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Formation of liquid drops at an orifice and dynamics of pinch-off in liquid jets

Manash Pratim Borthakur,1 Gautam Biswas,1,* and Dipankar Bandyopadhyay2

1Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
2Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India

(Received 26 March 2017; published 25 July 2017)

This paper presents a numerical investigation of the dynamics of pinch-off in liquid drops and jets during
injection of a liquid through an orifice into another fluid. The current study is carried out by solving axisymmetric
Navier-Stokes equations and the interface is captured using a coupled level-set and volume-of-fluid approach.
The delicate interplay of inertia and viscous effects plays a crucial role in deciding the dynamics of the formation
as well as breakup of liquid drops and jets. In the dripping regime, the growth and breakup rate of a drop are
studied and quantified by corroborating with theoretical predictions. During the growth stage of the drops, a
self-similar behavior of the drop profile is identified over a relatively short duration of time. The viscosity of
the drop liquid shows substantial influence on the thinning behavior of a liquid neck and a transition is observed
from an inertia dominated regime to an inertia-viscous regime beyond a critical minimum value of the neck
radius. The phenomenon of interface overturning is fundamentally related to the magnitude of drop viscosity.
The variation of overturning angle as a function of drop viscosity is computed and a critical value of Ohnesorge
number is obtained beyond which overturning ceases. Increasing the inertia of drop liquid transforms the system
from a periodically dripping regime to a quasiperiodic regime and finally it culminates into an elongated liquid
jet. Another interesting transition from dripping to jetting regime is demonstrated by varying the viscosity of
the ambient medium. The breakup of jets in Rayleigh mode is explored and the breakup length obtained from
our computations shows excellent agreement with the theoretical predictions owing to Rayleigh’s analysis. The
ambient medium is entrained as the jet moves downstream with the creation of a vortical structure just outside the
jet signifying increased participation of the ambient medium in the dynamics of jet breakup at higher inflow rates.
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I. INTRODUCTION

The dynamics of formation and breakup of liquid drops and
jets have been studied extensively owing to its rich underlying
physics and importance in many industrial applications. A
variety of applications involve formation of drops from a
nozzle or an orifice, as observed in inkjet printing [1], spray
coating [2], separation and extraction processes [3], and others
[4]. The success of such technologies rely strongly on the
precise and reliable prediction of dynamics related to liquid
column breakup as well as subsequent drop formation.

The formation of drops from vertical capillary tubes
has been studied experimentally [5–11] and computationally
[9–19] by many researchers. The process of drop formation is
widely classified into two categories: dripping and jetting. In
the dripping regime, which occurs at low flow rates, the drops
periodically form near the orifice. As the flow rate is slowly
increased, the nonlinear effects come into the picture resulting
in a quasiperiodic pattern of drop formation characterized
by regularly repeating multiple detached drop volumes and
limiting drop lengths. At sufficiently high flow rates, the
system transitions into jetting mode where the inertia force
becomes a dominating factor and drops break up from the
end of a long jet of liquid, which is inherently unstable.
The dynamics of growth and breakup in the dripping mode
has been explored experimentally by several researchers [5–
11,16,20,21]. Besides experimental investigations, numerical
studies on drop formation in air has been conducted using
one-dimensional (1D) slender jet approximations [9,11–13],
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boundary integral methods [14,15], and solution of full Navier-
Stokes equations [17–19,22]. The pioneering work by Savart
[23], Plateau [70], and theoretical analysis of Rayleigh [24,25]
provided a basic understanding of the instability of jets and
predictions of important parameters, such as the breakup
length and drop diameter. Subsequently, many investigations
have been performed theoretically [26–33], experimentally
[34–41], and numerically [19,42–46] to uncover the fascinat-
ing aspects of the jetting mode and its associated dynamics.

The present paper is an attempt to analyze a few salient
features of drop formation in both dripping and jetting
regimes by solving the full Navier-Stokes equations under
axisymmetric conditions. For this purpose, we have used
an in-house interface-capturing code based on the coupled
level-set and volume-of-fluid (CLSVOF) method. The code
has been previously successfully applied to simulate two-phase
flows [47–53]. We demonstrate the influence of inertia and
viscous effects on the pinch-off of liquid drops. An interesting
transition from dripping to jetting is presented by varying the
viscosity of the ambient medium. Finally, breakup of jets in
the Rayleigh mode is explored and entrainment of ambient
medium is demonstrated for jets moving at high velocity.

The rest of the paper is organized as follows. In Sec. II,
we outline the formulation of the problem and discuss the
validation of the present numerical solver in Sec. III. The
results are presented in Sec. IV and concluding remarks are
given in Sec. V.

