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Electro-osmosis of nematic liquid crystals under weak anchoring and second-order surface effects
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Advent of nematic liquid crystal flows has attracted renewed attention in view of microfluidic transport
phenomena. Among various transport processes, electro-osmosis stands as one of the efficient flow actuation
mechanisms through narrow confinements. In the present study, we explore the electrically actuated flow of an
ordered nematic fluid with ionic inclusions, taking into account the influences from surface-induced elasticity
and electrical double layer (EDL) phenomena. Toward this, we devise the coupled flow governing equations from
fundamental free-energy analysis, considering the contributions from first- and second-order elastic, dielectric,
flexoelectric, charged surface polarization, ionic and entropic energies. The present study focuses on the influence
of surface charge and elasticity effects in the resulting linear electro-osmosis through a slit-type microchannel
whose surfaces are chemically treated to display a homeotropic-type weak anchoring state. An optical periodic
stripe configuration of the nematic director has been observed, especially for higher electric fields, wherein the
Ericksen number for the dynamic study is restricted to the order of unity. Contrary to the isotropic electrolytes,
the EDL potential in this case was found to be dependent on the external field strength. Through a systematic
investigation, we brought out the fact that the wavelength of the oscillating patterns is dictated mainly by the
external field, while the amplitude depends on most of the physical variables ranging from the anchoring strength
and the flexoelectric coefficients to the surface charge density and electrical double layer thickness.
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I. INTRODUCTION

Electrokinetic transport phenomena of complex fluids
through microconfinements have been elaborately studied in
the literature [1–3] due to its various applications in biomedical
engineering [4–6], energy conversion processes [7–10], en-
vironmental sciences, and thermal management of electronic
packages, to name a few. Emergence of electrokinetic transport
of ordered fluids, especially of anisotropic liquid crystalline
medium, has led to numerous studies in recent times that
explore the flow behavior and nonlinear effects under the scope
of microscale dynamics [11]. Nematic Liquid Crystals (NLCs)
are among such ordered fluids that display an orientational
order across the study length scales [12,13]. The molecules
of NLCs have, in general, rod-shaped structures and remain
arranged with a typical specific order. The average molecular
long-axis alignment of such NLC molecules is denoted using
a unit vector n, known as the director [12,13].

When confined within a microchannel, NLCs show in-
triguing elastic and flow response to external stimuli, which
have recently motivated numerous microfluidic studies of such
nematic cells [14–17]. In the context of flow actuation through
narrow conduits, electro-osmosis, defined as the mechanism
of actuating a fluid in contact with a charged surface by the
application of an external electric field [18–21], has emerged as
a promising means of energy efficient flow actuation process.
Such flows are generally characterized by a charged surface
due to certain physicochemical interactions [18,19], among
which few of them involve mechanisms such as selective
charge adsorption, photoelectric surface activation, surface
ionic dissociation at the liquid-substrate interface, etc. Balance
between the electrostatic and the entropic interactions among
the ionic species results in a charge distribution across the
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channel with a dominant counterion (ions of opposite polarity
to that of the substrate) density manifested at the vicinity of
the surface. The layer of immobilized counterions adjacent
to the surface is referred to as the Stern layer or compact
layer, while the region to which the charge density gradient
is present is known as the electrical double layer (EDL).
Upon application of a longitudinal electric field, movement of
surplus ions within the EDL sets in due to electrostatic forces.
Consequent viscous interactions between the moving ions and
solvent molecules exert a body force, thus triggering a linear
electro-osmotic flow [20,22]. Theoretical and experimental
investigations of linear electro-osmotic flows, wherein the flow
velocity depends linearly with the applied field, have been
robustly studied in electrokinetic literature [18–20,22–25].
Following this, nonlinear electro-osmosis (known as induced
charge electro-osmosis or ICEO) around polarizable surfaces,
such as metallic colloids, has been realized where the
electro-osmotic velocity varies quadratically with the applied
electric field [26–28]. Very recently, Lazo and coworkers
[11] experimentally demonstrated a nonlinear electro-osmotic
phenomenon in nematic liquid crystals exploiting the spatial
charge separation owing to the anisotropy in electrical con-
ductivity and consequent director distortion. Subsequently,
a corresponding comprehensive theory was developed by
Tovkach et al. [29]. Although liquid crystal electro-osmosis
(LCEO) serves as a significant facet in microfluidic transport,
sustained flow actuation employing a DC field in the scope
of linear electro-osmosis through a narrow conduit has never
been studied for such complex anisotropic liquids.

A simultaneously prominent factor for NLC dynamics
within a narrow confinement is the dependence of macroscopic
behavior of the NLC director on the interacting solid substrates
that confines it [13,14]. Owing to high surface-to-volume
ratio of nematic cells, the boundary effects propagate far
into the bulk nematic medium and, consequently, pose a
significant influence on the equilibrium director distortion
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and velocity distribution [14,30–32]. In the absence of any
external perturbations, the NLC director gets oriented in a
certain preferential direction at the substrate-fluid interface,
denoted by its easy direction. Upon application of an exter-
nal field, the orientation of liquid crystal molecules at the
interface may deviate from the easy direction, giving rise to a
phenomenon known as “weak anchoring”. Such forms of weak
surface alignment of directors have been realized in various
experimental studies that include soft rubbing of a polymer
film, oblique evaporation of SiO2 [33], photoinduced ordering
[34], and chemical patterning of surfaces [35,36]. Along with
such experiments, parallel theories have also been developed
to account for the surface-induced influence on the resulting
director orientation [37]. Rapini and Papoular [38] proposed
that the weak anchoring condition stems from an additional
preliminary surface energy contribution to the total free energy
of the nematic cell. Coupling the weak anchoring condition
with the first-order elastic theory for NLC director dynamics,
introduced by Frank and Oseen [13], satisfactorily captures the
director field in the bulk. However, it fails to explain the rather
intricate director deformation observed close to the nematic-
substrate interface [39,40]. Following this, a modification to
the surface energy by introducing a surface-like elasticity
due to mixed splay-bend contribution (with elastic constant
K13) [41,42] was attempted. Nevertheless, such modification
to the elastic free energy makes it unbounded from below,
resulting in surface discontinuity in the director orientation
[39,43,44]. This paradox has been resolved afterwards by
including higher-order elasticity terms in the bulk free-energy
contribution [45,46]. The sharp director variation, which is
observed in an extremely thin transition region near the
surface having a characteristic length scale of the order of
molecular interaction, may then be successfully captured
by considering a more accurate second-order elastic theory
pertinent in this narrow sublayer [47–49]. In regards to the
above discussion, one must account for the compounding
influence of second-order elasticity with weak anchoring
effects for microenvironment flows. However, recent studies of
electrokinetic flows through narrow conduit have not properly
addressed the aforementioned concerns.

In the present study, we, therefore, address the sustained
flow actuation mechanism within a NLC parallel-channel cell
employing linear electro-osmosis, taking into account second-
order elasticity prominence adjacent to the bounding surface
with weak anchoring condition. NLCs have been known to
induce EDLs adjacent to the bounding substrate due to surface
charge adsorption in the presence of ionic impurities within
the NLC medium [50–55]. In the presence of such an EDL,
application of an external field results in an electro-osmotic
flow through the narrow conduit. It is noteworthy that, contrary
to the recent works [56,57] on nonlinear electro-osmosis,
where a predefined director orientation was employed neglect-
ing the reorientation due to dielectric and viscous torques,
we considered a two-way coupling between the director
orientation, potential distribution, and velocity distribution. In
our case, an equilibrium distortion behavior of the nematic cell
results from a competition among elastic, viscous, dielectric,
flexoelectric and surface polarization torques. Energies from
the contribution of the ionic species distribution were also
carefully taken into account to model the flow of NLC fluids.

