rate
obtained from long-wave analysis in each region in μ21-n21

parameter space are discussed in the Supplemental Material
[26]. Destabilization (stabilization) of the flow in regions 2
and 4 (regions 1 and 3) by the introduction of a soft-gel layer
is analogous to the destabilization (stabilization) caused by
the soft-gel layer in core annular flow when the less (more)
viscous fluid occupies the annular region [25]. To summarize,
introducing an appropriate soft-gel layer destabilizes the flow
in regions 2 and 4 where the flow between rigid walls is stable.
In regions 1 and 3 where the flow between rigid walls is
unstable introducing an appropriate gel can have a stabilizing
influence.

The influence of the gels on the LL long-wave mode in
different regions can be physically explained using an energy
budget analysis [4]. For this we choose the wave number
corresponding to which the growth rate is a maximum. These
are used to calculate the contribution of different energy terms
to the disturbance. All the terms in the energy budget are
normalized with the absolute value of total viscous dissipation.
In region 1 and region 3: ETAN,1 is the dominating term
in the energy analysis indicating that the tangential stresses
at the liquid-liquid interface leads to the evolution of the
LL long-wave mode. With an increase in the corresponding
Weissenberg number (Wi3 and Wi4), the magnitude of the
ETAN,1 term in the energy budget decreases relative to the
viscous dissipation in the fluids and the gel layers. This
stabilizes the LL long-wave mode. In region 2 and region 4
introduction of gels has a destabilizing influence. Here ETAN,2

and ETAN,3 are significant but are lower in magnitude compared
to ETAN,1. The latter is primarily responsible for the instability.
The energy budget analysis is detailed in the Supplemental
Material [26].

D. Numerical analysis of the effect of deformable gels
on the LL long-wave mode

In this section we use the insight from the long-wave
analysis and numerically analyze the influence of introducing

FIG. 5. Dispersion curves for the LL long-wave mode for Wi3 =
Wi4 varying from 0.05 to 1 and μ21 = 0.1. The arrow points in the
direction of decreasing Weissenberg number. For Wi3 = Wi4 = 1
complete stabilization of the LL long-wave mode is observed. Other
parameters: n21 = 1, n31 = 1.5, n41 = 1.5, μ31 = 1, μ41 = 1,ρ21 =
1.16, Re1 = 8, S31 = S41 = 0.0001, S21 = 829

Re2
1
.

a gel layer coating on the walls. The influence of different
parameters on stability depicted in Fig. 4(b) is based on the
long-wave analysis. The numerical results we now discuss
correspond to region 3 in Fig. 4(b). Here we expect that an
increase in the deformability of the top gel should stabilize the
LL long-wave mode. From our asymptotic analysis we predict
that this mode will be stabilized for small wave numbers. In
Fig. 5 the numerical results show that the stabilizing influence
prevails for all wave numbers. Here a large Wij represents
higher deformability of the j th soft-gel layers. As we increase
Wi3 from 0.05 to 0.5 the maximum growth rate decreases.
For Wi3 = 1, this mode is completely stabilized for all wave
numbers; i.e., the growth rates for all the wave numbers are
negative indicating that disturbances do not grow in time.
For different Wi3 values the results of energy analysis are
provided in the Supplemental Material [26]. The dominant
contribution to the kinetic energy at the wave number for which
the growth rate is a maximum is from ETAN,1, the tangential
stress term at the liquid-liquid interface. This term induces
instability at the liquid-liquid interface. The contribution of
the tangential stresses ETAN,2, ETAN,3 at the top and bottom
gel-liquid interface are relatively small. As Wi3 increases,
ETAN,1 decreases relative to viscous dissipation. Therefore the
deformable nature of the gels stabilizes the base state. The
stabilization of this mode by introducing a bottom gel in region
1 in Fig. 4(b) can also be explained using similar arguments.