II. FORMULATION OF THE PROBLEM

A. Computational domain

A representative diagram of the computational domain
adopted is shown in Fig. 1. The drop liquid of density ρi
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FIG. 1. Schematic diagram (not to scale) showing the compu-
tational domain and boundary conditions in cylindrical coordinate
system (r,z,θ ). A fully developed flow is imposed at the orifice inlet
of radius R initialized with a hemispherical drop. Gravity acts along
positive z axis. The size of the domain is taken as 5R in radial (r)
direction whereas 30–60R in axial (z) direction

and viscosity μi is injected through an orifice of radius R on
a horizontal wall at a constant flow rate, Q̇d into a quiescent
ambience at density ρo and viscosity μo. The surface tension σ

is assumed to be spatially uniform and constant with time. A
cylindrical coordinate system (r,z,θ ) is adopted considering
the dynamics to be axisymmetric so that the problem is
independent of θ where (r,z,θ ) are the radial coordinate, axial
coordinate, and azimuthal angle, respectively. The origin is
chosen at the center of the orifice and gravity aligns in the
direction of the z axis. The size of the computational domain
is taken as 5R in the radial direction and 30–60R in the axial
direction so as to ensure that the results are not influenced
by the outflow boundary conditions. The three-phase contact
circle where the drop base, outer ambience, and orifice rim
meet, remains pinned to the sharp edge of the orifice and
hence no contact angle needs to be specified in this problem.

B. Governing equations and numerical procedure

In this study a Newtonian liquid drop is injected into another
Newtonian liquid and both fluids are considered immiscible
and incompressible. The problem is governed by the single set
of continuity and Navier-Stokes equations for treating a single
fluid continuum. The continuity equation is given as

∇ · v = 0, (1)

where, v = (u,v) are axial and vertical components of the
velocity field, respectively. The momentum equation is

ρ(α̃)(∂v/∂t + ∇ · vv)

= −∇P + ρ(α̃)g + ∇ · [μ(α̃)(∇v + ∇vT)] + σκ(φ)∇α̃.

(2)

The influence of surface tension is incorporated into the
momentum equations following the continuum surface force
(CSF) model of Brackbill et al. [54]. Here, α̃ is the smoothed
void fraction field, which is defined using a Heaviside function
[55] H (φ) as

α̃ = H (φ) =
⎧⎨
⎩

0 if φ < −ε
1
2 + φ

2ε
+ 1

2π

[
sin

(
πφ

ε

)]
if |φ| � ε

1 if φ > ε

. (3)

The symbol φ defines the level-set function, which is the
signed distance function from the interface. The value of φ

is zero at the interface, it assumes positive value in the liquid
1 region and negative value in the liquid 2 region. Here, 2ε

is the interface thickness over which the fluid properties are
interpolated. The present simulations were performed using
ε = 1.5 δx, where δx is the size of the computational cell. The
smoothed density ρ(α̃) and viscosity μ(α̃) can be expressed
by a Heaviside function H (φ)

ρ(α̃) = ρiα̃ + ρo(1 − α̃) (4)

μ(α̃) = μiα̃ + μo(1 − α̃), (5)

where, i and o represent inner drop liquid and outer ambient
fluid, respectively. The density and viscosity of both fluids are
assumed to be constant. The local curvature κ at the air-liquid
interface is computed as

κ = −∇ · n̂, (6)

where the unit normal vector n̂ derived from level-set
function φ

n̂ = ∇φ

|∇φ| (7)

and it is directed into the external fluid. In the CLSVOF
method, the advection equation for the volume fraction α and
the level-set function φ are

∂α

∂t
+ ∇ · (vα) = 0, (8)

∂φ

∂t
+ ∇ · (vφ) = 0. (9)

The interface is considered as a piecewise linear segment in
each cell. The level-set function φ [56] is used to capture the
interface and volume fraction of the liquid α [57] is deployed
to conserve mass due to the moving interface. The governing
equations are discretized using the finite-difference method
on a cylindrical coordinate and equidistant grid δr = δz in
the radial and axial directions. The MAC algorithm [58] is
employed to solve the single set of governing equations on a
staggered grid with scalars (ρ,α,φ) located at the cell centers
and velocity components at the center of the cell faces. The
convection and the viscous terms are discretized by a second-
order ENO method [59] and central differencing, respectively.
In the present paper, the time-stepping procedure is based
on the explicit method and hence to maintain the stability of
the solution, time steps are chosen to satisfy CFL, capillary,
viscous, and gravitational time conditions [47]. The detailed
numerical methods have been described by Gerlach et al. [60].
The CLSVOF method has been used by many researchers
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successfully for solving variety of problems involving the
study of dynamics of buoyancy-driven gas bubbles’ motion
in a quiescent liquid and the dynamics of bubble formation
from a submerged orifice [47–49], impact of a drop on a liquid
surface [51], bubble entrapment owing to drop impact [50],
and many such problems of scientific interest [61,62].

C. Boundary conditions

At the orifice inlet, a parabolic velocity profile is imposed
satisfying the conditions of desired liquid injection rate.

u(r) = 0, v(r) = 2vavg [1 − (r/R)2],

α = 1 for 0 � r � R, (10)

where u and v are the radial and axial velocity components,
respectively. For the outflow boundary, it is assumed that
influence of upstream is minimum, i.e., there is no change
in axial direction.