We have further relaxed the point-charge approximation for
the ionic impurities to include the excluded-volume effects of
the finite hydration shell size [58]. For the nematodynamic
estimation, we employ the classical Leslie-Ericksen flow
model [13] governing the director deformation and fluid flow
characteristics for the NLC medium. We have considered
homeotropic easy-direction arrangement of the director at the
boundaries. Interestingly, here we observe the formation of
optical periodic stripes of the director configuration, especially
at higher applied electric fields. Such observations are common
for director arrangements in NLC flows with surface con-
finements [15,30]. The present study is dedicated to bringing
out the development of a comprehensive theory and resulting
implications of linear electro-osmosis of NLCs due to induced
surface effects, which is in contrast to the investigations made
so far. Since linear electro-osmotic flows have wide avenues
of applications as mentioned above, it necessitates a focused
study appealing to the underlying intricate physics involved
in such fundamental electrokinetic transport mechanism for
ordered nematic medium.

II. MATHEMATICAL FORMULATION

For the present study, we consider a NLC with splay and
bend elastic coefficients as K11 and K33, respectively, confined
between two semi-infinite parallel walls having a separation
of 2h as shown in the schematics (Fig. 1). The nematic
liquid is associated with an intrinsic dielectric anisotropy due
to its distinct parallel and perpendicular dielectric constant
represented by ε‖ and ε⊥, respectively, while its flexoelectric
coefficient is given using e1 and e3. The average direction of
the nematic molecules, represented by unit director vector n, is
assumed to vary across the channel width (y axis) with the re-
striction of planar deformation (director deformations remain
in the flow plane). Consequently, the unit director may be
reformulated in the form n = sin θ (y)i + cos θ (y)j, as shown
in the above schematic, while a weak anchoring condition of
the director prevails at both the walls. Weak anchoring refers to
the condition wherein the director orientation at any interface
is evaluated by the balance of relevant surface energies.

We consider the existence of an induced EDL at the liquid-
substrate interface due to certain physicochemical interactions
which impose a nonlinear distribution of the charged entities
dissolved in the liquid medium having a number density
n0 in the reservoir [50,59,60]. Owing to this charge at the
interface, with a surface charge density σw , and the ionic charge
distribution in the liquid domain, a transverse nonuniform
electric field Ey(y) gets spontaneously induced which, besides
affecting the fluid rheology and the anchoring conditions.
These effects, combined together, provide the necessary body
force for the flow actuation of the liquid medium. Upon
the application of an external longitudinal electric field Ex ,
electro-osmotic flow results. Here the axial velocity field is
assumed to be only a function of the transverse direction
V = u(y)i.

An interesting aspect of electronematodynamic flows with
weak anchoring is the intricate interplay among the director
orientation, potential distribution and flow velocity. To inves-
tigate the underlying physics, we have carefully taken into
account the elastic, dielectric, flexoelectric, charged surface
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FIG. 1. Schematic representation of the electro-osmosis of an anisotropic nematic liquid under the action of an external axial electric
field. An electrical double layer gets induced adjacent to each of the nematic-substrate interface. Besides influencing the fluid rheology and
director orientation, this provides the genesis of the flow actuation body force. A weak boundary condition with homeotropic-type easy axis is
considered at both the surfaces. The extrapolation length (Lex), within which the weak anchoring effects are pronounced, is also highlighted in
the above schematic.

polarization, ionic, and entropic energies of the system. We
have further assumed a negligible conductive anisotropy for
the NLC with a consequence that the charge separation due to
the Carr-Helfrich effect [61] remains absent. This assumption
is consistent with numerous previous studies [62–66], which
explicitly considered the ionic presence within the LC phase
but neglected charge separation phenomena. This allows
us to focus the present study within the domain of linear
electro-osmosis. Following the aforementioned notion, we
proceed to evaluate the potential distribution within the EDL
and equilibrium director configuration of the nematic phase
with weak anchoring conditions by considering the total free
energy F that incorporates the elastic energy of the nematic
molecules, the dielectric energy inherent to its anisotropic
nature, the flexoelectric energy attributed to shape-induced
polarization of the molecules, the internal energy, and the
entropic contributions that accounts for the ionic charge
distribution and their excluded volume effects.

The elastic energy associated with the director deformation
in the NLC phase reads [67–70]

Felast =
∫

V

fV dV +
∫

S

(f13 + f24 + fS + fpol) dS, (1)

where the integrals are taken over volume V and surface S of
the nematic sample. The bulk free energy fV due to elastic
distortion of the NLC director is obtained from the first-order
elasticity theory as proposed by Frank and Oseen [12,13]
which takes the form

fV,1st order = 1
2 [K11(∇ · n)2 + K22(n · ∇ × n)2

+K33(n × ∇ × n)2]. (2)

To capture the sharp variation of the director field within
the surface transition layer and frame a well-posed variational
problem [71], we resort to the second-order elastic theory
[69,72]. The general expression of second-order free energy
density is rather complex, involving a set of 35 new elastic

constants. This makes it practically impossible to solve for
the equilibrium director field. However, it was further found
[72] that close to a threshold of small distortion amplitude,
the additional term that remains significant is given by
K∗(∇2n)2 ≈ K∗( d2θ

dy2 )2, where K∗ is the bulk second-order
elastic constant. Thus, in this limiting case the resultant bulk
free-energy density is defined by [39,43,69,72]

fV,2nd order = 1
2 [K11(∇ · n)2 + K22(n · ∇ × n)2

+K33(n × ∇ × n)2] + K∗(∇2n)2. (3)

Though the consideration of a bulk second-order elastic
constant is valid in the surface transition layer, it fails to track
the larger distortion of directors far inside the nematic cell.
Hence, we employ a two-layer model [47], where the flow
domain is divided into a subsurface region spanning up to a
distance δ in the vicinity of each wall and a bulk-layer covering
the rest of the nematic cell. The transition layer thickness δ

is considered to be of few characteristic lengths (
√

2K∗/K11)
[47]. Toward this, we employ the first- and second-order elastic
theories in the bulk and surface layer, respectively. Here, f13

and f24 describe the second-order surface elastic energy terms
given by f13 = K13υ · n(∇ · n) and f24 = − 1

2 (K22 + K24)υ ·
[n(∇ · n) + n × ∇ × n], respectively; υ represents the unit
surface normal, K13 denotes the mixed splay-bend elastic
constant, and K24 denotes the saddle-bend elastic constant.
Further, fS stands for free-energy density of nematic-substrate
interaction given by [38,48]

fS = 1
2WSsin2(θ − θp), (4)

where WS and θp are the anchoring energy constant and the
director orientation along the easy axis, also known as the
pretilt angle, respectively.