We examine the axial velocity profiles in Fig. 6 and
the stream function contours in Fig. 7. These are obtained
from the eigenfunctions of the most unstable perturbation for
Wi3 = 0.05 [33]. The velocity perturbations are discontinuous
at the liquid-liquid interface because of the difference in the
base state velocity gradient [see Eq. (24)]. The maximum of
the axial velocity perturbation occurs at the interface as shown
in Fig. 6. Figure 7 shows the two-dimensional (2D) contours
of the stream function perturbation over one wavelength (for
0 � x � 2lwave where lwave = 2π/k). The gradient of the
stream lines along the y direction increases as we approach
the liquid-liquid interface. This is consistent with the axial
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FIG. 6. The perturbed axial velocity for the LL long-wave
mode of instability for n21 = 1, n31 = 1.5,n41 = 1.5, μ31 = 1, μ41 =
1, ρ21 = 1.16, Re1 = 8, S31 = S41 = 0.0001, S21 = 829

Re2
1
, μ21 = 0.1,

Wi3 = Wi4 = 0.05. The profiles are obtained for x = 2π/k.

velocity perturbation being a maximum at the liquid-liquid
interface. This indicates that the perturbation grows from the
liquid-liquid interface in this mode.

An unexpected result is the destabilization of the LL
long-wave mode in region 2 of Fig. 4(b) by introducing a gel. In
Fig. 8 the maximum growth rate of the disturbances increases
as we increase Wi3, keeping Wi4 fixed. This confirms the
destabilizing influence of the top gel in region 2. The results
from the energy analysis for this case are provided in the
Supplemental Material [26]. The destabilization in this region
is due to the additional stresses created at the top gel-liquid
interface, i.e., ETAN,2. A similar analysis for parameters in
region 4 shows that the stresses at the bottom gel-liquid
interface can cause a dominant destabilization effect. Regions

FIG. 8. Destabilization of LL long-wave mode. Parameters:
n21 = 1.76, n31 = 2, n41 = 2, μ21 = 2, μ31 = 1, μ41 = 1, ρ21 =
1.16, Re1 = 8, S31 = S41 = 0.0001, S21 = 829

Re2
1
. Arrow points in the

direction of increasing Wi3.

2 and 4 which were stable to this mode for flow between rigid
walls have become unstable by introduction of a gel.

E. Destabilization of LL short-wave mode

In this section, we analyze the effect of deformable walls on
the liquid-liquid short-wave mode [27]. This mode is unstable
for large wave numbers and hence long-wave asymptotic
analysis cannot be used to get insights into this instability.
In Figs. 9(a) and 9(b) we see that this mode is destabilized
by an increase in the deformable nature of the soft gel for
different viscosity ratios and Reynolds numbers. When the
Weissenberg numbers of the top and bottom deformable gels
are equal and increased from 0.05 to 0.25 the maximum growth
rate increases. The energy budget analysis for this instability is
shown in Table I. Here the

∑2
j=1 EREY,j term; i.e., Reynolds

FIG. 7. Contours of perturbed stream function for the LL long-wave instability for 0 � x � 2lwave and −1 � y � 1 where lwave = 2π/k.
Other parameters: n21 = 1, n31 = 1.5,n41 = 1.5, μ31 = 1, μ41 = 1, ρ21 = 1.16, Re1 = 8, S31 = S41 = 0.0001, S21 = 829

Re2
1
, μ21 = 0.1, Wi3 =

Wi4 = 0.05.
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FIG. 9. Dispersion curves for the LL short-wave mode for
Wi3 = Wi4 varying from 0.05 to 0.25 and (a) μ21 = 0.05, Re1 =
230; (b)μ21 = 0.1, Re1 = 700. The arrow points in the direction
of increasing Wi3. Other parameters: n21 = 1, n31 = 1.5, n41 = 1.5,
μ31 = 10, μ41 = 10, ρ21 = 1.16, S21 = 829

Re2
1
, S31 = S41 = 0.0001.

stresses in the fluids, makes a dominant contribution to the
kinetic energy and this increases with Wi3.

The axial velocity profile and the contours of the stream
function perturbation for this case are plotted in Figs. 10 and
11. Here the maximum of the axial velocity perturbation occurs
close to the bottom gel-liquid interface as the bottom fluid has
a lower viscosity. This suggests that the instability arises due
to the stress generated by the no-slip condition at the walls.
In Fig. 11 the streamline contours are denser near the bottom
gel-liquid interface. The gradient of the stream function along
the y direction increases as we approach the bottom gel-liquid
interface, as the velocity is at maximum here.

