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Magnetic-field-driven alteration in capillary filling dynamics in a narrow fluidic channel
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We investigated pressure-driven transport of an immiscible binary system, constituted by two electrically
conducting liquids, in a narrow fluidic channel under the influence of an externally applied magnetic field. The
surface wettability was taken into account in the analysis considering that the walls of the channel are chemically
treated to obtain various predefined contact angles as required for the study. Alterations in the capillary filling
and wetting dynamics in the channel stemming from a complex interplay among different forces acting over
the interface were investigated. It was shown that an alteration in the strength of the magnetic field leads to an
alteration in the dynamics of the interface, which in turn, alters the filling and wetting dynamics nontrivially upon
interaction with the surface tension force due to the wetted walls of the channel. It is emphasized that a contrast
in properties of constituents of the binary system gives rise to an alteration in the forces being applied across the
interface, leading to an intricate control over the filling and wetting dynamics for a given flow configuration and
an applied field strength. We believe that the results obtained from this analysis may aid the design of microfluidic
devices used for multiphase transport.
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I. INTRODUCTION

The displacement of one fluid by another is ubiquitous in
different natural processes such as rainfall on window panes,
movement of water droplets over lotus leaves, and tear films
on the cornea, to name a few. The movement of immiscible
binary fluids also finds many applications in technologically
relevant areas. A few important applications include movement
of biofluids in lab-on-a-chip devices, on-chip bioanalysis,
and filling in physiological systems during artificial grafting
[1–4]. In view of the numerous applications of immiscible
binary fluids in miniaturized systems and devices along with
a need for the systematic investigation of different aspects
of the underlying interfacial flow characteristics, researchers
have recently concentrated on the microscale transport of
immiscible binary systems [5–9]. The control over filling of
an immiscible system in narrow fluidic pathways, relevant
in many areas from biomedical and biochemical processes
to cooling in microelectromechanical systems (MEMS), is
one of the challenging tasks in the domain of microscale
transport [10–12]. When a two-fluid system moves in a narrow
fluidic channel, the interfacial transport plays a major role and
affects the filling rate in the channel entailing the dynamics
of the contact line formed at the fluid–fluid–solid interface
changed. It should be mentioned that although alterations in the
dynamics of contact line motion, triggered by several factors
such as imposition of surface structuring over solid substrates
or modulation of the wetting characteristics of the surface,
give rise to an overall change in the interfacial dynamics, the
ultimate consequence of which is largely reflected in the filling
rate and its control in the fluidic system [10–14].

It is important to mention that active control of the filling
rate in the context of microscale transport is far from trivial,
thus necessitating alternative means of implementation to
achieve control in microflows. Paying careful attention to this
aspect, researchers have explored different avenues such as
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surface modifications, viz., artificial texturing of the surface,
decoration of the surface with patterned wettability gradients,
and alterations to the flow actuation mechanism with the aim
of realizing better controllability of microscale and nanoscale
transport [10,11,13,15–17]. In all cases mentioned above, the
motion of the contact line formed between a pair of immiscible
fluids is altered as a result of the extensive interplay among
the dominating forcing factors, leading to alterations in the
filling and wetting dynamics. When employing electroosmotic
effects or thermocapillary actuation in realizing microscale
multiphase transport, greater maneuverability of the filling
rate can be achieved, as reported in the literature [6,18,19]. In
contrast, application of a magnetic field in microscale transport
has attracted attention as it offers precise controllability of the
flow rate in the context of single-phase transport [20–22]. An
applied magnetic field gives rise to a body force acting on the
fluid mass, which also depends on the electrical conductivity of
the fluid, upon interacting with the flow velocity has a forcing
effect on the fluid mass, thus interfering with the fluid motion
in the process [20,22–24]. Such a paradigm, however, could
be extended to alter the interfacial dynamics of transport of
an immiscible binary system over a wetted surface, solely by
altering the forces acting across the contact line formed at the
fluid–fluid–solid interface. It may be mentioned in this context
that the underlying physical considerations are nontrivial,
because of the intricate nonlinear interactions among different
forces stemming from the viscous drag, surface tension effect
as modulated by the wettability of the surface, and the Lorentz
force due to the applied magnetic field. Although studies
are in progress with the aim of achieving finer control in
microscale and nanoscale transport, e.g., surface modifications
by altering the physicochemical properties of the surface
[10,11,25,26], by surface structuring [7,10,27,28], from the
presence of nanobubbles over a hydrophobic surface [17,29],
and by altering the flow actuation parameters [6,19,30]. There
are better prospects in applying magnetic field-induced forcing
to provide effective control of the capillary filling rate, not
reported so far. The earlier work [30] is augmented in the
current investigation with a view to understand the dynamics
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of the interface under the influence of magnetic field. It is
also envisaged that the dynamics of the interface influence the
dynamics of the contact line.

In this work, we investigated the capillary transport of an
immiscible binary system constituted by a pair of conducting
liquids, under the influence of an applied magnetic field in
a narrow fluidic channel. We investigated alterations in the
interfacial dynamics and their consequential effects on the cap-
illary filling and wetting dynamics in the channel, stemming
from a complex interplay among the magnetic field-induced
forcing, the surface tension force originating from the surface
wettability, and the viscous drag. The magnetic field-induced
forces acting over the multiple phases depend substantially
on the electrical conductivity of the respective phases, while
changes in the viscosity ratio between the phases will result
in different magnitudes of viscous drag in the binary system
during transit through the channel. The underlying physical
aspects of microscale multiphase transport with contrasting
properties in the presence of an applied magnetic field, which
could lead to even more complex dynamics which were not
reported earlier, have been investigated through numerical
simulations. We believe that the analysis carried out in this
work will provide fundamental insights towards improving
the design of microfluidic systems and devices widely used for
transport of immiscible fluids typically in medical diagnostics
and on-chip bioanalysis.