Besides, the elastic energy due to director deformation, an
additional energy component in the presence of an electric
field Fel gets associated with the NLC phase having dissolved
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ionic impurities. The cumulative electrical energy incorporates
the energies originating from liquid dielectric anisotropy (Fde),
gradient flexoelectric molecular nature Ffe, and internal energy
Fint due to the presence of free ions as Fel = Fde + Fflex +
Fint. The dielectric energy density may be evaluated from the
classical description Fde = − 1

2

∫
D · EdV , where the electric

displacement vector D is defined in the case of liquid crystals
as ε0[ε⊥E + εa(E · n)n], and the electric field vector is given
by E = Ex i + Ey(y)j. Here, εa = ε‖ − ε⊥ is known as the
dielectric anisotropy, ε0 is the absolute permittivity of free
space, Ex denotes the applied axial field, Ey = − dψ

dy
denotes

the spontaneously induced inhomogeneous transverse field,
and ψ(y) represents the potential distribution within the EDL.
This results in the anisotropic dielectric energy of the form

Fde =
∫

−ε0εa

2
[Ex sin(θ ) + Ey(y) cos(θ )]2

− ε0ε⊥
2

[
E2

x + Ey(y)2
]
dy. (5)

Mechanical deformation of the director field in NLCs
gives rise to a net electric polarization analogous to the
piezoelectric effect in solids. This type of macroscopic polar-
ization induced by a bend or splay distortion, is commonly
known as flexoelectric polarization [73]. The flexoelectric
counterpart of the energy density for the nematic molecules is
determined using Fflex = − ∫

Pfl · EdV , where the induced
polarization for such ordered nematic is given by [37,74]
Pfl = e1(n∇ · n) + e3(n × ∇ × n), where e1 and e3 are the
flexoelectric coefficients. The resultant flexoelectric energy
functional reads

Fflex =
∫ {

[(e1sin2(θ ) + e3cos2(θ ))Ex + (e1 − e3)

× sin(θ ) cos(θ )Ey(y)]
dθ

dy

}
dy. (6)

Besides the flexoelectric effect, an additional nematic-
substrate interaction in the form of surface polarization gets
coupled with the electric field [75–79]. Such influences arise
especially adjacent to an interface where the two ends of
the nematic molecules have distinctive nature, resulting in an
uncompensated dipole moment parallel to the director. This
surface polarization plays an important role while determining
the surface torque, especially in weak anchoring condition
having homeotropic-type easy axis [75]. The associated energy
density of the surface polarization is given by [75]

fpol = −mp(�n · �E) = −mp(Ex sin(θ ) + Eycos(θ )), (7)

where mp stands for the surface dipole density.
The contribution to the internal energy is from the dissolved

ionic species within the nematic sample, which comprises the
ionic electrostatic energy having the form [80]

Fint =
∫

zeφ(x,y)(n+ − n−) dV , (8)

where the associated total potential due to the combined
applied and induced electric field reads φ(x,y) = ψ(y) +
(φ0 − xE1).

It must be appreciated that the dissolved ions usually have
finite-size effects that should be taken into consideration,

which restricts excessive ionic crowding near the wall,
particularly for situations involving high ionic concentration
and strong electrostatic interactions. Relaxing the point-charge
approximation, the entropic contribution considering the finite
ionic shell size is given by the form [81,82]

Fentropic = −T S = kBT

∫
dy[n+ ln(a3

+n+) + n− ln(a3
−n−)

− n+ − n−] + kBT

a3

∫
dy[(1 − a3

+n+ − a3
−n−)

× ln(1 − a3
+n+ − a3

−n−)]. (9)

The above formulation allows the inclusion of excluded
volume effects within the continuum modeling of the ionic
distribution where the number density of positive (negative)
ions is given by n+(n−), while their corresponding ionic
shell size is denoted using a+(a−). Further for the sake of
simplicity, we assume a = a+ = a−. From the individual
energy contributions, the cumulative energy density for the
nematic phase finally reads

F = 1
2ρvivi + Felast + (Fde+Fflex+Fint) + Fentropic. (10)

Following the free-energy form, we now proceed to
minimize it with respect to the electrostatic potential as
δF
δψ

= 0 that results in equation governing the distribution
of potential and the ionic species within the liquid phase at
equilibrium condition. The modified Poisson-type equation,
which couples the ionic and the potential distribution with
director configuration, reads

ε0(εacos2(θ )+ε⊥)
d2ψ

dy2
−ε0εa

(
Ex cos(2θ )+ sin(2θ )

dψ

dy

)
dθ

dy

+ 1

2
(e1 − e3) sin(2θ )

d2θ

dy2
+ (e1 − e3) cos(2θ )

(
dθ

dy

)2

+ ze(n+ − n−) = 0. (11)

The corresponding electrochemical potential for the present
system, which may be obtained as μ± = δF

δn±
[80], is a gradient-

free quantity for equilibrium condition leading to the modified
Boltzmann distribution as [83,84]

n± = n0 exp(∓ezψ/kBT )

1 + ν(cosh(ezψ/kBT ) − 1)
. (12)

In the above form, ν = 2n0a
3 denotes the steric factor

and n0 is the number density of ions in the bulk reservoir.
Substituting the Boltzmann distribution n± into Poisson
equation, the modified Poisson-Boltzmann equation for the
NLC phase is obtained. The cumulative charge within half the
channel is equal and opposite to the charge density induced
at the wall, which provides us with the necessary boundary
condition applicable to either of the walls. Consequently, the
condition at the upper boundary reads

σw(y = 1) = −
∫ h

0
ρedy

=
∫ h

0

2zen∞ sinh(ezψ/kBT )

1 + ν(cosh(ezψ/kBT ) − 1)
dy, (13)
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where ρe = e
∑

i zini = ez(n+ − n−) represents the net
charge density. In a similar manner, the boundary condition
for the lower plate can be derived.

To obtain the governing equation for the angular momentum
balance of the director, we resort to the principle of minimum
energy dissipation as followed by Tovkach et al. [29]. The
governing form valid within each of the two thin-surface
sublayers, i.e., −h � y � −(h − δ) and (h − δ) � y � h,
reads

2K∗ d4θ

dy4
− (K1sin2(θ ) + K3 cos2(θ ))

d2θ

dy2
− (K1 − K3)

× sin(θ ) cos(θ )

(
dθ

dy

)2

− (α3sin2(θ ) − α2cos2(θ ))
du

dy

− ε0εa

{
1

2
sin(2θ )

[
E2

x −
(

dψ

dy

)2]
− Ex

dψ

dy
cos(2θ )

}

+ 1

2
(e1 − e3) sin(2θ )

d2ψ

dy2
= 0, (14)

while the form governing the bulk director dynamics, i.e.,
−(h − δ) � y � (h − δ), is given by

(K1sin2(θ ) + K3 cos2(θ ))
d2θ

dy2
+ (K1 − K3) sin(θ ) cos(θ )

×
(

dθ

dy

)2

+ (α3sin2(θ ) − α2cos2(θ ))
du

dy

+ ε0εa

{
1

2
sin(2θ )

[
E2

x −
(

dψ

dy

)2]
− Ex

dψ

dy
cos(2θ )

}

− 1

2
(e1 − e3) sin(2θ )

d2ψ

dy2
= 0, (15)

where αi(i = 1 to 6) are the Leslie viscosities. Here we have
considered the definitions of the director n and velocity V as
given above.