∂u

∂z
= ∂v

∂z
= ∂α

∂z
= ∂φ

∂z
= 0, P = P0. (11)

Due to the axisymmetric nature of the problem, the normal
components of velocity and the viscous shear stress vanish
along the axis of symmetry.

u = 0,
∂v

∂r
= ∂α

∂r
= ∂φ

∂r
= 0. (12)

At the solid wall, liquid obeys conditions of no slip and no
penetration,

u = v = 0 for R � r � L. (13)

D. Initial conditions

The drop is initially assumed to be a hemisphere of radius
equal to that of the orifice radius. The initial state of the static
drop can be defined as

r2 + z2 = R2. (14)

Both the drop and ambience are considered to be initially
quiescent and at uniform pressure.

u = v = 0, P = const at t = 0 (15)

E. Nondimensional parameters

The nondimensional parameters pertinent to our problem
are the Weber number, Bond number, and Ohnesorge number
given as:

We = ρivavg
2R

σ
(16)

Bo = ρigR2

σ
(17)

Oh = μi√
ρiRσ

. (18)

The Weber number, We, measures the importance of
inertia force relative to the surface tension force; the Bond
number,Bo, measures the importance of gravity force relative
to surface tension force; and the Ohnesorge number, Oh,

measures the relative importance of viscous force over inertia
and surface tension forces.

Two other nondimensional parameters, the density ratio η

and viscosity ratio λ, are introduced to account for the dynamic
effect of surrounding medium on the drop formation.

η = ρo

ρi

, (19)

λ = μo

μi

. (20)

The following dimensionless characteristic variables are intro-
duced:

z∗ = z

R
, r∗ = r

R
, v∗ = v

vavg
,

P ∗ = P

ρiv2
avg

, t∗ = t
vavg

R
, (21)

where the orifice radius R is the characteristic length scale
and average velocity of liquid at inlet, vavg = Q̇d/πR2 is the
characteristic velocity scale.

F. Fluid properties

The drop fluid is chosen to be an aqueous solution of
glycerine in varying concentrations. The surrounding medium
is considered as air for most of the simulations. However, in
Sec. IV D, the surrounding medium is considered as organic oil
to demonstrate the effect of viscosity of the ambient medium
on the dynamics.

III. VALIDATION OF CURRENT NUMERICAL APPROACH

A. Comparison with experiments

Figure 2 presents a comparison of the drop shape at the
incipience of breakup predicted by our current computations

FIG. 2. Qualitative comparison of drop formation between (a)
current computations and (b) experimental results of Subramani et al.
[9] under conditions of Oh = 0.13, Bo = 0.33, We = 0.119, η =
0.001, and λ = 0.0005.
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TABLE I. Quantitative comparison of drop formation between
current computations and experimental results of Subramani et al. [9]
under conditions of Oh = 0.13, Bo = 0.33, We = 0.119, η = 0.001,
and λ = 0.0005.

Parameters Experimental Present Computation

Limiting length L∗
d 8.6 ± 0.1 8.45

Drop Volume V ∗
d 17.4 ± 0.3 17.44

with the experimental results of Subramani et al. [9]. The
comparison shows excellent qualitative agreement of our
computational results with experimental observations.

The values of dimensionless limiting length (Ld
∗ = Ld/R)

and dimensionless detached volume (Vd
∗ = Vd/R

3) depicted
in Fig. 2 are calculated and presented in Table I in order to
make a quantitative comparison with Subramani et al. [9]. The
experimentally obtained values of Ld

∗ and Vd
∗ are Ld,exp

∗ =
8.6 ± 0.1 and Vd,exp

∗ = 17.4 ± 0.3. The corresponding values
obtained from our computations are Ld,comp

∗ = 8.45 and
Vd,comp

∗ = 17.44, which are in excellent agreement with the
experiments.

B. Grid convergence studies

To ensure that the results obtained from our compu-
tations are independent of grid resolution, we chose five
grid sizes (25 × 150,50 × 300,80 × 480,100 × 600,125 ×
750). The test was conducted under conditions of Oh =
0.003, Bo = 0.18, We = 0.8, η = 0.001, and λ = 0.02. The
dimensionless drop volume V ∗

d is compared for the five
chosen grids as tabulated in Table II. It was observed that
the difference of V ∗

d between grids 25 × 150 and 50 × 300 is
around 2% whereas the difference between grids 100 × 600
and 125 × 750 is less than 0.1%. Arising out of computational
experiments, we have chosen grid size of 100 × 600 for our
present computations to optimize computational time without
compromising the accuracy of the results.

IV. RESULTS AND DISCUSSION

This section presents the results from our simulations to
uncover the dynamics of formation and breakup of liquid
drops and jets injected in a quiescent medium from an orifice.
The range of values for the governing dimensionless numbers
explored in the simulations are listed in Table III.

TABLE II. Comparison of dimensionless drop volume V ∗
d for

different grid sizes [25 × 150,50 × 300,80 × 480,100 × 600,125 ×
750]. The relevant conditions are Oh = 0.003, Bo = 0.18, We = 0.8,
η = 0.001, and λ = 0.02.

Grid Points Drop volume (V ∗
d ) Percent change (%)

25 × 150 29.74 −
50 × 300 30.44 2.35
80 × 480 30.98 1.77
100 × 600 31.20 0.71
125 × 750 31.24 0.12

TABLE III. Range of dimensionless numbers em-
ployed for the numerical simulations.