II. COMPUTATIONAL DOMAIN SETUP

A. Formulation of the problem

We consider the pressure-driven transport of a binary fluid
system through a narrow fluidic channel of length L and
height 2H formed between two parallel plates, under the
influence of an applied magnetic field as shown schematically
in Fig. 1. The coordinate system is attached to the channel,
the x axis along the channel length and the y axis is the
vertical axis along channel height. We consider that the
channel dimension in the third dimension is significantly
larger than the channel height, which, in essence, allows
us to consider a two-dimensional flow scenario. The binary
system is constituted by two immiscible components, viz.,
fluid A (advancing phase liquid; shown in pink) and fluid
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FIG. 1. Schematic illustrating the interface of two fluids where
fluid A is displacing fluid B in a confined channel whose walls have
surface wettability. The height and length of the channel are L and
2H respectively. Magnetic field of strength B(= Bk̂) is applied along
z direction of the channel (perpendicular to the plane of the paper).

B (receding phase liquid; shown in blue). In this analysis,
we consider that both fluids are Newtonian and they are also
electrically conducting. We further consider that the walls of
the channel are uniformly coated with a suitable chemical
that permits a predefined contact angle. Thus, the walls are
chemically homogeneous throughout the length of the channel.
We use the diffuse interface phase-field framework to track
the spatiotemporal evolution of interface formed between
two immiscible Newtonian fluids confined between two solid
surfaces as shown in Fig. 1. The flow field is described by
the Navier–Stokes system of equations taking the effects of
the capillary stress and also the magnetic force into account.
We next discuss the transport equations and their boundary
conditions in detail.

B. Phase-field model

The diffuse interface framework of the phase-field model
employs an order parameter φ(r,t), known as the phase-field
parameter, to describe at any instant the state of a system having
two immiscible phases. The phase-field parameter is defined as
the normalized phase concentrations of the respective phases.
We define the order parameter as φ = (n1 − n2)/(n1 + n2),
where, n1 and n2 are the number-density of molecules of
fluid A and fluid B, respectively. Hence the advancing phase
fluid (fluid A) is defined by φ = 1, while φ = −1 indicates
the receding phase fluid (fluid B). However, the interface
separating the phases can be described by φ ∈ (−1,1). The
Ginzburg–Landau free-energy functional of the system as
considered in the present analysis can be expressed as [31–33]

F (φ) =
∫

�

[
f (φ) + σξ

2
|∇φ|2

]
d�, (1)

where � is the entire volume and σ and ξ are the surface
tension coefficient and the thickness of the interfacial region,
respectively. The first term on the right-hand side of Eq. (1)
denotes the free-energy density of the system in the bulk, and
the second term represents the finite valued free-energy density
of the diffuse interface separating the bulk phases. Further, the
bulk free-energy density f (φ) is described by a double-well
structure and has the form f (φ) = σ (φ2 − 1)

2
/4ξ and exhibits

two minima (φ = ±1), corresponding to the two stable phases,
fluids A and B, of the present system. The minimization of the
free energy of the system as given in Eq. (1) along with the mass
conservation of the respective phases leads to the well-known
Cahn–Hilliard equation, which governs the dynamic evolution
of the phase-field parameter φ. The Cahn–Hilliard equation,
which is the convection–diffusion equation of the phase-field
variable, can be written as follows [34,35]:

φt + v · ∇φ = ∇ · (M∇G), (2)

where M is the mobility parameter of the phase-field variable,
M = Mc(1 − γφ2), where the parameter γ controls the inter-
face dynamics of the two-phase system, and Mc is the critical
mobility parameter [32,36]. The term on the right-hand side of
Eq. (2) represents the diffusion of the phase-field parameter.
Continuous diffusion of the phase-field variable φ across the
interface leads to the removal of stress singularity arising at
the three-phase (fluid–fluid–solid) contact line. The term G on
the right-hand side of Eq. (2) is the chemical potential, which
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is defined by the variational derivative of the free energy of the
system and can be written as

G = δF/δφ = ∂f /∂φ − σξ (∇2φ)

= {σ [(φ3 − φ) − ξ 2∇2φ]/ξ} (3)

We discuss here the boundary conditions for the phase-field
equation. Ensuring no flux across the bounding solid substrate
and also to specify the wetting condition of the surface, we use
the following conditions on the solid surface for the transport
equation of the phase-field variable [37]:

∇G · n = 0, (4a)

n · ∇φ = − tan

(
π

2
− θs

)
|∇φ − (n · ∇φ)n|, (4b)

where θs is the static contact angle specified on the walls of
the channel and n is the unit normal pointing outwards from
the walls. It is worth mentioning that Eq. (4a) confirms no
flux through the surface, while the condition given in Eq. (4b),
which is also known as the geometric boundary condition
[37], maintains the order parameter profile at the three-phase
contact line according to the contact angle θs specified at the
solid surface [37].