Typical neutral stability curves in the Wi3−k plane for
the LL short-wave instability are shown in Fig. 12. These
curves have a minimum at a finite wave number, which
corresponds to the critical value of Wi3. Perturbations with

FIG. 10. The perturbed axial velocity for the LL short-wave mode
instability for n21 = 1, n31 = 1.5, n41 = 1.5, μ31 = 10, μ41 = 10,
ρ21 = 1.16, Re1 = 700, S31 = S41 = 0.0001, S21 = 829

Re2
1
, μ21 = 0.1,

Wi3 = Wi4 = 0.2. The profiles are obtained for x = 2π/k.

the corresponding wave number become unstable when Wi3 is
increased beyond this critical value. For a fixed wave number,
as the viscosity ratio μ21 increases from 0.1 to 0.15, the critical
Weissenberg number Wi3 required for the flow to become
unstable increases. For an increase in the viscosity ratio μ21 the
critical Weissenberg number occurs for higher wave numbers.
An increase in the viscosity ratio μ21 results in an increase in
viscous dissipation in fluid 2. Consequently a higher Wi3 is
required to generate sufficient Reynolds stresses to destabilize
the flow.

Critical surfaces in the Wi3−Re1 plane across which
stability changes are shown in Fig. 13. The critical Reynolds
number required for this instability for a given Wi3 can
be obtained from this figure. For a fixed Reynolds number
as the viscosity ratio μ21 increases from 0.1 to 0.2 the
Weissenberg number required for this instability to set in
increases. Consequently for this mode to evolve the flexibility
of the soft-gel layers has to be increased when we increase
viscosity ratio μ21. The flexible nature of the wall decreases
the Reynolds number required for the onset of instability for
a fixed μ21. Similarly the critical Weissenberg number Wi3
increases as the Reynolds number Re1 decreases for a fixed
viscosity ratio.

F. Destabilization of gel-liquid interfaces

1. Destabilization for rigid bottom wall gel coating only at top wall

In this section we focus on the gel-liquid interface which can
potentially become unstable under some operating conditions.
This is a new instability mode referred to as the GL short-wave
mode which cannot be observed in flows between rigid walls.
To focus on this mode, we choose the parameters so that the

TABLE I. Contribution of various energy terms obtained from energy analysis for LL short-wave instability shown in Fig. 9(a).

Wi3/k
∑2

j=1 EKE,j

∑2
j=1 EREY,j ETAN,1 ETAN,2 ETAN,3 ENOR,1 ENOR,2 ENOR,3

∑4
j=1 EDIS,j

0.05/1.3 0.3072 0.7149 0.0379 0 − 0.0511 − 0.0001 0.0001 0.5971 –1
0.1/1.25 0.5399 0.9775 0.0151 0 − 0.0524 − 0.0003 0.00015 0.5999 –1
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FIG. 11. Contours of stream function perturbation for the LL short-wave instability for 0 � x � 2lwave and −1 � y � 1 where lwave = 2π/k.
Other parameters are n21 = 1, n31 = 1.5, n41 = 1.5, μ31 = 10, μ41 = 10,ρ21 = 1.16, Re1 = 700, S31 = S41 = 0.0001, S21 = 829

Re2
1
, μ21 = 0.1,

Wi3 = Wi4 = 0.2.

other instability modes are suppressed. We set μ21 = 1, to
eliminate LL long-wave mode and analyze in the creeping
flow limit to eliminate the LL short-wave mode.

We analyze the GL short-wave mode for the top gel-liquid
interface alone by setting Wi4 = 0.001. The dispersion curves
for this mode are shown in Fig. 14(a) for low surface
tensions of the gel-liquid interface. The energy analysis for the
dispersion curves in Fig. 14(a) for different Wi3 is given in the
Supplemental Material [26]. Here the dominant energy term
which contributes to the instability is ETAN,2, the tangential
stress at the top gel-liquid interface where the deformable
gel is present. It can be also seen from Fig. 14(a) that when
the Weissenberg number Wi3 is increased from 2 to 5, the
GL short-wave mode is destabilized; i.e., the growth rate
increases. This destabilization is due to a relative increase
in the tangential stresses at the top gel-liquid interface, i.e.,
ETAN,2 in the energy analysis. However, when Wi3 is further

FIG. 12. Effect of μ21 on the neutral stability curve for the LL
short-wave mode (arrow points in the direction of increasing μ21).
Here Wi3 = Wi4. Other parameters: n21 = 1, n31 = 1.5, n41 = 1.5,
μ31 = 10, μ41 = 10, ρ21 = 1.16, Re1 = 230, S21 = 829

Re2
1
, S31 = S41 =

0.0001.

increased from 5 to 15 the growth rate of this mode decreases.
This is due to the stabilization effect of the normal stresses
ENOR,2 at the top gel-liquid interface which becomes negative
in the energy budget. In Fig. 14(b) we see that for large surface
tension at the gel-liquid interface, the maximum growth rate
shifts towards lower wave numbers with an increase in Wi3.