Dimensionless parameter Range

We 0.1–9.5
Bo 0.18
Oh 0.002–0.2
η 0.001 and 0.74
λ 0.0001–15.0

A. Drop growth

The temporal evolution of the drop is termed as drop
growth history. Due to continuous injection of the liquid
through the orifice, the size of the drop increases with time
and finally detaches under the action of gravity. Figure 3
shows the drop growth history as a function of time. Here, D∗

d

and t∗ represent the nondimensional drop diameter and time,
respectively, where D∗

d = Dd/R. For a constant flow rate of
the liquid through the nozzle, Vd = Vs + Q̇d t , where Vd and
Vs are the instantaneous and initial drop volumes and Q̇d is the
constant rate of liquid injection. Assuming the drop remains
spherical throughout the growth process, the drop volume is
given by Vd = (π/6)D3

d and hence the dimensionless drop
diameter is calculated from the growth law using Eq. (22).
The growth law from our numerical simulation is found to be
D∗

d = (4.009 + 5.940t∗)1/3, which is in excellent agreement
with the theoretical prediction of Eq. (22).

D∗
d = (4 + 6t∗)1/3

. (22)

Considering the initial stage of the drop growth, a self-
similarity analysis of the profile of the growing drop is
performed. The fitting function used is of the form z∗/t∗α =
ar∗t∗β where z∗ and r∗ are the nondimensional quantities
defined earlier and α and β are the exponents [62]. The
relationship between α and β is followed as α = 1 − 2

5β.
The constant a is considered as unity and the values of α

and β are 0.40 and 0.15, respectively. The results obtained
from simulation of drops of different viscosities are presented

FIG. 3. Numerical prediction of dimensionless drop diameter
D∗

d as a function of dimensionless time t∗ and comparison with
analytical expression Eq. (22) for Oh = 0.003, Bo = 0.18, We = 0.2,
η = 0.001, and λ = 0.02.
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FIG. 4. (a) Instantaneous interface profiles and (b) collapsed
profiles during drop growth stage from t = 0.025s to t = 0.039s
for Oh = 0.002,Bo = 0.18,We = 0.2,η = 0.001,λ = 0.02. (c) In-
stantaneous interface profiles and (d) collapsed profiles during drop
growth stage from t = 0.025s to t = 0.039s for Oh = 0.014,Bo =
0.18,We = 0.2,η = 0.001,λ = 0.004. (e) Instantaneous interface
profiles and (f) collapsed profiles during drop growth stage from
t = 0.025s to t = 0.035s for Oh = 0.1,Bo = 0.18,We = 0.2,η =
0.001,λ = 0.0006. The axes has been rescaled following z∗/t∗α =
ar∗t∗β .

in Fig. 4. For values of Oh = 0.002 and 0.014 shown in
Figs. 4(a)–4(b) and 4(c)–4(d), respectively, the growing drop
profile collapses on a single curve between time instants
t = 0.025s and t = 0.039s. The higher magnitude of α over
β indicates that the growth of the drop in the axial direction
is faster than the radial direction due to the constant inflow
imposed at the orifice. However, at a higher value of Oh = 0.1
shown in Figs. 4(e)–4(f), the growth follows self-similarity but
for a smaller time range between t = 0.025s and t = 0.035s.
The numerical experiments demonstrates that the growth of the
drop accelerates due to the dominance of the viscous forces
over the surface tension forces at higher Oh.

B. Drop breakup

A salient feature of drop formation is the occurrence of
a slender neck that connects the about-to-form drop with
the rest of the fluid attached to the orifice. It is interesting
to analyze the relation between the minimum radius of the
neck (r∗

min = r∗
neck) and time leading to drop pinch-off where

r∗
min = rmin/R. The temporal decrease of the neck radius r∗

min

with time t∗ can be characterized by the power-law expression
r∗

min ∼ τα where τ is the time leading to drop pinch-off
[τ = (tpinch − t)/tc]. Here, tc =

√
ρR3/σ is the capillary time

scale and α is the effective exponent of the power law. In

FIG. 5. Relation between minimum neck radius r∗
min and time

before pinch-off τ during collapse stage. The solid line represents
r∗

min ∼ τ 2/3. Parameters are Oh = 0.003, Bo = 0.18, We = 0.2, η =
0.001, and λ = 0.02.

the present investigation, the drop is assumed to pinch off
when r∗

min falls below 0.001, i.e., the size of a single grid
cell. Previously, Basaran [4] suggested that a thinning filament
undergoes transition from either an initial inertia or viscosity
dominated regime to an inertia-viscous regime close to the
instant of pinch-off. In the present investigation, Oh = 0.003,
which signifies that viscous forces are weak and hence initial
thinning of the neck takes place under an inertia dominated
regime. The results from Fig. 5 clearly indicate the value of
α to be 2/3 in the inertia dominated regime, which agrees
well with the predictions of Basaran [4]. However, as the
neck radius r∗

min falls below 0.008, the viscous effects come
into play and the thinning process is brought about in an
inertia-viscous regime with r∗

min ∼ τ . The results closely
match the transitional phenomenon reported earlier by Chen
et al. [17] and Rothert et al. [63].

The shape of the interface at the instant of pinch-off is crit-
ically dependent on the viscosity of drop liquid. For drops of
low viscosity, the interface folds on itself with an internal angle
greater than 90◦ thereby making the interface a multivalued
shape function and this phenomenon is called overturning.
However, the interface overturning is arrested when the
viscosity of the droplet increases beyond a critical value.