C. Transport equations for the system

The Navier–Stokes equations in their dimensional form, for
an incompressible Newtonian fluid including different forcing
terms originating from the contribution of the phase-field
parameter and applied magnetic field [12,30,38] are given as

ρi(ut + u · ∇u) = −∇p + ∇ · [μi(∇u + ∇uT )]

+G∇φ + FMag, (5a)

∇ · u = 0. (5b)

Equations (5a) and (5b) govern the fluid flow in the
channel, where u is the velocity vector, p is the pressure, and

ρi and μi denote the density and viscosity of the ith-phase
fluid, where i = A,B are the two phases. The first two terms
on the right-hand side of Eq. (5a) are the contributions from
the hydrodynamic stress. The penultimate term is the capillary
force density and acts only at the interfacial region. The
flow field-induced local change of the interface curvature
multiplied by the surface tension gives rise to an additional
body force term G∇φ in the momentum balance equation
due to presence of participating phases (see the Appendix).
The last term in Eq. (5a) is another body force known as the
Lorentz force and represents the effect of the applied magnetic
field on the flow dynamics. In this analysis, we consider a
constant applied magnetic field to determine its effect on the
underlying interfacial transport. We can write, in dimensional
form, the expression for the induced Lorentz force term
as [20]

FMag = ε(E + u × B) × B, (6)

where ε is the electrical conductivity. Since no external electric
field is applied, the polarization voltage is also neglected here.
We can therefore consider E = 0 [38]. In this situation, the
Lorentz force reduces to

FMag = ε(u × B) × B. (7)

We further consider that, as the case may be for partially
ionized fluids or metallic liquids, the values of the magnetic
Reynolds number, Rem = uref lref/μe, and the magnetic Prandtl
number, Prm = v/μe

are very small (�1) [20]. The terms
uref and lref are the typical velocity and length scales respec-
tively. μe and v are the magnetic diffusivity and kinematic
viscosity of the fluid, respectively. The above considerations,
in essence, allow us to ignore the induced magnetic field pro-
duced by the motion of an electrically conducting fluid in the
present analysis. Also, for solving the Navier–Stokes equation,
we consider the following boundary and initial conditions:

Initial condition: u(r,t = 0) = 0 ∀ r

Boundary conditions:

⎧⎨
⎩

u,v = 0; at the channel walls
u = uin; at the channel inlet
pgauge = 0; at the channel outlet

⎫⎪⎪⎬
⎪⎪⎭

. (8)

At the inlet of the channel (left boundary), following the
same profile as used in the literature [36], we consider the
velocity inlet boundary condition:

uin = 6uavg(y/H )[1 − (yH )]. (9)

D. Nondimensionalization of transport equations

Nondimensional form of transport equations were utilized
for numerical simulations of the two-phase system using the
following scales: length scale, lref(= 2H ); characteristic veloc-
ity scale, uref(= uavg); characteristic time scale, tref(= lref/uref),
pressure scale, pref = μrefuref/l

2
ref ; and characteristic scale of

the order parameter, φref = (|φ±| = 1). We then have the

following nondimensional equations:

φ̄t̄ + ū · ∇̄φ̄ = 1

PeCn
∇̄ · (M̄∇̄Ḡ), (10)

Reρ̄(ūt̄ + ū · ∇̄ū) = −∇̄p̄ + ∇̄ · μ̄[(∇̄ū) + (∇̄ū)T ]

+ 1

CaCn
Ḡ∇̄φ̄ + F̄Mag, (11)

∇̄ · ū = 0, (12)

where symbols with overbars are dimensionless quantities,
ρ̄(= ρ/ρref) and μ̄(= μ/μref) in Eq. (11) are the effec-
tive phase-averaged mass density and the effective vis-
cosity, respectively, and M̄(= M/Mc) = (1 − γφ2) is the
dimensionless mobility parameter, where γ has been defined
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earlier. We consider the case where γ = 0 such that M̄ = 1
[30,32,36]. Another important point here is that, following
the reported MD simulation studies [5], the critical mobility
parameter Mc is defined as Mc = Cl4/

√
mεe, where l and

εe are the length scale and energy scale, respectively, in the
Lennard-Jones potential for fluid molecules, m is the molecular
mass of the fluid, and C is a constant (∼0.023).

We assume that a uniform magnetic field of strength Bo

is acting in the direction parallel to the z-direction, i.e.,
perpendicular to the plane of the paper, which then leads to
the following expression of the Lorentz force acting on the
electrically conducting binary system as already taken into
account in Eq. (11). The dimensionless Lorentz force can be
expressed as

F̄Mag = −ε̄Ha2ū, (13)

where ε̄ is the phase-averaged electrical conductivity of the
binary system. Equations (10), (11), and (13) contain some
dimensionless parameters elucidated as follows:

Peclet number: Pe = uref lref
Mc

, which is the ratio of lref to the
diffusion length Mc/uref ;

Reynolds number: Re = ρrefuref lref

μref
, which is the ratio of

inertia and viscous forces;
Capillary number: Ca =μrefuref

σ
, which is the relative

strength between viscous and surface tension forces;
Cahn number: Cn = ξ

lref
, which represents the ratio of

interface thickness to the height of the channel.

Hartmann number: Ha =
√

εrefB
2
0 l2

ref
μref

, which represents the
relative strength between the magnetic and viscous forces.

As mentioned earlier, the phase-averaged properties of the
two-fluid system can be a linear function of the order parameter
φ:

ρ = (φ + 1)(ρA − ρB) + 2ρB

2
, (14a)

μ = (φ + 1)(ηA − ηB) + 2μB

2
, (14b)

ε = (φ + 1)(εA − εB) + 2εB

2
. (14c)

In this context it should be mentioned that in two-phase
configurations, the fluid properties of either of the fluids can
be chosen as the reference properties. However, in the present
analysis, we consider the properties of the advancing phase
fluid (fluid A) as the reference values [36,39,40]. Hence, the
expression for the dimensionless phase-averaged properties
appearing in Eqs. (11) and (13) can be further written as

ρ̄ = (φ + 1)(1 − ρr ) + 2ρr

2
, (15a)

μ̄ = (φ + 1)(1 − ηr ) + 2μr

2
, (15b)

ε̄ = (φ + 1)(1 − εr ) + 2εr

2
, (15c)

where ρr (= ρB/ρA), μr (= μB/μA), and εr (= εB/εA) are the
density ratio, viscosity ratio, and electrical conductivity ratio,
respectively, of the binary fluid system considered in this study.
To take the effect of surface wettability into account in this

FIG. 2. Schematic of the computational domain showing the
governing equations and the boundary conditions. The axes are placed
at the left center of the channel. We consider the symmetry half of
the channel for numerical simulations owing to the symmetric nature
of the flow with respect to the channel center.

analysis, we consider different static contact angle θs values,
which are specified at the walls of the channel.