The boundary conditions, as found by employing the
variation of the total energy [Eq. (10)] at the boundary surface,
yields four nonlinear conditions that reads

K∗θ ′′ − K13 sin(2θ ) = 0 at y = −h, (16)

K∗θ ′′ − K13 sin(2θ ) = 0 at y = h, (17)

K∗θ ′′′ − (K11sin2(θ ) + K33 cos2(θ ) − K13 cos(2θ ))θ ′

− (e1sin2(θ ) + e3cos2(θ ))Ex − 1

2
(e1 − e3) sin(2θ )E2

+ WS

2
sin (2(θ − θp1)) + mp(Ex cos(θ ) − Ey sin(θ )) = 0

at y = −h, (18)

and

K∗θ ′′′ − (K11sin2(θ ) + K33 cos2(θ ) − 2K13 cos(2θ ))θ ′

− (e1sin2(θ ) + e3cos2(θ ))Ex − 1

2
(e1 − e3) sin(2θ )Ey

− WS

2
sin (2(θ − θp2)) + mp(Ex cos(θ ) − Ey sin(θ )) = 0

at y = h. (19)

Here, we have assumed that the surfaces are identical and
the surface polarization moments are equal and opposite in
direction, i.e., mpU = −mpL = mp [75]. The two regions of
solution are coupled by the matching conditions at the interface
given as

θ [at − (h − δ)−] = θ [at − (h − δ)+], (20a)

dθ

dy
[at − (h − δ)−] = dθ

dy
[at − (h − δ)+], (20b)

θ [at(h − δ)−] = θ [at(h − δ)+], (20c)

dθ

dy
[at(h − δ)−] = dθ

dy
[at(h − δ)+]. (20d)

The sequence of equations for the potential distribution and
director orientation must be closed by the balance of linear
momentum governing the fluid flow velocity to determine the
electro-osmotic flow conditions for a nematic LC. Toward this,
we employ the Leslie-Ericksen theory for the flow of a nematic
fluid with a proposed constitutive deviatoric stress relation as
[12,13]

σij = α1ninjAkpnknp + α2njNi + α3niNj + α4Aij

+α5njAiknk + α6niAjknk, (21)

where Ni = Dni/Dt − Wijnj is the corotational vector rep-
resenting the rate of change of director with respect to the
background fluid while Aij and Wij is the symmetric and
anti-symmetric part of the strain tensor ∇V. For the present
study, an electro-osmotic body force density feo gets induced,
where feo = −(c+∇μ+ + c−∇μ−), which actuates the flow
through the narrow conduit. Under the above considerations
and simultaneously employing the incompressibility condition
of the flow (∇ · V = 0), the governing equation for the steady,
electro-osmotically driven flow of a nematic fluid through a
narrow, confined cell reduces to

d

dy

(
η(θ )

du

dy

)
= −ρeEx. (22)

Here the classical no-slip boundary condition is imposed
at both the walls (ū(ȳ = −1) = ū(ȳ = 1) = 0), while ρeEx

gives the electro-osmotic body force density. The position-
dependent apparent nematic viscosity is a function of the
director alignment, which reads η(θ ) = η1sin2θ + η2cos2θ +
η12sin2θcos2θ , where the viscosity parameters η1,η2, and η12

are known as the Miesowicz viscosities, which, in turn, is
related to the Leslie viscosities by the following relations:
η1 = α3+α4+α6

2 , η2 = −α2+α4+α5
2 and η12 = α1 [13]. The present

physical problem is described by a set of coupled differential
equations [Eqs. (11), (14), (15), and (22)] along with nonlinear
interface conditions. These governing relations for the physical
problem are analytically intractable, and hence, we resort to
numerical methods to solve the differential equations. For
this purpose, we have used the commercial finite element
method package of COMSOL Multiphysics to solve the cou-
pled nonlinear governing equations and boundary equations.
Before proceeding to solve the electro-osmotic flow of the
nematic crystals, we proceed to derive a dimensionless set
for the above governing equations and the corresponding
nonlinear boundary conditions, resulting in a more general
representation of the flow characteristics.
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Next, we proceed to adopt a suitable nondimensionalization
scheme, to obtain the dimensionless forms of the governing
equations and boundary conditions, as follows: ȳ = y/h, ψ̄ =
zeψ/kBT , ū = u/uref , Ēx = Ex/Ex,ref , and Ēy = Ey/Ey,ref .
Applying the small deformation limit (θ → 0), we linearize
the governing equations within the surface sublayer and
the corresponding boundary conditions while the governing
equations beyond this region are solved in their usual forms
[47]. Under these considerations, the set of equations gets
reduced to the following forms.

A. Dimensionless modified Poisson-Boltzmann equation

The dimensionless form for Eq. (12) for the thin, near-
surface region and the bulk is given aswithin the surface
transition layer i.e. −h � y � −(h − δ) and (h − δ) � y � h(

1 + εa

ε⊥

)
d2ψ̄

dȳ2
− Ēx

p1

dθ

dȳ
− sinh(ψ̄)

(1 + ν(cosh(ψ̄) − 1))λ̄2
= 0,

(23a)

and in the bulk region i.e. −(h − δ) � y � (h − δ)(
1 + εa

ε⊥
cos2(θ )

)
d2ψ̄

dȳ2
−

(
Ēx cos(2θ )

p1
+ sin(2θ )

dψ̄

dȳ

)
dθ

dȳ

+A4

[
sin(2θ )

d2θ

dȳ2
+ 2 cos(2θ )

(
dθ

dȳ

)2]

− sinh
(
ψ̄

)
[1 + ν

(
cosh

(
ψ̄

) − 1
)
]λ̄2

= 0, (23b)

σ̄w =
∫ 1

0

sinh(ψ̄)

[1 + ν(cosh(ψ̄) − 1)]λ̄2
dȳ. (24)

The matching conditions read

ψ̄[at − (1 − δ̄)−] = ψ̄[at − (1 − δ̄)+],

(25a)(
1 + εa

ε⊥

)
dψ̄

dȳ
[at − (1 − δ̄)−] =

(
1 + εa

ε⊥
cos2(θ )

)
dψ̄

dȳ

× [at − (1 − δ̄)+],

(25b)

ψ̄[at(1 − δ̄)−] = ψ̄[at(1 − δ̄)+], (25c)(
1 + εa

ε⊥

)
dψ̄

dȳ
[at(1 − δ̄)−] =

(
1 + εa

ε⊥
cos2(θ )

)
dψ̄

dȳ

× [at(1 − δ̄)+]. (25d)

Here, Ex,ref scale is considered in the order of Freedericksz
transition field Ec,x , which is defined as the threshold electric

field above which deformations in the nematic director
is observed [13,85], while p1 = kBT

Ex,refhze
and A4 = ze(e1−e3)

2(ε0ε⊥)kBT
.

Also, σ̄w = zehσ
ε0ε⊥kBT

denotes the dimensionless surface charge

density and λ̄ = λ
h

=
√

ε0ε⊥kBT

2z2e2n0h2 ; λ being the dimensional

Debye screening length. It is to be noted that here the
linearization is done only with respect to orientation angle
θ , but the frequently used Debye–Hückel linearization [18],
which is valid for small electrostatic potential range, is not
employed. Thus, in terms of electrostatic potential ψ , the
results of the present study will be comprehensive and general.