The overturning of the drop interface can be explained by
studying the velocity field inside the drop just prior to breakup
as shown in Fig. 6 . As the neck collapses, the fluid is expelled
rapidly into the drop hanging below and the velocity increases
along the centerline. For a low viscous drop such as pure
water, the dissipation of the shear stress arising out of rapid
fluid movement near the centerline is substantially weak. This
results in a velocity gradient across the drop with the fluid
velocity decreasing progressively towards the outer periphery.
The drop interface thus folds onto itself as it approaches the
moment of pinch-off. However, for a highly viscous drop, the
velocity profile resembles that of a plug flow with an almost
negligible velocity gradient across the drop. Accordingly, the
interface maintains its smooth curvature and does not overturn.
These results from our computations corroborate the findings
of Wilkes et al. [64].

A parametric study of the overturning phenomenon is
carried out by varying Oh in order to reveal the critical value
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FIG. 6. Velocity field inside drop of (a) pure water (b) 91%
glycerine. Only selected velocity vectors are plotted to maintain
clarity. It is seen that interface overturning occurs for a pure water
drop whereas it vanishes for highly viscous drops.

of Oh at which overturning vanishes. Day et al. [65] and
Casterjón-Pita et al. [66] showed that the drop interface at
breakup for low Oh adopts a unique double cone shape with
large and small angles of 112.8◦ and 18.1◦, respectively.
They proposed that the breakup remains self-similar with
the interface approaching these unique angles irrespective of
initial flow conditions or type of breakup. However, these
studies were carried out for either inviscid or low-viscosity
drops. In the present investigation, the variation of large
(θl) and small (θs) angles due to increasing viscosity of the
drop liquid is captured and presented in Fig. 7 . It can be
clearly observed that both the angles predicted by the present
computations agree well with the values of Day et al. [65] and
Casterjón-Pita et al. [66] for lower values of Oh. However,
the angles deviate significantly from the predicted [65,66]
values of 112.8◦ and 18.1◦ and show a decreasing trend with
increasing Oh. The value of θl ranges between 111.3◦ and
85.3◦ whereas θs varies between 13.5◦ and 7.6◦ when Oh
is altered from 0.002 to 0.1. The overturning phenomenon
vanishes when θl falls below 90◦ and this occurs at a critical
value of Oh = 0.075. It is to be noted that the values of θl

and θs at the near-inviscid limit of Oh = 0.002 show slight
deviation from the predictions of Day et al. [65]. This deviation
may be attributed to the small yet finite effects of viscosity at
Oh = 0.002.

C. Inertia driven dripping-to-jetting transition

The effect of inflow rate on the drop formation process is
studied in detail. The Weber number signifies the increase of
inertia force relative to surface tension force. At low We, the
drop forms periodically close to the orifice and this regime is
called dripping. With increasing We, the higher inertia force
pushes the pendant drop further downwards producing a long
elongated liquid column and the system finally transits into a
jetting regime. Also, the increased inertia force reduces drop
formation time and subsequently the drop volume.

Figure 8 illustrates the effect of increasing Weber num-
ber on the dynamics of the droplet formation process. At
We = 0.2, the drop formation, which occurs in the dripping
regime, is characterized by a very short liquid column and
almost constant limiting length of breakup (Ld ) as shown in

FIG. 7. Effect of Oh on the overturning angles at pinch-off (a)
large angle (b) small angle. The dashed line represents the limit when
overturning vanishes (θl = 90◦). The other relevant parameters are
Bo = 0.18, We = 0.2, η = 0.001, and λ = 0.02–0.0006.

Figs. 8(a)–8(d). The drop volume and time period between
two successive drop breakup is almost constant suggesting
a periodic formation process. As We is increased to 1.0,
the time period between successive drop breakups becomes
slightly irregular and gets significantly reduced. Although
the limiting length of breakup (Ld ) is almost constant, the
drops formed are of unequal volume and the process can be
characterized as a quasiperiodic dripping process. It can be
noted from Figs. 8(e)–8(h) that due to reduced drop formation
time, multiple drops can be observed within an axial distance
of z∗ = 30 considered as the length of our computational
domain. However, the slow formation process at We = 0.2
ensures that the previously released drop crosses the entire
computational domain before another drop gets detached as
observed in Figs. 8(a)–8(d). On the other hand, the drop
formation at We = 2.0 clearly falls under a jetting regime
where a long column of liquid finally breaks into drops often
in an aperiodic manner. Figures 8(i)–8(l) demonstrates the
breakup of a liquid column and subsequent drop formation
in the jetting regime. It can be clearly perceived that the jet
length at breakup fluctuates with time and drop formation
occurs with unequal time intervals. Axisymmetric wavelike
perturbations are seen developing on the surface of the liquid
jet as it moves downstream. This results in a big drop being
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FIG. 8. Effect of Weber number on the droplet formation process.
(a)–(d) shows the drop formation for We = 0.2 at time t∗ 10.90, 20.83,
30.92, and 41.30, respectively. (e)–(h) shows the drop formation for
We = 1.0 at time t∗ 11.50, 16.89, 22.22, and 27.50, respectively.
(i)–(l) shows the drop formation for We = 1.2 at time t∗ 11.05, 17.15,
21.30, and 28.82, respectively. Other parameters remain fixed at Oh =
0.003, Bo = 0.18, η = 0.001, and λ = 0.02.

disintegrated as shown in Fig. 8(l). The dynamics of jetting are
further discussed in Sec. IV E.