E. Numerical approach and model validation

We use the finite-element framework of COMSOL to solve
the coupled phase-field–Navier–Stokes system of equations.
Figure 2 depicts schematically the computational domain,
which shows the governing transport equations along with
the boundary conditions in their dimensionless form. For
all the numerical simulations, the PARDISO solver with the
generalized-α scheme of COMSOL multiphysics was used for
the time-stepping. The initialization of the phase-field variable
was performed before allowing bulk fluid motion. Initialization
of the phase-field variable leads to an equilibrium interface
profile of the two coexisting bulk phases (φ = 1,−1) following
the solution of the equation, μ(φ) = 0, while the equilibrium
order parameter profile normal to the plane interface is given
by [8,32]

φ(z̄) = tanh(z̄/
√

2ξ ), (17)

where z̄ is the coordinate direction normal to the plane
interface. It may be noted that it is analogous to coordinate
x in present work (see Fig. 1).

1. Model benchmarking

Here we attempt to benchmark the present numerical
framework with the results reported in the literature in the area
of multiphase microscale transport. We validate the diffuse
interface framework of the numerical method employed in this
study with the results reported by Yue et al. [12]. We consider a
2D rectangular channel having height W and length 4W while
validating our model. The top and bottom walls are moving
with the same constant velocity but in opposite directions.
Figure 3 shows the liquid–liquid interface in the steady state for
values of the other parameters of Re = 0.001andCn = 0.02.
The value of the Peclet number is taken as Pe = CaCn/S2,
where S = 0.01 is the diffusion length scale [12]. Here we
consider triangular grids of size �x,�y = Cn/2.
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FIG. 3. Model benchmarking: interface deformation for differ-
ent values of Ca. The other parameters are Re = 0.001, Cn =
0.02, Ha = 1, and θs = 90◦. The value of the Peclet number is taken
as Pe = CaCn/S2, where S = 0.01 and represents the diffusion length
scale [12]. The results reported by Yue et al. [12] are shown by
symbols of different shades, and the solid line represents the results
obtained from the present numerical framework. The variations
obtained from the present study match well with the results reported
in Ref. [12].

It can be seen from Fig. 3 that the results obtained from
the present modeling framework show a good match with
reference.

2. Grid convergence analysis

To capture the underlying flow physics for the problem
considered in this analysis, we require relatively finer grid
sizes consistent with the physical problem. Since the Cahn
number (Cn) defines the physical size of the grid, we perform
simulations for a given case, considering different values of Cn
to ensure that the results reported in this study are independent

of grid resolution. To be precise, we depict in Fig. 4(a) the
variation of the contact-line velocity obtained at different Cn.
We find an insignificant change in the results when Cn varies
from 0.08 to 0.01. While Cn = 0.01 represents a very fine
grid which would be computationally intensive,Cn = 0.04 is
the sharp interface limit as proposed in Ref. [12]. Hence, we
considered Cn = 0.02 for all the simulations in the present
study.

It is worth mentioning that the value Cn = 0.02(∼10−2) as
chosen in this analysis makes the grid resolution sufficient to
obtain physically meaningful and converged solutions, while
also maintaining the sharp interface limit [12]. Note that this
value of Cn = 0.02 even falls well below its threshold limit as
proposed in Ref. [12], i.e., Cn = 4S, where S = 0.01, from the
perspective of attaining a sharp interface limit. Also, it should
be mentioned that the parameter S (= 0.01) as defined in
Ref. [12] is equivalent to the Peclet number (Pe) as considered
in this study.

One may further note from Fig. 4(b) that the velocity of
the contact line only beyond x = 0.8 has been considered
to exclude initial effects after admittance of fluid-A into the
channel. However, the flow still remains in the transient regime
before reaching the steady state. It may be observed that the
variation in velocity becomes insignificant as the time step size
�t changes from 10−3 to 10−4. Hence, we consider �t = 10−3

as the time step throughout this study. It is also mentioned that
value of Hartmann number Ha = 1, implying that the magnetic
field strength B is nonzero in the model benchmarking and grid
convergence studies.

III. RESULTS AND DISCUSSION

In the present study, we consider two immiscible fluids
flowing in a microcapillary over a surface having predefined
wettability as manifested in terms of the static contact angle θs .
In our numerical computations, we consider a channel length
of [L̄ = 4 × (2H̄ )], where H̄ is the half-height of the channel.
Owing to the symmetric nature of the flow dynamics about

(a) (b)

FIG. 4. (a) Variation showing the grid independence results for the present study. Since the grid sizes depend on the value of Cn, we clearly
illustrate the variation of the contact-line velocity vMCL with x for different Cahn numbers (Cn) with Re = 0.03, Ca = 0.08, Ha = 1, and
θs = 90◦. The results become independent as Cn varies from 0.02 to 0.08. (b) The independence of the time step size is shown by plotting the
variation of the contact-line velocity vMCL with x for different �t resolutions with Re = 0.03, Ca = 0.08, Ha = 1, and θs = 90◦. The change
in velocity becomes insignificant as �t changes from 10−3 to 10−4.
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FIG. 5. Plot depicting the interface evolution inside the channel: (a) Ha = 0.1, (b) Ha = 1, (c) Ha = 10, (d) θs = 45◦, (e) θs = 90◦, and (f)
θs = 135◦. The other parameter for (a)–(c) is θs = 90◦ and for (d)–(f), Ha = 1, and in all cases Pe = 0.2, Ca = 0.08, and Re = 0.03. The figure
shows the two different kinds of interface profiles: commodious profiles and crowding interface profiles. The formation of crowding interface
profiles leads to “fingerlike” dynamics.