B. Dimensionless form of angular momentum balance equation

The corresponding dimensionless form for the linearized
Eq. (14) and the bulk Eq. (15) governing the angular momen-
tum of the NLC phase readswithin the surface transition layer
i.e. −1 � ȳ � −(1 − δ̄) and (1 − δ̄) � ȳ � 1

b2 d4θ

d ȳ4
− κ

d2θ

d ȳ2
+ mᾱ2

dū

dȳ
− q

[(
Ē2

x − p2 · Ē2
y

)
2θ

+ 2 · p · Ēx · Ēy

] − 2w · θ
dĒy(ȳ)

d ȳ
= 0, (26a)

and in the bulk region i.e. −(1 − δ̄) � y � (1 − δ̄)

(sin2(θ ) + κ cos2(θ ))
d2θ

d ȳ2
+ (1 − κ) sin(θ ) cos(θ )

(
dθ

d ȳ

)2

+m(ᾱ3sin2(θ )−ᾱ2cos2(θ ))
dū

dȳ
+q

[(
Ē2

x−p2 · Ē2
y

)
sin(2θ )

+ 2 · p · Ēx · Ēy cos(2θ )
] + w · sin(2θ )

dĒy(ȳ)

d ȳ
= 0.

(26b)

The various dimensionless parameters introduced in the
above equation are defined as κ = K33/K11, ᾱ3 = α3/ηref ,

Ey,ref = Ey

σw/ε0 ε̄
, ᾱ2 = α2/ηref , q = ε0εaE

2
x,refh

2

2K11
, m = urefh ηref

K11
,

p = (kBT /ze)
hEx,ref

( ε⊥
ε̄

)σ̄w, and w = kBT (e1−e3)
2zeK11

( ε⊥
ε̄

)σ̄w, with ε̄ being
the average dielectric constant defined as ε̄ = (ε‖ + 2ε⊥)/3.
Here, b is a dimensionless characteristic interaction length,

defined as b = 1
h

√
2K∗
K11

. The reference viscosity has been

chosen as ηref = α4/2, which is the Newtonian counterpart
of the NLC viscosity, as can be deduced from the deviatoric
stress equation [Eq. (21)]. The velocity reference uref will be
derived from the dimensional analysis of the linear momentum
balance equation.

The corresponding boundary conditions Eqs. (16)–(19)take
the form

b2θ ′′ − (K13/K11)θ = 0, atȳ = −1,

b2θ ′′ − (K13/K11)θ = 0, atȳ = 1,

b2θ ′′′ − (K33−K13)
K11

θ ′ − Ex,refh(e3−mp)
K11

− 2 w Ēyθ + 2γ̄ (θ − θp1) = 0, atȳ = −1,

b2θ ′′′ − (K33−K13)
K11

θ ′ − Ex,refh(e3−mp)
K11

− 2w · Ēyθ − 2γ̄ (θ − θp2) = 0, atȳ = 1.

(27)
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TABLE I. Details the symbols, magnitudes, and units of the 5CB nematic properties used for the present study.

Property Property Value Unit Property Property Value Unit

Splay elastic constant K11 = 6.2 pN Leslie viscosity coefficients [13] α1 = −0.0060 Pa-s
Bend elastic constant K33 = 8.2 pN α2 = −0.0812
Dielectric ε‖ = 18.5 — α3 = −0.0036
permittivity (relative) and ε⊥ = 7 α4 = 0.0652
Flexoelectric e1 = −25 pC/m α5 = 0.0640
coefficients [86] and e3 = −8.5 α6 = −0.0208

C. Dimensionless form of linear momentum balance equation

Corresponding to the linear momentum balance Eq. (22) for
the NLC fluid, we obtain its dimensionless form employing the
aforementioned dimensional parameters that reads

d

dȳ

(
η̄(θ )

dū

dȳ

)
= sinh(ψ̄)Ēx, (28)

where the dimensionless viscosity function for the two regions
are given as within the surface transition layer i.e. −1 � ȳ �
−(1 − δ̄) and (1 − δ̄) � ȳ � 1 :

η̄(θ ) = η(θ )

ηref
= (η2/ηref), (29a)

and in the bulk region i.e. −(1 − δ̄) � y � (1 − δ̄) :

η̄(θ ) = η(θ )

ηref
= sin2θ+(η2/ηref)cos2θ+(η12/ηref)sin2θcos2θ.

(29b)

Along with the no-slip boundary conditions
[ū(ȳ = −1) = ū(ȳ = 1) = 0], the following matching
conditions are used while solving Eq. (28):

ū[at − (1 − δ̄)−] = ū[at − (1 − δ̄)+], (30a)

η̄2
dū

dȳ
[at − (1 − δ̄)−] = η̄(θ )

dū

dȳ
[at − (1 − δ̄)+], (30b)

ū[at(1 − δ̄)−] = ū[at(1 − δ̄)+], (30c)

η̄2
dū

dȳ
[at(1 − δ̄)−] = η̄(θ )

dū

dȳ
[at(1 − δ̄)+]. (30d)

A closer look at Eq. (29a) reveals that only one Miesowicz
viscosity (η2) survives at the subsurface region. Now the
physical interpretation of the second principal Miesowicz
viscosity is described as a measurable viscosity coefficient
associated with the condition when director (n) is parallel to
the velocity gradient (∇V) [13]. Since we have assumed small
deformation, the director alignment in this region is almost
homeotropic, i.e., along the y direction. Thus, in this limiting
condition, n ‖ ∇V is satisfied, and hence, the appearance of η2

alone is justified. The velocity scale uref = 2zen0Ex,refh
2

ηref
is used

while reaching at the dimensionless Eq. (28).
Owing to the linearized form of the governing equations

very close to the boundary, we restrict our solutions to the case
where the tilt angle of the director at the boundary θS remains
close to the pretilt angle θp. It must be noted that the highly
nonlinear set of governing equations couples the flow velocity
and the director configuration with the potential distribution, a

fact that is explicitly absent in the case of electro-osmotic
flows of Newtonian fluids. In what follows, we consider
a homeotropic alignment with pretilt angle equal to zero
and obtain the director configuration, potential distribution,
and velocity profile for the NLC electro-osmotic flow. An
intriguing aspect we further put forward in this study is the
director tilt at the boundary, which depends nonlinearly on the
surface contributions and second-order elastic energies.

III. RESULTS AND DISCUSSIONS

In this section, we demonstrate the variation of the elastic
and electrostatic surface energies on the director orientation
and flow characteristics for an electro-osmotic flow within
the NLC cell. For a representative case, we have selected
the nematic 5CB (4-Cyano-4’-pentylbiphenyl) for our cal-
culation whose properties are detailed in Table I. In this
context, Kočevar and Muševič [54] reported instances of
spontaneous charging of glass surfaces while immersed in
cyanobiphenil liquid crystals (5CB and 8CB). To ensure
homeotropic alignment along the surface, they utilized a
deposition of a monolayer of N, N-dimethyl-N octadecyl-3
aminopropyltrimethoxysilyl chloride (DMOAP). Shah and
Abbot [52] also observed formation of EDLs along the
interface between a liquid crystal 5CB and a model surface
prepared by the self-assembly of sodium carboxylate salts on
semitransparent films of gold. They came to a conclusion that
partial dissociation of sodium ions from such salts promotes
the formation of EDL in the LC medium. In a simultaneous
investigation, Espinoza et al. [55] reported the orientational
behavior of 5CB on differently charged surfaces and predicted
the formation of EDL on the interface. In line with the above
experimental observations, we have considered that a selective
adsorption of negative charges is taking place at the limiting
surfaces. The controllable dimensionless parameters in the
present study are chosen carefully keeping in view of the
corresponding practical range of the dimensional parameters
involved. The induced surface charge density is varied between
10−4 and 10−2 Cm−2 while a bulk concentration of ionic
impurities is considered in order of 10−3 mM [54,59,86].
These result in a dimensionless Debye screening length
range of 10−2 − 10−1 and the dimensionless surface charge
density in the range of σ̄w ∼ 101 − 103 if the channel half
thickness is varied as h ∼ 1 − 10 μm. The characteristic
length