The important parameter of interest is the critical Weber
number at which the system transitions from dripping to jetting
regime. In order to understand the mechanistic reasons for this
transition, we apply some of the scaling laws proposed by Am-
bravaneswaran et al. [11]. It was proposed that the transition

can be explained in terms of the relevant characteristic time
scales of the dynamics. For low Oh drops, the time scale for
capillary breakup scales as tc ∼

√
ρR3/σ whereas the time

scale for flow scales as tf ∼ R/U . The flow time scale can
also be termed as advection time scale. It is expected that
the transition occurs when the advection time scale jumps
the capillary breakup scale. In our present computations,
parameters are fixed as Oh = 0.003 and Bo = 0.18. This gives
a capillary time scale of tc = 4.656 ms, which does not vary
with Weber number. However, the advection time scale varies
with increasing We. For We = 0.2, tf = 10.41 ms, which is
greater than tc whereas for We = 2.0, tf = 3.29 ms, which is
smaller than tc. Thus, the transition of the system from dripping
to jetting occurs as the time scale of flow tf decreases below the
capillary time scale for breakup of a given particular system.
By equating the advection time scale with capillary time scale
for the system of interest in our study, we obtain the critical
Weber number for transition as We ∼ 1.0, which seems to be
in perfect agreement with our computational results reported
herein. This criterion can hence be very useful to understand
and correctly predict the system response at varying conditions
of Weber numbers.

D. Viscosity-driven dripping-to-jetting transition

Another class of dripping-to-jetting transition is driven by
the viscous interaction of the jet with outer ambient fluid. When
the surrounding exterior is filled with a viscous fluid, such as
organic oil, the interface of the liquid column emanating from
the orifice experiences a very high drag force from the ambient
fluid, which tends to pull it downstream whereas the surface
tension force tends to hold the liquid close to the orifice. At
lower values of viscosity ratio λ, the surface tension force is
strong enough to maintain a dripping mode of drop formation.
However, as λ increases beyond a critical value, the viscous
drag starts dominating and finally induces transition to a long
jet. The entire transition from dripping to jetting driven by
viscosity of ambient medium is presented in Fig. 9.

It can be clearly observed from Figs. 9(a) and 9(b) that for
λ = 7.5 and 10.0, the drop formation occurs in dripping mode
with a small liquid neck connecting the drop to the orifice.
The limiting length at breakup L∗

d shown in Fig. 9(d) increases
by ∼19% when λ is varied from 7.5–14.0. However, as λ

increases from 14.0–15.0, L∗
d abruptly increases by almost

∼30% thereby signaling transition to a jetting mode. Udata
et al. [67] studied dripping to jetting transitions in coflowing
conditions using liquid-liquid systems. They demonstrated that
transition to jetting mode can be triggered by increasing the
flow rate of either the inner or outer fluid. The transition was
thus categorized as inertia or viscosity driven similar to our
observations. However, the viscosity-driven transition demon-
strated in our results shows an entirely different behavior from
what is reported in Utada et al. [67]. The liquid jet shows a
progressively slender diameter as it moves downstream and
the size of the resulting drops is comparable to the orifice
diameter. In the present investigation, the shape of the liquid
jets in the jetting regime does not become narrow as they
move downstream. The size of the resulting drops is also
much bigger than the orifice diameter. Interestingly, in both
the cases as stated above, the dominant viscous effects bring
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FIG. 9. Transition from dripping to jetting regime with variation
of viscosity ratio λ. (a) and (b) shows the drop formation in dripping
mode for λ = 7.5 and 10.0, respectively. (c) shows the jetting regime
at λ = 15.0. (d) shows the variation of limiting length at breakup
L∗

d with increasing λ. Other parameters remain fixed at Oh = 0.02,
We = 0.4, Bo = 0.18, and η = 0.74.

about the transition to jetting mode. However, in the case of
present investigation, the effect of motion of the ambient fluid
is negligible and hence the jet shows a profoundly different
behavior from that of Utada et al. [67].

In order to understand the dynamical reasons for the
transition, the competition between inertia and viscous forces
against surface tension force is considered. The inertia force of
the inner liquid scales as FI ∼ ρiv

2
avgR

2 whereas the viscous
drag due to the exterior fluid is given as FV ∼ μovavgR, where
R is the radius of orifice and vavg is the average inflow velocity
of drop liquid. The surface tension force scales as FS ∼ σR.
The transition from dripping to jetting takes place when the
combined effect of inertia force FI and viscous force FV

outweighs the surface tension force FS , i.e., FI + FV � FS .
This can be recast in a nondimensional form as We + Cao �
O(1), where We is the Weber number of inner fluid defined
in Sec. II E and Cao = μovavg/σ is the capillary number of
the exterior fluid. In the present investigation, the We remains
fixed at 0.4. However, Cao increases as the viscosity ratio λ is
increased by changing μo. The value of We + Cao for λ = 7.5
under the conditions of Oh = 0.02, We = 0.4, Bo = 0.18, and
η = 0.74 comes out to be 0.5, which lies in the dripping regime.
However, the value of We + Cao increases to 0.9 when λ is
increased to 20.0, which lies in the jetting regime. Thus, the
increasing dominance of viscous effect of ambient fluid causes

transition from dripping-to-jetting and the results from the
present computations agree well with the proposed theoretical
criterion for viscosity driven transition.