the channel center (y = 0), we consider the symmetry half of
the domain for our numerical experiments. We discuss here
the interfacial magnetohydrodynamics for two different cases.
First, we consider the ratios of all the properties of the fluids
viz., the density, viscosity, and electrical conductivity, to be
unity. Second, we look at the effect of contrasting properties of
the binary fluid system on the underlying interfacial transport.
In addition to those mentioned above, the other parameters
considered, unless specified otherwise, for this analysis are
Pe = 0.2, Ca = 0.08, Re = 0.03, and Ha ∈ (0.1,10). Note that
the chosen values of the different dimensionless parameters
in this analysis are in accord with those typically used in
microscale transport [25,36,38]. Since the prime focus of the
present endeavor is look into the capillary filling dynamics,
which largely depends upon the spatiotemporal evolution of
the interface in the channel, we start our discussion with a
diagram depicting the time sequence plots of the interface
for different cases as discussed in the forthcoming paragraph.
It should be noted that from here onwards, for clarity of
presentation, we do not use an overbar above symbols to
represent dimensionless quantities.

A. Interfacial dynamics of a property-matched binary system

1. Evolution of the interface

Figures 5(a)–5(f) show the time sequences of the interface
profiles for the different cases considered in this analysis. Note

that these time sequences are the loci of the points having a
value of the order parameter φ = 0 with position obtained
at different time. Figures 5(a)–5(c) depict the interface
profiles for three different values of Ha (= 0.1, 1, and 10),
the other parameters being θs = 90◦, Pe = 0.2, and Ca = 0.08.
Figures 5(d)–5(f) were obtained by considering Ha = 1 and
for three different contact angles, θs = 45◦, 90◦, and 135◦,
respectively. Figure 5(a) indicates that, for smaller Ha (0.1),
the progression of the advancing fluid front inside the capillary
is mainly affected by the applied pressure gradient and the
surface tension force. Since for Ha = 0.1 the retardation of
the interface at the channel center is relatively less, for a
given case of θs = 90◦, the pressure force, which is acting
over the complete lateral extent of the interface, will attempt
to severely stretch the interface at the middle. More precisely,
a relatively higher velocity of the interface at the middle part of
the channel will lead to a slower movement of the contact line
following the mass conservation effect in the advancing fluid
phase. Note that the slower movement of the contact line is also
favored by the relative smaller value of Ha (0.1) (the net force
on the contact line is less for Ha = 0.1). These two forcing
factors bring about a relative motion of the interface between
the contact line and the central part, leading to “fingerlike”
dynamics of the front as seen in Fig. 5(a).

With increasing magnitude of Ha, since the contact line
motion is largely affected by the induced Lorentz force, the
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FIG. 6. Variation of capillary filling length (lf ) with filling time (tf ): (a) for different values of Ha = 0.1, 1, and 10, obtained at θs = 90◦;
(b) for different values of θs = 45◦, 90◦, and 135◦, obtained at Ha = 1. Other parameters were taken as follows: Pe = 0.2, Ca = 0.08, and
Re = 0.03. The filling time, for a given θs = 90◦ increases with increasing value of Ha; on the other hand, with increasing contact angle, the
filling time also decreases.

contact line velocity increases by enjoying a relatively larger
net force at the contact line [the effective drag is less; see
Fig. 8(b)]. Note that the magnetic force being applied on the
interface is proportional to the velocity [see Eq. (13)]. Thus,
for a higher Ha the retardation of the interface at the center of
the channel becomes higher since the velocity of the interface
is always higher at the central part of the channel. These two
cumulative effects, in essence, allow the central part of the
interface to be retarded more and the “fingerlike” dynamics
of the front disappear. The complex dynamics of the interface
eventually leads to a decrease in filling time and an increase
in wetting time, as discussed in Figs. 6 and 7. The crowding
interface profiles as seen in Fig. 5(a) will lead to a relatively
lower velocity of the contact line for Ha = 0.1, whereas the
commodious interface profiles for Ha = 10 will expedite the
movement of the contact line as confirmed in Fig. 5(c). It is
important to mention here that the variation of the contact line
velocity has been discussed in a subsequent section.

Figures 5(d)–5(f) are merely the time sequence plots of the
interface for different values of contact angle θs = 45◦, 90◦,
and 135◦, respectively, and Ha = 1 in all cases. Figure 5(d)
illustrates that, for θs = 45◦, the interface profiles are not
crowded near the contact line, whereas the interface profiles
show crowding for θs = 135◦ although all other parameters
remain unaltered. We attribute this observation to the effect
of the capillary force density, stemming from the variations in
the static contact angle. Since for the surface wettability with
θs = 135◦ the surface tension force restricts the movement of
the contact line, the interface profiles become denser near the
contact line. This mismatch in the movement of the different
parts of the interface (interface at the contact line and at
the middle of the channel) induces cooperative–correlative
motion of the interface, leading to “fingerlike” dynamics of
the front even for a viscosity-matched binary system. In fact,
the restricted movement of the interface at the contact line
results in relatively greater progress of the advancing liquid

FIG. 7. Variation of capillary wetting length (lw) with wetting time (tw): (a) for different values of Ha = 0.1, 1, and 10, obtained at θs = 90◦;
(b) for different values of θs = 45◦, 90◦, and 135◦, obtained at Ha = 1. Other parameters were taken as follows: Pe = 0.2, Ca = 0.08, and
Re = 0.03. The wetting time, for a given θs = 90◦, increases with decreasing value of Ha; on the other hand, with increasing contact angle, the
wetting time also decreases.
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front along the central part of the capillary, thereby promoting
the capillary filling rate. It should be mentioned in this context
that the spatiotemporal evolution of the interface as modulated
by the magnetic force driven alteration in the movement of the
interface in the center of the channel as well as the surface
tension driven alteration in the contact line velocity may bring
in a control over the effective filling and wetting phenomena.
In particular, through the time sequence plot of the interface
contours, we reconfirm our observations on the filling and
wetting dynamics as described in Figs. 6 and 7.