√
2K∗/K11 varies in the order of molecular interaction

(typically 20 Å) [39,47,87] giving rise to a dimensionless

characteristic interaction length (b = 1
h

√
2K∗
K11

) in the range

of 10−3 − 10−2. The surface anchoring energy parameter
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γ̄ = WSh

2K11
and the easy axis direction θp not only depends on

the substrate with which it is covered but also on the surface
alignment technique. In the present study, we consider the
easy direction perpendicular to the substrate (θp = 0), i.e., the
homeotropic alignment. In practical applications, this situation
is often realized with surface alignment techniques like stack-
ing of amphiphilic molecules, oblique evaporation of SiO [88],
deposition of monolayer lipid membrane on SiO2 substrates
[34], or topographical patterning of polymer films [89].
Moreover, owing to the positive dielectric anisotropy of such
LCs, spontaneous homeotropic orientation can be achieved by
virtue of a direct coupling between the surface electric field di-
rected normal to the charged surfaces and director [52,54,55].
Following several experimental observations, it is found that
WS remains in the range of 10−6 to 5 × 10−5 J /m2 [30,33,90].
Thereafter, using aforementioned values of h and K11, the
range of dimensionless anchoring energy parameter γ̄ = WSh

2K11

can be obtained as γ̄ ∼ 0.01 − 5. The mixed splay-bend
elastic constant relates to the splay elastic constant as K13 =
−0.2K11, which is experimentally observed by Lavrentovich
and Pergamenshchik [30]. In the absence of exact experimental
data on the relation between surface transition layer thickness
δ and the characteristic length b, the dimensionless thickness
δ̄ will be considered to be twice the characteristic length b.
Since we will consider the parametric variation of b in the
following results, the variation of δ̄ will also get inherently
incorporated. Consequently, despite the transition layer being
kept fixed for numerical calculations, parametric variation of b

makes our results comprehensive in this aspect. The calculated
extrapolation length (Lex = K11/WS) for the present choice
of parameters lie within the range of 0.12 − 6 μm, while
the Debye screening length is in between ≈0.01 and 1 μm.
As a consequence, screening of flexoelectric charges by the
free ions dissolved in the material is not possible. Thus,
incorporation of flexoelectric effect was appropriate for the
present study. Experimental observations by Nazarenko et al.
[77] confirm the prominent existence of ferroelectric layer
of molecules in the case of a nematic cell filled with 5CB
with essentially homeotropic surface anchoring condition.
By using both organic and inorganic alignment layers, they
have found that the surface polarization can be as high as
|mp| ∼ 10−10 − 10−11 C/m. In this section, we sort for the
influence of the surface effects from b,γ̄ ,mp,Ēx,λ̄,andσ̄w on
the resulting charge distribution, director orientation, and the
nature of the electro-osmotic flow velocity. Unless otherwise
mentioned, the base values of these parameters are chosen as
b̄ = 0.01, γ̄ = 1, Ēx = 2, λ̄ = 0.1, and σ̄w = −2000.

Flows of NLC fluids may be characterized by topological
defects, which result in singularity of director definition
[12,13]. The existence of topological defects in NLC flows
greatly depends on the channel dimensions and flow rates
[91]. A dimensionless quantity, namely the Ericksen number
(Er = ηcucLc

Kc
), is often defined in this context. For the present

case, the characteristic viscosity (ηc) and the characteris-
tic elastic constant (Kc) can be taken as ηc = (η1 + η2)/2
and Kc = (K11 + K22 + K33)/3, respectively [92], while the
characteristic velocity is the average flow velocity (uav) and
characteristic length (Lc) is the channel half height (h). Both
experimental [14,91] as well as theoretical studies [93–95]

exist in literature, which shows that the topological defects
become significant when the Er is very high. On the other
hand, we find that the actual maximum value of Er for the
present problem falls within the order of ∼10; although in
most of the cases it remains well below or around unity. Thus,
for the present set of parameters considered, we can safely
consider the flow to be “elastically” laminar with the absence
of topological defects and the present formulation, following
the LE formalism, remains valid.

One central aspect of the present study is to observe the
director distortion behavior, potential profile, and velocity
distribution in the presence of the flexoelectric effect. A
great amount of mismatch between the proposed values of
the flexoelectric coefficients of 5CB has been observed in
numerous theoretical (e.g., statistical-mechanical approach
[96]) as well as experimental measurements (e.g., pyroelectric
technique [97]). Hence, we have chosen a fixed value of
flexoelectric coefficients according to Zakharov and Dong [96]
and refrained ourselves from varying the values as a part of
the parametric studies. Instead, we streamline our study to
see the additional influence due to accounting of flexoelectric
polarization compared to the case when it is absent.

Figure 2 depicts the variation of the surface director ori-
entation and the director alignment profile across the channel
with different controlling parameters. Before exploring the
effects of the individual parameters, we note few general
important characteristics of the director distribution. We
observe a periodic pattern of the director alignment, the
amplitude of which varies with different flow conditions. It
is further seen that the director distortion at the surface is
small and remains close to the homeotropic alignment, a
result consistent with the assumption for inclusion of the
second-order elasticity. The aspect of antisymmetry with
the director alignment [39] has also been captured. With
these general considerations, we proceed to reflect on the
influence of individual parameters on the director distortion. In
Fig. 2(a) we show the effect of second-order elasticity effect by
imposing a high value of the dimensionless Rapini-Papoular
anchoring energy constant (γ̄ ). It is intuitive to think that under
such strong anchoring the boundary-wise director alignment
will follow the exact homeotropic case. Contrary to that,
the surface elasticity reduces the effective surface anchoring
energy strength [46,47] and causes the boundary alignment to
differ from the ideal homeotropic one. This can be compre-
hended by observing Eqs. (16) and (17), where simply putting
K∗ = 0 will reduce the usual strong boundary conditions,
while the mixed splay-bend elastic constant K13 becomes
redundant. However, accounting for nonvanishing K∗ modifies
the anchoring energy since K13 effectively destabilizes the
pre-imposed homogeneous planar orientation. Figure 2(b)
depicts the second-order elasticity effect in the presence of
sufficiently weak dimensionless Rapini-Papoular anchoring
constant (γ̄ = 1). Comparing Figs. 2(a) and 2(b), it is evident
that the second-order elasticity effect increases significantly
when the dimensionless Rapini-Papoular anchoring energy
constant (γ̄ ) is reduced. Hence, it confirms the coupling
between the effects induced by the parameters b and γ̄ . In
both the figures, we compared the distortion behavior of the
second-order elasticity theory, which is adopted here, and
the conventional Oseen-Frank elasticity theory of first order.
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FIG. 2. The variation of the director alignment profile θ as a function of the channel transverse direction ȳ for different values of
(a) dimensionless second-order elastic constant with strong anchoring, (b) second-order elastic constant with weak anchoring (γ̄ = 1),
(c) dimensionless surface anchoring strength, (d) dimensionless surface charge density, (e) dimensionless axial applied field Ēx and (f) surface
polarization (f or γ̄ = 10).