E. Jet breakup

A liquid jet emanating from a nozzle is inherently unstable
and finally breaks up into small droplets to minimize its
surface tension. The stability of a jet is influenced by a host
of parameters such as the properties of the liquid, inflow
rate, and ambient conditions, among others. A series of
transitions occurs between different instability regimes, which
profoundly affect the evolution and breakup of a jet. Four
major breakup regimes of jets have been established [68]
and are named as the Rayleigh regime, the first wind-induced
regime, the second wind-induced regime, and the atomization
regime. The Rayleigh instability regime [24] is initiated by the
growth of small amplitude perturbations on the liquid surface
leading to varicose deformation of the jet. As the inflow rate
is increased, the breakup mode shifts to first wind-induced
regime where the ambient medium starts interacting leading to
asymmetric disturbances in the form of sinuous deformation.
Further increase of inflow condition causes the formation of
ligaments and smaller drops, which break up from the liquid
jet. The diameters of these fragments are comparable with
the jet diameter in the second wind-induced regime. Finally,
transition to atomization occurs where fine drops are formed
due to further breakup of ligaments and drops. These ligaments
have undulated surfaces. The undulations (usually varicose)
grow and breakup of the ligaments is brought about by the
Rayleigh-Plateau instability mechanism entailing creation of
droplets of even smaller sizes.

The present computations are performed for jet breakup in
the Rayleigh mode as the axisymmetric assumption remains
valid in this regime. The limiting length of the jet at breakup
(Ld ) serves as a convenient parameter for studying the
dynamics in the jetting regime. As the inflow rate is increased,
Ld keeps increasing due to higher inertia of the jet. The
criterion for predicting different breakup regimes have been
reviewed by Chigier and Reitz [69]. It was suggested that
breakup under Rayleigh regime occurs when

Wel > 8 and Weg < 0.4, (23)

where Wel = ρlvavg
22R/σ and Weg = ρgvavg

22R/σ are the
liquid and gas Weber numbers, respectively.

The pioneering work of Plateau and Rayleigh [24,70] on
jet instability can be summarized in the form of a dispersion
equation, which captures the dependence of growth rate of
disturbance ω on the wave number k as [71]

ω2 = σ

ρlR3
kR

I1(kR)

I0(kR)
(1 − k2R2). (24)

Here, I0(kR) and I1(kR) are the modified Bessel functions
of the first kind of zeroth and first order, respectively, and
R is the radius of the cylindrical jet. It can be clearly
understood from Eq. (24) that disturbances will amplify when
the growth rate is real and positive thereby requiring kR < 1
and the maximum growth rate ωmax occurs for kR = 0.697.
Substituting all the known parameters in Eq. (24), ωmax comes
out to be 73.016 s−1. Having obtained ωmax, a relationship can
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FIG. 10. Variation of computed jet breakup length along with
predictions from theory [Eq. (25)] as a function of inflow velocity.
The breakup length show very good agreement with the analytical
results of Rayleigh’s theory.

be determined to predict the breakup length as a function of
inflow velocity as [41]

L = vavg t

t = C/ωmax

L = C vavg/ωmax, (25)

where L is the breakup length of the jet, t is the breakup
time and C is a constant defined as C = ln (R/a), a being the
amplitude of perturbation applied to the interface.

In our present study, Bo and Oh are fixed at 0.18 and 0.003
while We is progressively increased by varying the inflow
velocity. The breakup of the jets occurs experimentally as a
result of naturally occurring perturbations. Homma et al. [72]
reported that a source of disturbance is generated during the
early stages of jet formation when the interface evolves from
the initially assumed shape to a liquid column in the numerical
simulations. Thus, the hypothesis of Rayleigh that growth
of infinitesimal disturbances leads to breakup is satisfied
without any externally imposed perturbations. However, the
precise magnitude of this disturbance is not known. As
such, a temporal sinusoidal perturbation of amplitude a and
angular frequency ω was introduced in the inflow velocity. The
angular frequency is obtained from Eq. (24) corresponding to
maximum growth rate and the amplitude a is taken as 0.005R.
The limiting length of jet at breakup Ld computed from our
simulations is plotted along with the theoretical predictions
from Eq. (25) as a function of average inlet velocity vavg

and shown in Fig. 10. The value of constant C is found
to be 5.98 from the present computations. The theoretical
value of C corresponding to an externally applied perturbation
of amplitude a = 0.005R is 5.2, which is close to the
numerically obtained value of 5.98. The constant C has an
inverse relationship with the amplitude of applied disturbance.
As the perturbation amplitude increases, the value of C

decreases and hence the breakup length decreases. García et al.
[73,74] also reported that the breakup length decreases with
increase in the amplitude of the disturbance, which agrees well
with our current observations. It can be obviously discerned

FIG. 11. (a) Instantaneous jet radius as a function of downstream
distance showing varicose undulations on its surface. The radial di-
rection has been magnified for clear visualization of the perturbations.
(b) Closeup view of the jet between z∗ = 31 and z∗ = 36 showing
pressure contours and also streamlines in the ambient air. A vortex
is seen developing just outside the jet indicating air entrainment. The
relevant parameters are We = 3.0, Oh = 0.003, and Bo = 0.18.

that the values of Ld obtained from present computations agree
well with the predictions owing to Rayleigh’s theory given by
Eq. (25) for vavg > 0.53 m/s, which corresponds to We > 4.5.
It is to be noted from Eq. (16) that We for our study is defined
based on the orifice radius whereas in Eq. (23), We has been
defined based on the orifice diameter. Hence, the effective
value of Wel above which good agreement with Rayleigh’s
theory is observed in our computations occurs at Wel > 9.
The result matches closely with the criterion given in Eq. (23).
Due to the very small density of air, Weg remains less than 0.4
for the entire range of our study.