2. Capillary filling dynamics

Capillary filling time is the time required for the advancing
phase fluid (fluid A in this study) to infiltrate into the middle
part of the capillary under different forcing environments as
considered in this analysis. Figure 6(a) shows the temporal
variation of the length of the advancing liquid column (lf ) in-
side the capillary for different values of Ha = 0.1, 1, and 10,
obtained at θs = 90◦. Figure 6(a) shows that, with increasing
value of Ha, the length of the advancing fluid front takes
a relatively longer time to penetrate a given distance of the
channel. Note that the surface wettability (θs = 90◦) consid-
ered for Fig. 6 does not have any preferential attraction toward
either of the fluids chosen in this analysis. Another important
observation from Fig. 6(a) is that, for θs = 90◦, the difference
in filling time becomes significant as Ha changes from 1 to 10.
We attribute this observation to the alteration in the interfacial
dynamics of contact line motion as modulated by the applied
magnetic field. The motion of the contact line formed at the
fluid–fluid–solid interface plays an important role in dictating
the interfacial dynamics in microscale transport, which, in
turn, lead to the overall modifications in the underlying flow
dynamics. Since we have considered the applied magnetic field
in the z direction of the channel, the body force due the applied
magnetic field affects both momentum equations. Although the
filling time is changed with the variation in Ha, the effect of Ha
on the filling rate is not linear, and we will discuss this issue in
detail later, while concentrating on the dynamics of contact line
motion. With increase in Ha, the magnetic field-induced body
forces being applied at the interface aid in the forward motion
of the contact line, leading to an increment in the contact line
velocity. The enhancement of the contact line velocity with
increasing value of Ha is shown in Fig. 8(a). To be precise, the
consequential effect of the reduction in the advancement of the
interface at the middle of the channel increases the contact line
velocity, taking into account the effect of mass conservation in
the flow field. The middle part of the interface starts to recede
at a relatively higher value of Ha leading to an increase in
filling time as seen in Fig. 6(a).

In an effort to establish the role of substrate wettability
under the influence of magnetic field-driven filling dynamics,
Fig. 6(b) compares the length of the advancing fluid front for
different wetting conditions of the solid substrate as manifested
in terms of the static contact angle θs . We observe that, for
surface wettability consistent with θs = 45◦, which also has a
preferential attraction toward the advancing phase fluid (fluid
A), the time required by the advancing fluid to move through a
certain length of the capillary increases, whereas for the cases
with θs = 135◦ the required time decreases. This observation

can be explained as follows: for θs = 45◦, the surface tension
force, which goes in favor of the advancing phase, accelerates
the contact line motion. The Lorentz force decelerates the
movement of the interface at the middle. The above-mentioned
effects and the compliance of continuity equation, results in
a larger filling time, as confirmed in Fig. 6(b). In contrast,
the surface tension force corresponding to θs = 135◦ (which
acts against the advancing phase) allows the interface to be
protruded at the middle, entailing a faster filling rate. We have
verified the decrease in contact line velocity for θs = 135◦
as described later. Figure 6(b) also depicts the filling time
for θs = 90◦. The time required by the interface to fill a given
distance along the capillary for a window of contact angle θs =
[45◦, 135◦] is not symmetrical about the same as that attained
for θs = 90◦, largely attributed to the effect of magnetic force
on the underlying transport.

3. Capillary wetting dynamics

We refer to the capillary wetting time as the temporal
advancement of the advancing phase liquid along the wetted
solid substrate. Having established the effect of Ha and surface
wettability on the capillary filling dynamics, we proceed to
examine the same effects in dictating the capillary wetting
phenomena. To do so, in Figs. 7(a) and 7(b) we compare the
length of the advancing liquid column along the wetted surface
(lw) plotted as a function of time for different values of Ha and
static contact angle θs . It can be seen from Figs. 7(a) and 7(b)
that the wetting time increases for a relatively smaller value of
Ha and a higher value of the contact angle (θs > 90◦), differing
from the temporal variation of filling length as depicted in
Figs. 6(a) and 6(b). Note that the capillary wetting length is a
direct measure of the velocity of the contact line formed at the
fluid–fluid–solid interface. In fact, the wetting as reflected in
Figs. 7(a) and 7(b) is the locus of the spatiotemporal evolution
of the contact line as modulated by the combined influences of
the applied pressure force, the surface tension force originating
from the wetted wall, the viscous drag, and the Lorentz force
due to the applied magnetic field.

Since the wetting length of the advancing fluid depends
on the contact line speed, we will consider this aspect in a
later discussion, while elaborating the variation of contact line
motion in greater detail in the next section. However, what
has been observed from Fig. 7 in the present context is that
we can speed up the wetting phenomenon by increasing the
value of Ha for a given surface wettability corresponding to
a contact angle θs = 90◦ and through careful selection of the
wettability of the solid substrate for a given strength of the
applied magnetic field.