From Fig. 2(b), it is observed that with increased second-order
elastic coefficient, there occurs a sharper surface distortion
of the director. Consideration of Oseen–Frank first-order
elasticity theory with only the Rapini-Papoular anchoring

energy in the boundary conditions does not capture the
sharp distortion behavior close to the boundaries, while the
present considerations shows increase in sharp variations with
increase in second-order elastic constant parameter b. These
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characteristic director orientations confined near the surface
depletion region lead to a varied director configuration across
the channel, which implicitly reflects the impact of the surface
phenomena into the bulk. Figure 2(c) depicts the effect of
the surface anchoring strength on the director alignment. It
is clearly evident that as the anchoring energy constant γ̄

is enhanced, the boundary asymptotically exhibits a strong
anchoring behavior, thereby imposing the easy axis alignment
on the director at the boundaries, which in our case is the
homeotropic alignment (θ → 0). It is also counterintuitive to
observe that the anchoring constant γ̄ , though it appears in the
mathematical equations only through the boundary conditions,
shows an evident effect on the bulk director distortion
behavior. This can be again substantiated by the comparable
channel thickness (∼1 to 10 μm) and the extrapolation length
(Lex = K11/WS ∼ 0.12 − 6 μm) for the present study. In
the inset of the same figure, we depicted the influence of
flexoelectricity on the nematic director distortion subjected to
different γ̄ . Taking into account the flexoelectric contribution
in surface free energy causes a reduction in effective anchoring
energy [98], and hence, we observe larger distortions along
the boundaries. The flexo-induced deformations are generally
observed to increase with decreasing anchoring energy con-
stant. Similar trends have been noticed in Fig. 2(c) where the
flexo-induced deformations are seen to be more pronounced
at low values of γ̄ .

Figure 2(d) depicts the director configuration across the
channel for different values of induced surface charge density.
The induced charge has an intrinsic effect on the director
deformation at the surface, due to a coupled effect of the
transverse electric field-induced aligning and flow-induced
aligning. With an increase in surface charge, the transverse
field tends to orient the director in homeotropic alignment
while the increased flow [as seen in Fig. 4(b)] tends to
shift such orientation, resulting in the configuration as seen
above. Figure 2(e) describes the director configuration for
different values of the applied axial electric field Ēx . It is
seen that as the applied field is increased, the director tries to
orient itself along the field near the boundaries, thus deviating
further from the perfect homeotropic limit. Also, with higher
applied field, the frequency of the periodic configuration of
the director increases. Such a periodic configuration has been
experimentally observed in nonlinear Electro-osmosis flow
of NLCs [15]. In the inset of Fig. 2(e), it is shown that the
application of an applied axial field (Ēx) will only influence the
equilibrium director configuration if (Ēx) crosses a threshold
value (Ēx � Ēx,c). Till this threshold value of the electric
field is reached (e.g., Ēx,c ∼ 0.7 for the presented case), the
directors assume a configuration corresponding to the nonflow
condition. This phenomenon has a resemblance to the so-called
Freedericksz Transition, widely introduced in LC literatures
[13]. Such a transition from aperiodic to periodic director
distribution has been observed in different physical situations
where an external magnetic or electric field is applied in
nematic cells [99–103]. In Fig. 2(f), we elaborate the effect
of surface polarization on the director configuration. We have
carefully chosen values of the surface dipole density mp to
remain consistent with the assumption of small subsurface
deformation angle. The figure shows that the distortion along
the boundaries is significantly affected by the increasing value

of |mp|. While the increasing positive values of |mp| try to
deviate the surface tilt away from the easy axis, its negative
values stabilize the distortions more toward the easy axis,
which is homeotropic under the present consideration. This
behavior is consistent with previous studies [75,76] where
the influence of surface polarization effectively alters the
apparent flexoelectric effect. The same can be mathematically
visualized by having a closer look at the boundary conditions
[Eq. (27)] containing the term (e3 − mp).

It is worthy to mention here that the oscillating patterns
observed are not occurring solely due to the second-order
elasticity or weak anchoring boundary condition. Rather, the
physical conditions of the problem give rise to such patterns
even in the cases of first-order elasticity and strong anchoring
strength [please refer to Figs. 2(a) and 2(b)]. A critical
observation of the above figures pertaining to the periodic
nature of the distortion behavior reveals that the wavelength of
a distortion depends strongly on the applied electric field while
the other physical mechanisms, such as boundary charging,
nonuniform induced electrostatic field, second-order elasticity,
anchoring strength, flexoelectricity, and surface polarization
have hardly any effect on the same. Contrary to that, the
amplitude of such oscillations are dominated by different
physical parameters, including the applied electric field. The
physical origin of such oscillating patterns can be described
as follows. Under application of an electric field beyond a
critical value the equilibrium gets destabilized. Due to the
inherent tendency of the liquid crystal molecules they try to
reorient themselves so as to achieve lowest free energy. The
physical conditions of the present problem suggest that the
director distortion behavior depends on the anisotropic viscous
and elastic properties of the nematic medium. The competitive
nature of viscous drag, elastic, and electric forces dictates
the optimal wavelength of such periodic distortion [99]. The
oscillatory profile of the director at certain values of external
electric field as well as the dependence of such oscillation
amplitudes and frequencies have been widely observed in a
variety of experimental conditions pertaining to nematic liquid
crystals [104–106].

Figure 3 illustrates the dimensionless equilibrium electro-
static potential distribution due to the induced EDL across the
channel section. Due to the assumption of induced negative
charge at the substrate surfaces, a potential distribution with
negative sign is observed. The resultant induced field not only
affects the flow but also influences the director configuration,
which, in turn, affects the flow rheology. In Fig. 3(a), we note
the variation of the potential distribution for different values
of the induced surface charge density. Higher surface charge
implies a higher potential magnitude, and thereby, a stronger
transverse electric field. A stronger electric field implies that
the field attempts to orient the director along its direction,
besides inducing a higher body force for the flow actuation. A
coupled effect results in the director configuration as observed
in Fig. 2(c). The surface potential, however, does not linearly
increase with the surface charge as seen in the inset. This leads
to a nonlinear variation of the flow velocity with increase
in σ̄w.

Figure 3(b) relates the potential distribution for different
values of the dimensionless Debye length λ̄. The factor λ̄

signifies the apparent penetration of Debye length into the
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ȳ

ψ̄
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FIG. 3. Variation of the potential distribution ψ̄ as a function of the channel transverse direction ȳ for different values of dimensionless
(a) surface charge density, (b) Debye length, and (c) axial applied field Ēx .

channel centerline. Consequently, the electrical double layer
and the induced transverse field dominate across a larger span
of the channel, the result of which is manifested in a larger

flow velocity as will be seen later. Figure 3(c) illustrates the
potential distribution variation across the channel due to the
applied electric field. It must be noted here that for steady
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ū ū
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FIG. 4. Variation of the velocity field profile ū as a function of the channel transverse direction ȳ for different values of dimensionless (a)
axial applied field Ēx and (b) surface charge density σ̄w .
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FIG. 5. Variation of the average velocity as a function of the axial field Ēx for different values of the (a) dimensionless surface charge
density and (b) dimensionless Debye screening length λ̄.

unidirectional electro-osmotic flows of aqueous electrolyte
through slit geometries, the potential distribution remains
unaffected by the applied axial field. However, for NLC
medium, the field has a direct effect on the director distribution,
which intrinsically modifies the potential distribution across
the channel. This coupling of field-dominated director config-
uration and charge distribution is clearly manifested especially
for higher electric fields, as evident from Fig. 3(c).