We plot the perturbed stream lines shown in Fig. 15 for
the GL short-wave mode. The gradient of the stream function
along the y direction in the top gel layer increases as we
approach the top gel-liquid interface. This indicates that the top
gel-liquid interface plays a major role in flow destabilization.
For the LL short-wave mode, the maximum of the perturbed
axial velocity occurs near the wall in the less viscous fluid. In
the GL short-wave mode the maximum of the velocity occurs
at the gel-liquid interface as shown in Fig. 16.

Critical surfaces in the Wi3−n31 plane across which
stability changes are shown in Fig. 17. It can be seen that
with an increase in the viscosity ratio μ31 from 1 to 1.5,

FIG. 13. Effect of μ21 on the Wi3-Re1 critical surfaces for the
LL short-wave mode. Here Wi3 = Wi4. Other parameters are n21 =
1, n31 = 1.5, n41 = 1.5, μ31 = 10, μ41 = 10, ρ21 = 1.16, S21 = 829

Re2
1
,

S31 = S41 = 0.0001.
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FIG. 14. Dispersion curves for the GL short-wave mode. The
arrow points in the direction of the increasing Wi3. (a) Other
parameters: n21 = 1, n31 = 4, n41 = 4, μ21 = 1, μ31 = μ41 = 1,
ρ21 = 1, Wi4 = 0.001, Re1 = 0.01, S21 = 0, S31 = S41 = 0.01;
(b) n21 = 1, n31 = 4, n41 = 4, μ21 = 1, μ31 = μ41 = 1, ρ21 = 1,
Wi4 = 0.001, Re1 = 1, S21 = 0, S31 = S41 = 10.

the critical Wi3 required for this instability increases. The
evolution of this mode is characterized by the dominance of
the tangential stress term ETAN,2. For high values of Wi3, the
shear modulus discontinuity across the top gel-liquid interface

FIG. 15. Contours of stream function perturbation for the GL
short-wave instability show in Fig. 14(a) for 0 � x � 2lwave and −1 �
y � 1 where lwave = 2π/k.

FIG. 16. Perturbed velocity in the top liquid and top gel. Other
parameters: n21 = 1, n31 = 4, n41 = 4, μ21 = 1, μ31 = μ41 = 1,
ρ21 = 1, Wi4 = 0.001, Re1 = 0.01, S21 = 0, S31 = S41 = 0.01.

is significant. This creates dominant tangential stresses at this
gel-liquid interface, which overcomes the stabilization caused
by the viscous dissipation in the soft-gel layer. For a given
Wi3 this mode can be suppressed by choosing a sufficiently
low thickness of the top gel layer.

2. Destabilization of both top and bottom
gel-liquid interfaces

We now discuss the case when both the top and bottom
walls are coated by a gel and Wi3 = 10, Wi4 = 5. The
corresponding dispersion curves are shown in Fig. 18. From
the energy analysis (see Supplemental Material [26]) we see
that the dominant destabilizing contributions where the two
maxima occur come from the ETAN,2 and ETAN,3 terms, i.e., the
tangential stresses at the top and bottom gel-liquid interfaces.
The first peak in the dispersion curve at k = 0.2 implies that
the ETAN,2 term gives the major destabilization contribution to
the energy budget. This is the contribution from the increased
flexible nature of the top gel-liquid interface. The second peak

FIG. 17. Effect of μ31 on the critical surface in the Wi3 - n31

plane for the GL short-wave mode instability. Other parameters:
n21 = 1, μ21 = 1, ρ21 = 1, Re1 = 0, S21 = 0.0001, S31 = S41 = 0,
Wi4 = 0.001. Arrow points in the direction of increase in the viscosity
ratio μ31.
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FIG. 18. Dispersion curve when both the top and bottom GL
short-wave modes of instabilities coexist in the flow (the arrow
points in the direction of increasing Wi4). Other parameters: n21 =
1, n31 = 6, n41 = 6, μ21 = 1, μ31 = μ41 = 1, ρ21 = 1, S21 = 10−5,
S31 = S41 = 10, Re1 = 10−3, Wi3 = 10, and Wi4 = 5.

in this dispersion curve which occurs for k = 0.9 corresponds
to the dominance of the ETAN,3 term in the energy budget.
For the gel-liquid interface with higher (lower) Weissenberg
number the maximum growth rate occurs for lower (higher)
wave numbers. This is to be expected since when the surface
tension is high at the gel-liquid interface the wave number
corresponding to the maximum growth rate decreases as Wi3
increases [see Fig. 14(b)].