From the foregoing discussion, it may be noted at this
juncture that the effective capillary filling and wetting time
can be controlled by varying Ha and essentially through
the judicious selection of the wetting condition of the solid
surface (θs). This observation could be of great importance in
many technologically relevant areas involved with microscale
transport. Also, from the inferences delineated in the above
figures, we believe that the effect of magnetic field-driven
alterations in interfacial dynamics can be exploited to achieve
finer control of capillary filling dynamics on small scales,
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FIG. 8. (a) Plot showing the variation of contact line velocity (vMCL) with distance along the length of the capillary (x) for different values
of Ha = 0.1, 1, 5, and 10. The other parameters considered are Pe = 0.2, Ca = 0.08, and θs = 90◦. The velocity of the contact line is lower and
higher for Ha = 0.1 and 10, respectively; (b) Variation of the net force acting over the contact line Fx,MCL with distance along the length of the
capillary (x) for three different values of Ha = 0.1, 1, and 10. The net force increaases with increase in Ha. Plot depicting the variation of axial
component of magnetic force (Fmag,A) at the channel center for different values of Ha: (c) for Ha = 10 and (d) for Ha = 0.1. The variation of
transverse component of magnetic force acting at the contact line (Fmag,T |MCL

) is depicted in Fig. (e) for two different values of Ha = 0.1 and
10. The following parameters are considered for plotting figures (c) and (d) as: Pe = 0.2, Ca = 0.08, and θs = 90◦.

where the capillary can be engineered in tune with the
predesigned means of achieving some stated purpose.

4. Interfacial dynamics of contact line motion

We discuss here the variation of contact line motion for two
different cases, viz., (i) for different values of Ha at θs = 90◦,
as shown in Fig. 8(a), and (ii) for three different values of
the surface wettability, θs = 45◦, 90◦, and 135◦, obtained at
Ha = 1, as shown in Figs. 9(a)–9(c). It can be seen from
Fig. 8(a) that the velocity of the moving contact line initially
exhibits an increasing trend for all values of Ha considered.
After experiencing initial acceleration, the dynamics of contact
line velocity depends on the control parameters chosen. The
initial increasing trend of the contact line velocity can be
explained by the sudden acceleration of the binary system
on application of an externally applied pressure gradient. The
binary fluid system remains at rest initially but experiences a
sudden jerk as the pressure gradient is applied so as to cause
flow in the channel. After initial transience, the contact line
has to adjust itself to the chemically homogeneous surface

and makes an attempt to maintain a “dynamic equilibrium”
profile in tune with the contact angle specified over the solid
substrate. Since the interface, more precisely the contact line,
progresses dynamically along the channel; we have used the
word “dynamic equilibrium” loosely in this context, although
the contact line will never experience an equilibrium under
dynamic conditions under different forcings, viz., the applied
pressure force, the Lorentz force, the viscous drag, and the
surface wettability

It can be inferred from Fig. 8(a) that the contact line
velocity after overcoming the initial transience, continues
to increase for Ha = 10, whereas for the other values of
Ha (0.1, 1, and 5), it decreases as the interface moves further
along the channel. Since the capillary force, for a given contact
angle (θs = 90◦), remains constant, the variation observed in
Fig. 8(a) for different values of Ha is mainly attributable
to the effect of the Lorentz force being applied on the
interface as it progresses inside the channel. Since the magnetic
force, consistent with the present problem, is acting in both
momentum equations (x and y momentum equations), the
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FIG. 9. Plot depicting the variation of contact line velocity (vMCL) with distance along the length of the capillary (x) for three different
values of θs = 45◦, 90◦, and 135◦. The other parameters considered are Pe = 0.2, Ca = 0.08, and Ha = 1. The velocity of the contact line,
after overcoming the initial stage of admittance, increases for θs = 45◦, whereas for the other two values of the contact angle (θs = 90◦ and 135◦)
the contact line velocity decreases. The flow still remains in the transient regime.

effect of the magnitude of the Lorentz force being applied on
the contact line motion is not straightforward; rather, the gross
effect of this force on the contact line depends on the interface
shape and deformation, which in turn, also strongly depend on
the surface wettability. We note that a higher magnitude of Ha
leads to a higher contact line velocity, although it is intuitively
expected that the higher value of Ha will impart a relatively
higher drag to the interface at the three-phase contact line and
will also reduce the velocity. However, this is not the case, as
can be seen from Fig. 8(b), which shows the variation of the net
force (Fx,MCL) acting over the contact line as it advances along
the length of the capillary. The force (Fx,MCL) comprises three
different forces, viz., viscous drag, the force due to applied
magnetic field and the force due to presence of the interface
itself in a phase field (i.e., all terms on the right-hand side of
Eq. (11) except the pressure gradient).

What is observed from Fig. 8(b) is that, with an increase
in Ha, the net force acting over the contact line increases,
thus allowing it to move faster. To elucidate this nonintuitive
phenomenon, we considered the individual contributions of
the axial component (Fmag,A) and transverse component
(Fmag,T ) of the magnetic force-induced body force terms to
the interface. The axial component magnetic body force term
impedes the interface, whereas the transverse component,
accounting for the mass conservation effect on the process,
may aid the forward motion of the contact line, depending
on the surface wettability and the magnitude of Ha being
considered. In fact, for a relatively higher value of Ha (as high
as 10) and for θs = 90◦, the effect of the transverse component
of the body force becomes favorable [see Fig. 8(e), where
the net force on the contact line is higher for Ha = 10] for
the advancement of the contact line, leading to an increase in
velocity of the moving contact line, as confirmed in Fig. 8(a).
On the other hand, for a relatively smaller value of Ha (0.1),
the retarding effect due to the axial component of the Lorentz
force in the middle part of the interface also becomes smaller
for smaller values of Ha as verified in Fig. 8(d). To delve deep
into the retardation effect because of the axial component of
magnetic force, we plot Figs. 8(c) and 8(d), which show the
variation of Fmag,A applied at the interface at the channel center
for two different values of Ha = 10 and 0.1, respectively.