A snapshot is taken from the simulation of jet breakup at
an arbitrary time instant under the conditions of Oh = 0.003,
Bo = 0.18, and We = 3.0 as illustrated in Fig. 11 (a). No
external perturbation is applied in this case. Similar observa-
tions were reported by Pan and Suga [19] during simulation of
jet breakup in the Rayleigh regime without having applied
any external perturbations. The radial coordinate has been
magnified to clearly display the surface oscillations present on
the liquid jet. These varicose-shaped undulations emerge from
upward wave propagation on the jet surface after drops pinch
off from it. It may be noted that Taylor [75] also studied waves
on a fluid sheet where surface tension effects are dominant
compared to gravity and aerodynamic effects. He showed that
these capillary waves are of two types—symmetrical waves
in which displacement of opposite surfaces are in opposite
directions and antisymmetrical waves in which displacements
at corresponding points of opposite surfaces are in same
direction [32]. As the inertia effects become more and more
dominant with increasing We, the interaction with the ambient
medium can no longer be neglected. A jet injected into
quiescent air has a liquid-air interface on the surface of the
column, which can result in perturbations to a quasistable
flow situation owing to aerodynamic drag, friction, and flow
turbulence. Figure 11(b) presents a closeup view of the jet
showing the contours of nondimensional pressure P ∗ and
also the streamlines in the ambient medium. It can be easily
observed that a sharp jump of pressure exists between the
outer medium and the inside of the jet. Also, a gradient of
pressure exists as we move downstream towards the neck
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region, which facilitates drop breakup. Additionally, a closer
look at the streamline plot in the ambient air reveals a vortical
structure on the side of the jet. This growing vortex signifies
that the ambient air is entrained as the jet elongates downstream
and this air entrainment increases with increasing We. The
growing interaction of the ambient air with the liquid jet will
finally cause transition from the Rayleigh regime to first wind-
induced regime where sinuous waves start appearing on the jet
surface thereby deviating from axisymmetric flow behavior.
Hence, we limit our computations to the Rayleigh regime and
the flows with higher throughput fall beyond our scope of
study.

V. SUMMARY

Numerical simulations of formation of drops and breakup
of liquid jets from an orifice are performed using CLSVOF
method under axisymmetric conditions. In the context of
understanding free-surface flows, the study provides physical
insight into the dynamics of drop formation from orifices. The
analysis forms the basis for many intricate technologies, such
as inkjet printing, spraying, and atomization.

The study focuses on the growth history of a drop under
constant inflow conditions and presents a quantitative match
with a theoretically predicted growth law. The profile of
the drop during the initial growth stage is showed to be
self-similar, which serves as an addition to the existing
knowledge on self similarity near the collapse stage, reported
earlier in the literature. The thinning behavior of the liquid
neck shows a transition from an inertia-dominated regime to
an inertia-viscous regime when the liquid neck falls below
a critical minimum radius. It is observed that interface
overturning occurs when drop viscosity is low whereas it is

arrested for highly viscous drops. A detailed parametric study
of the overturning phenomenon reveals a critical value of
Oh = 0.075 above which overturning stops. The numerically
predicted values of large and small cone angles of the interface
matches well with the theoretically predicted values for small
Oh. However, the numerical predictions deviate significantly
from the theoretically predicted values of 112.8◦ and 18.1◦ as
the drop viscosity is increased. The transition from dripping
to jetting regime has been simulated and two distinct jetting
regimes have been observed depending on the dominance
of inertia or viscous forces. The increased injection rate of
drop liquid causes a transition to jetting regime, which can
be explained in terms of the dominance of inertia force over
capillary force. Another class of transition occurs due to the
increased viscosity of the exterior fluid, which increases the
viscous drag on the interior liquid stream entailing transition
to jetting. The radii of the drops formed in this regime are
significantly larger than the jet radius. The jetting profile under
the dominance of viscous effects shows a profoundly different
behavior compared to the results reported earlier and thus
serves as an addition to the existing insight on the transition
from dripping to jetting. The jet length at breakup, computed
from our simulations, corroborates the predictions from
Rayleigh’s theory in the jetting regime. Varicose perturbations
are observed on the surface of the liquid column as the jet
moves downstream. The high inertia of the moving jet causes
entrainment of ambient air resulting in a vortical structure
just outside the liquid jet. The entrainment increases as the
We is increased signifying the influence of the ambience
on the dynamics of breakup at higher inflow rates. The
observations from the present analysis may stimulate further
investigations on such systems through more comprehensive
three-dimensional simulations in the near future.
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