Figure 19 shows the 2D contours of the stream function
perturbation when both the top and bottom walls have a
gel coating. We observe two vortices in the stream function
contour plot. One vortex is close to the top gel-liquid
interface and the other close to the bottom gel-liquid interface,
confirming that both gel-liquid interfaces play a major role in
the destabilization of the base state.

FIG. 19. Contours of stream function perturbation for the GL
instability for 0 � x � 2lwave and −1 � y � 1 where lwave = 2π/k.
Other parameters: n21 = 1, n31 = 6, n41 = 6, μ21 = 1, μ31 = μ41 =
1, ρ21 = 1, S21 = 10−5, ρ31 = ρ41 = 1, S31 = S41 = 10 Re1 = 10−3,
Wi3 = 10, and Wi4 = 5.

VII. CONCLUSIONS

In this paper our study focuses on the linear stability of
layered two-phase flow through a channel whose walls are
coated by a soft gel. The soft-gel layers play a significant
role in influencing the stability characteristics of the flow.
By analyzing systematically the energy contributions of
various processes in the perturbed flow, insights into the
physical mechanism driving the different instabilities are
obtained.

We first analyzed the flow configuration using a long-wave
asymptotic analysis. This was used to validate the numerical
solution of the general linearized problem. In the absence
of the soft-gel layers, the liquid-liquid interface exhibits a
long-wave instability arising from the viscosity difference
across the interface. The asymptotic analysis shows that the
effect of the soft-gel layer influences the growth rate at O(k).
The deformable nature of the soft-gel layers can have either a
stabilizing or a destabilizing effect on the LL long-wave mode.
The μ21-n21 parameter space is divided into four regions. The
stability characteristics of the interfacial LL long-wave mode
are dictated by the arrangement of the fluids in the two-phase
layered flow. In region 1 and region 3, where a more viscous
fluid is placed near a gel layer, the corresponding gel layer has
a dominant stabilizing effect on the LL long-wave mode. An
unexpected result is that in region 2 and region 4, a gel layer
placed near a less viscous and narrow fluid has a dominant
destabilizing effect on the LL long-wave mode. The presence
of the gel layers can render regions 1 and 3 stable and regions 2
and 4 unstable in Fig. 4(b). Energy analysis shows that the LL
long-wave mode is primarily induced by viscosity difference
across the liquid-liquid interface. This is confirmed by the
dominant ETAN,1 term in the energy analysis. Stabilization of
the LL long-wave mode is explained by the decrease in the
magnitude of the ETAN,1 term relative to viscous dissipation in
the energy analysis with increase in Wi3. The destabilization
of the LL long-wave mode is characterized by the tangential
stresses created at the gel-liquid interfaces, i.e., the ETAN,2 and
ETAN,3 terms in the energy analysis.

The presence of soft-gel layers at the walls destabilizes the
LL short-wave instability which is governed by shear stresses.
This is confirmed by the dominance of the

∑2
j=1 EREY,j term

in the energy analysis. An important result of this work is
that new instabilities arise in the flow due to the deformable
nature of the soft-gel layers. From numerical computations
it is shown that a GL short-wave instability mode can arise
in the system even when the other modes are absent. This
is caused by the differences in the shear modulus across the
gel-liquid interface. The GL short-wave instability arises due
to the dominance of the ETAN,2 and ETAN,3 terms in the energy
analysis.

The GL short-wave instability originates at the gel-liquid
interface only when the gel thickness and deformability are
well above their critical values. This instability mode is also
characterized by two peaks in the dispersion curves when both
walls have a soft-gel layer coating.

The stabilization (destabilization) of the LL long-wave
mode due the deformable soft-gel layers is observed for
Weissenberg number Wi3 = Wi4 = 0.05 (Wi3 = Wi4 = 5)
and moderate Reynolds numbers Re1 < 30. On the other hand
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the destabilization of the LL short-wave mode due to the
soft-gel layers is observed for Wi3 = Wi4 < 0.25 and large
Re1; i.e., Re1 > 100. For 2 < Wi3 = Wi4 < 15 and 0.001 <

Re1 < 1 the GL short-wave mode at the gel-liquid interface
evolves. The GL short-wave mode is observed only for large
Weissenberg numbers as compared to the LL long-wave and
LL short-wave modes.