Figure 4 illustrates the velocity profile characteristics of
electro-osmotic flow in NLC fluids for different values of
(a) axial field Ēx and (b) surface charge density σ̄w. In both
cases, the velocity profile, in similarity with electro-osmotic
flows for Newtonian fluids, follows a region of high velocity
gradient near the wall and an apparent plug region at the bulk.
With an increase in either the axial field or the surface charge
density, the flow velocity gets augmented. This is directly
accredited to the enhanced electro-osmotic body force due
to a rise in either the actuating field or the induced surface
charge. The velocity profile for an electro-osmotic flow of
liquid crystals experiences drastic variations, depending on
various factors related to surface anchoring, genesis of EDL,
and the mode of electro-osmotic flow.

In the reported literature, it has been experimentally
observed that application of an external electrical field in the
nematic phase results in spatial charge separation owing to
nonuniform director configuration [11,15]. The interaction of
these induced free charges in the bulk with the applied field, in
turn, drives a flow where the velocity profile depicts regions of
opposite flow patterns [57]. Such flow actuation mechanism
belongs to the category of nonlinear electro-osmotic flow.
However, in sharp contrast to the above situation, we consider
the generation of EDL at the fluid-substrate interface is
independent of the applied field. Further, with the consid-
eration of weak anchoring condition at the boundaries, the
sharp changes in the director configuration remain suppressed,
which translates into a velocity profile similar to that of
electro-osmosis in Newtonian medium. It must nevertheless
be appreciated that with higher applied field, the amplitude of

the periodic pattern of the director alignment, which is also
observed in nonlinear electro-osmotic flows, gets enhanced
and induces slight characteristic undulations in the resulting
velocity profile. Such undulation pattern in the velocity field
gets further augmented with stronger anchoring strength or
strong anchoring condition.

Figure 5 depicts the average flow velocity 〈ū〉 for the
electro-osmosis of NLC for different values of σ̄w and λ̄.
A direct conclusion from the average flow velocity variation
clearly suggests the flow characteristics belong to linear
electro-osmosis system, wherein the velocity varies linearly
with the electric field, until a critical value of the external
field is reached. However, beyond a particular strength of
the applied field, a nonlinear behavior is observed. This
may be directly attributed to the director deformation due
to the applied field. Stronger director deformation leads to
anisotropic permittivity-governed charge separation, which
is only a function of the applied field [29]. This leads
to the variation of the velocity profile from the classical
plug-like flow. It is, thus, interesting to observe the effect
of parameters such as dimensionless surface charge density
(σ̄w) and the dimensionless Debye screening length (λ̄) on the
linear to nonlinear transition of the average velocity profiles
with external electric field. Owing to the positive dielectric
anisotropy of 5CB molecules, increase in σ̄w will try to hold.

Figure 5(a) illustrates that the average velocity gradually
increases with an increase in the surface charge density. This
is attributed to the corresponding increase of the transverse
field with higher surface charge that enhances the effective
flow body force, and thereby, the flow average velocity. It is
further seen that at higher surface charge density, the linear
electro-osmotic regime extends till a higher field compared
to lower surface charge densities. At higher surface charge,
larger potential due to EDL is generated compared to the
charge-separation potential generated due to the applied field
attributed to the anisotropic permittivity, and hence, the flow is
primarily governed by electrokinetic effects depicting a linear
regime. However, at larger fields or lower surface charge
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densities, the charge separation potential is comparable to
EDL potential and the nonlinear effects creep in. Figure 5(b)
also shows that the dimensionless average velocity magnitude
increases with increase in λ̄. However, it must be noted that
the reference velocity also increases with λ̄, according to the
method of nondimensionalization framework followed. As a
result, the corresponding dimensional velocity is less as EDL
thickens (λ̄ increases). This may directly be explained from
the fact that thinner EDL provides stronger electro-osmotic
force, and hence, larger average velocity is encountered. We
also observe that for thin EDLs (lower values of λ̄), the linear
regime is encountered even at higher applied fields. This
contribution comes from the fact that at thin EDL limit, the
linear electro-osmotic body force is much stronger compared
to the forces generated due to permittivity anisotropic-driven
charge separation. Hence, the linear electro-osmosis effect
remains predominant in comparison to the cases of thicker
EDLs.

Hence, as one increases the applied field, the nonlinear
response of the average velocity to the applied field becomes
prominent. However, we must strongly note that our nemato-
dynamic formalism developed here is valid for lower applied
field strengths where the director deformations are small.
The assumption of small director deformation is employed to
linearize the second-order elastic equations near the boundary.
At large applied fields, the director deformation becomes
large, which renders this assumption invalid, and thereby,
our formulation will not hold physical meaning. Further, as
mentioned earlier, very high values of external electric field
and/or other controllable dimensionless parameters may result
in increasingly higher flow velocities and the corresponding
Ericksen number will increase accordingly, making the flow
more prone towards the development of topological defects.
Thus, we have restricted our study to the analysis of NLC
electro-osmosis within the domain of linear dynamics.

IV. CONCLUSIONS

Here, we have studied electro-osmotically actuated flows
of complex NLC fluids through microconfinement with
surface-dominated characteristics. Governing formulation of
the problem is devised based on fundamental free-energy
considerations, taking into account the intricate anisotropic
dielectric and viscous features of the NLC medium. The
nematic-substrate interaction has been characterized by weak
anchoring, surface elasticity coupled with second-order elastic
constant. Due to proper characterization of such surface
influences, second-order elastic theory and weak anchor-

ing energies have been considered to model the director
configuration with the assumption of small deformations
near the surface. The flexoelectric polarization and surface
polarization are taken into account to accurately model such
interaction. In contrast to the induced charge electro-osmosis
recently studied in nematics liquid crystal [57], triggered
due to imposed director patterning, here we have focused
on the classical electrokinetics based on the selective ion
adsorption at the surface. The EDL is modeled with a
modified Poisson-Boltzmann equation considering excluded
volume effects, while the equations are closed with the LE
theory governing the electro-osmotic flow velocity profile. The
important observations from the present study are:

1. Application of electric field beyond a critical value in-
duces periodic oscillations in the director field. The amplitude
of such periodic behavior depends on most of the physical
variables, while the wavelength is dictated by the external
field only.

2. The oscillating nature of the flow velocity and elec-
trostatic potential was captured. The coupling of director
orientation with the nonuniform electrostatic potential and
flow velocity becomes prominent, especially through the
prominent oscillating behavior of the same. This observation is
quite specific to the NLC medium considered, contrary to the
steady electro-osmotic flows of aqueous electrolytes, where
the potential distribution gets unaffected by the applied axial
field.

3. The parameters characterizing the nematic-substrate
interaction show their dominance by modifying the effective
surface anchoring strength. Due to comparable dimension of
narrow confinement under consideration and the extrapolation
length of anchoring strength, the surface effects penetrate far
into the bulk distortion behavior.

4. The flexoelectric polarization shows its effect both in
surface and volume torque balances, and thus, play a prominent
role in modifying the effective anchoring strength as well as the
fluctuating nature of the director distortion. The flexoeffects
are found to be more prominent at sufficiently weak Rapini-
Papoular anchoring energy strength.

Importantly, we observe that the average velocity increases
linearly with the electric field, indicating the flow to be
in purview of linear electro-osmosis. Here we must note
that the LE formulation used above satisfactorily captures
experimental observations investigated previously. The current
analysis, thus, stands as a precursor to further experimental
studies in regard to linear electro-osmosis, which gives an
opportunity to devise intriguing flow control by modulation of
surface patterning, applied field, and intrinsic characteristics
of NLC medium.
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