To physically understand the evolution of different insta-
bilities, equidensity contour plots of the stream functions are
plotted. In the case of the LL long-wave mode the density
of the contours is high at the liquid-liquid interface providing
additional evidence that the LL long-wave mode evolves along
the liquid-liquid interface. For LL short-wave instability the
density of the stream function is high near the gel-liquid
interface in the less viscous fluid. For the GL short-wave
instability the density of the contour plots is high in the top
and bottom gel layers. This implies that the GL short-wave
instability arises due to the deformable nature of the both gel
layers. These plots hence provide insight into the cause of the
dominant physical effect for an instability.

In summary, introducing a deformable soft-gel layer along
rigid walls helps in controlling and manipulating different
instabilities in multilayer flows. An important task for future
work is to extend the current two-dimensional analysis to three-
dimensional geometries taking into account the dependency
of the perturbation in the z direction [34,35]. In an effort
to understand different instabilities in the flow configuration
we have used a linear viscoelastic model for the soft-gel
layers. The stability characteristics of the flow configuration
would change if we were to use a different model such as a
neo-Hookean model for the soft-gel layers [18].

APPENDIX: LONG-WAVE ANALYSIS FOR LAYERED
FLOW THROUGH GEL-COATED WALLS

1. Leading order analysis

The governing equations for the leading order velocity
fields in the fluids and the leading order displacement fields
in the soft-gel layers obtained from the asymptotic series
expansion are

d4
yv

(0)
j = 0. (A1)

From continuity equation (17) the governing equation for
the axial velocity fields in the fluids is

u
(0)
j = idyv

(0)
j .

From the x momentum Eq. (18) the governing equation for
the pressure in the fluids is

p
(0)
j = −iμj1

Re1
d2

yu
(0)
j . (A2)

The governing equation for the leading order displacement
field in the y direction for the soft gels is

d4
yY

(0)
j = 0. (A3)

The governing equation for the leading order displacement
field in the x direction for the soft gels is

X
(0)
j = idyv

(0)
j . (A4)

The governing equation for the leading order pressure in
the soft gels is

p
(0)
j = −iμj1

Re1Wij
d2

yu
(0)
j . (A5)

At the liquid-liquid interface at y = 0, the following
boundary conditions at the leading order are imposed.

Continuity of axial component of velocity:(
u

(0)
1 − u

(0)
2

)
(U0 − c(0)) − [

iv
(0)
1 (dyU1 − dyU2)

] = 0. (A6)

Continuity of vertical component of velocity:

v
(0)
1 − v

(0)
2 = 0. (A7)

Tangential stress condition at the liquid-liquid interface:

dyu
(0)
1 − μ21dyu

(0)
2 = 0. (A8)

Normal stress condition at the liquid-liquid interface:

Re1
(
p

(0)
2 − p

(0)
1

)
(U1 − c(0)). (A9)

The leading order boundary conditions at the top gel-liquid
interface at y = 1 are as follows.

Continuity of velocity in the axial direction:

u
(0)
1 = 0. (A10)

Continuity of velocity in the y direction:

v
(0)
1 = 0. (A11)

Tangential stress condition at the top gel-liquid interface:

dyu
(0)
1 − μ31

Wi3
dyX

(0)
3 = 0. (A12)

Normal stress condition at the top gel-liquid interface:

Re1
(
p

(0)
1 − p

(0)
3

) = 0. (A13)

The leading order boundary conditions at the bottom gel-
liquid interface at y = −n21 are as follows.

Continuity of axial component of velocity:

u
(0)
2 = 0. (A14)

Continuity of velocity in the y direction:

v
(0)
2 = 0. (A15)

Tangential stress condition at the bottom gel-liquid inter-
face:

dyu
(0)
2 − μ41

Wi4
dyX

(0)
4 = 0. (A16)

Normal stress condition at the bottom gel-liquid interface:

Re1
(
p

(0)
4 − p

(0)
2

) = 0. (A17)

Leading order boundary conditions at the rigid surfaces at
y = n31 and y = −n41:

u
(0)
3 = 0, v

(0)
3 = 0, (A18)

u
(0)
4 = 0, v

(0)
4 = 0. (A19)
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The leading order equation (A1) for v
(0)
1 and v

(0)
2 are

integrated to obtain

v
(0)
1 = A1y

3 + A2y
2 + A3y + A4, (A20)

v
(0)
2 = B1y

3 + B2y
2 + B3y + B4. (A21)

The leading order equations (A3) for Y
(0)
3 and Y

(0)
4 are

integrated to obtain

Y
(0)
1 = D1y

3 + D2y
2 + D3y + D4, (A22)

Y
(0)
2 = E1y

3 + E2y
2 + E3y + E4. (A23)

Equations (A1)–(A23) are solved along with the boundary
conditions at the leading order to obtain the coefficients Ai , Bi ,
Di , and Ei (where i = 1, . . . ,4) to determine the leading order
growth rate. At the leading order the fluid velocities satisfy the
no-slip boundary condition at the gel-liquid interfaces. At the
leading order, the presence of the soft gel does not contribute
to the continuity of fluid velocities at the gel-liquid interfaces.
This implies that the effect of the deformability of the gel
layers does not influence the leading order velocities. Hence,
the leading order wave speed is identical to the expression
in [27]. The leading order velocity in the fluids generates
stress on the gel layers through the tangential stress boundary
condition. This stress generates deformation in the gel layers
at the leading order.

2. First correction

The governing equations for the velocity fields in the fluids
and the displacement fields in the soft gels at the first order in
asymptotic analysis are now described.

The governing equation for the fluid velocities in the y

direction at first order is

d4
yv

(1)
j = iRe1ρj1

μj1

{[
(U0 − c(0))d2

yv
(0)
j

] − d2
yUjv

(0)
j

}
. (A24)

The governing equation for fluid velocities in the axial
direction is

u
(1)
j = idyv

(1)
j . (A25)

The governing equation for the pressure in the fluids is

p
(1)
j = i

[( −μj1

Re1ρj1
d2

yu
(1)
j

)
+ (−ic(0)u

(0)
j

)

+ (
iUju

(0)
j

) + dyUjv
(0)
j

]
. (A26)

Boundary conditions at the liquid-liquid interface at the first
order are as follows.

Continuity of velocity in the flow direction:

k
[
c(1)

(
u

(1)
2 − u

(1)
1

) + U1
(
u

(1)
1 − u

(1)
2

) + c(0)
(
u

(1)
2 − u

(1)
1

)
− iv

(1)
1 (dyU1 − dyU2)

] = 0. (A27)

Continuity of velocity in the y direction:

k
(
v

(1)
1 − v

(1)
2

) = 0. (A28)

Tangential stress condition at the liquid-liquid interface:

dyu
(1)
1 − μ21dyu

(1)
2 = 0. (A29)

Normal stress condition at the liquid-liquid interface:

kRe1
[
c(1)(p(0)

2 − p
(0)
1

) + U1
(
p

(1)
1 − p

(1)
2

)
+ c(0)

(
p

(1)
2 − p

(1)
1

)] = 0. (A30)

Boundary conditions at the top gel-liquid interface at the
first order are as follows.

Continuity of velocity in the axial direction:

k
[
u

(1)
1 + (

dyU1v
(0)
3

) + (
ic(0)u

(0)
3

)] = 0. (A31)

Continuity of velocity in the y direction:

k
[
v

(1)
1 + (

ic(0)v
(0)
3

)] = 0. (A32)

Tangential stress condition at the top gel-liquid interface:

k
[
dyu

(1)
1 + μ31ic

(0)dyu
(0)
3

] = 0. (A33)

Normal stress condition at the top gel-liquid interface:

kRe1p
(1)
1 = 0. (A34)

Boundary conditions at the bottom gel-liquid interface are
as follows.

Continuity of velocity in the axial direction:

k
[
u

(1)
2 + (

dyU2v
(0)
4

) + (
ic(0)u

(0)
4

)] = 0. (A35)

Continuity of velocity in the y direction:

k
[
v

(1)
2 + (

ic(0)v
(0)
4

)] = 0. (A36)

Tangential stress condition at the top gel-liquid interface:

k

[
dyu

(1)
2 + μ41

μ21
ic(0)dyu

(0)
4

]
= 0. (A37)

Normal stress condition at the top gel-liquid interface:

kRe1p
(1)
2 = 0. (A38)

Equations (A24)–(A38) are solved to determine the growth
rate at the first order.
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