The variation indeed support that the retardation effect will
be more pronounced for Ha = 10 owing to higher Fmag,A,
leading to enhanced filling time as confirmed in Fig. 6(a). On
the other hand, a relatively higher magnitude (one order higher)
of Fmag,T for Ha = 10 [see Fig. 8(e)], the net force acting at the
contact line becomes higher for Ha = 10, thus ensuring faster
wetting following a higher contact line velocity. In fact, these
two effects lead to a mismatch in the motion of the different
parts of the interface inside the capillary. Precisely, accounting
for these cumulative effects of magnetic field-induced force
components, the interface at the contact line moves slowly,
while moving at a faster rate at the center of the capillary,
owing to a diminished retardation effect. We have verified this
in Fig. 8(a), where the velocity of the contact line reduces
with decreasing value of Ha. Also, we mention here that the
contact line velocity as depicted in Fig. 8(a) are in clear support
with the capillary filling and capillary wetting dynamics as
delineated in previous figures (Figs. 6 and 7).

We next discuss, based on Figs. 9(a)–9(c), the variation
of contact line velocity for different values of the surface
wettability, θs = 45◦, 90◦, and 135◦, with Ha = 1 and other
parameters Pe = 0.2 and Ca = 0.08. It can be seen from
Fig. 9(a) that, for θs = 45◦, the contact line velocity after
the admittance of fluid-A increases and finally tends toward
an asymptotic value before reaching a steady-state condition.
In the cases of Figs. 9(b) and 9(c) for θs = 90◦ and 135◦,
respectively, the contact line velocities show a decreasing
trend after the initial stage of admittance of fluid-A and
reaches asymptotic values before reaching a steady state. The
flow still remains in the transient regime. Since the applied
pressure force, the force due to the applied magnetic field,
and the viscous drag force remain same for the given flow
configuration in this study, the change in contact line velocity
as observed with a change in contact angle in Figs. 9(a)–9(c)
is essentially due to the surface wettability-driven alteration
in the capillary force density acting at the contact line. The
surface tension force consistent with θs = 45◦ favors the
interface movement at the contact line, thus accelerating
the contact line velocity, as can be seen in Fig. 9(a). In
contrast, the surface tension force arising with θs = 135◦
makes the interface retard at the contact line, hence the contact
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FIG. 10. Plot showing the variation of (a) capillary filling, (b) capillary wetting, and (c) the contact line velocity, obtained for three different
values of the viscosity ratio, ηr = 0.01, 0.1, and 1, respectively. The other parameters for this plot are θs = 90◦, εr = 1, ρr = 1, Ha = 1,
Pe = 0.2, Ca = 0.08, and Re = 0.03. With increase in viscosity of the advancing phase fluid (for a smaller value of ηr ), the filling time
increases and the wetting time decreases. The contact line velocity also increases with increasing viscosity of the advancing phase fluid.

line velocity decreases as the interface progresses along the
channel. Although the surface tension force corresponding to
θs = 90◦ does not have any assisting or opposing effect on the
interface movement, the smaller magnitude of resulting force
acting at the contact line (Fx,MCL) due to a relatively lower
value of Ha (1) slows the contact line velocity as depicted
in Fig. 9(b). We further mention here that the reduction in
the velocity at the centerline has a consequential effect on
the contact line movement. Thus, the results of interplay of
different forcings at the three-phase contact line agree with the
observations of the capillary filling and wetting dynamics as
depicted in Figs. 6 and 7.

B. Effect of contrast in properties on the interfacial dynamics

1. Effect of viscosity contrast

We have investigated the effect of a contrast in viscosity
on the underlying magnetohydrodynamics of binary systems
as considered in this analysis. As already mentioned, we
change the properties of the advancing phase fluid (fluid A)
to achieve the desired contrast, leaving the properties of the
fluid being displaced (fluid B) unchanged. Figures 10(a)–10(c)
show the effect of viscosity contrast (ηr = ηB/ηA) on the
capillary filling, capillary wetting, and contact line velocity,
respectively, obtained for two different values of ηr = 0.04 and
0.1. Note that Fig. 10 also depicts the variation obtained for
ηr = 1 essentially for appreciation of the effects of a viscosity
contrast on the underlying transport. Figure 10 indicates that,
with a decrease in ηr from a value of 1, i.e., for the cases
when a relatively high-viscosity fluid displaces a less viscous
fluid (ηr < 1), the filling time increases [Fig. 10(a)], whereas
the wetting time decreases [Fig. 10(b)]. This contradictory
behavior of the filling and wetting dynamics can be explained
by the variation of contact line velocity as depicted in
Fig. 10(c). Figure 10(c) indicates that, with a decrease in
ηr (<1), the velocity of the contact line increases, leading
to accelerated wetting dynamics, as verified in Fig. 10(b). The
rapid wetting phenomenon eventually results in a longer filling

time following the effect of mass conservation in the flow field
as confirmed in Fig. 10(a).

Since the dynamics of the contact line motion provides
an estimate of the filling and wetting dynamics, we now
consider the variation of the contact line with a change in
ηr and pinpoint the effects that illustrate the disparity in the
contact line motion as depicted in Fig. 10(c). In doing so, we
examine the variation of viscous resistance that the contact
line encounters as it moves along the channel. The viscous
resistance (per unit area) being faced by the moving contact
line (MCL) during its movement is given by FR,viscous|MCL =
{[0.5(1 + ηr ) + 0.5φ(1 − ηr )]uy}.

Figure 11(a) depicts the location of the interface at a given
time t = 1.2 (dimensionless) for different ηr , while the inset
figures show the interface contours obtained for at that instant
in the computational half domain. Figure 11(b) illustrates the
variation of viscous resistance for two different values of
ηr = 0.1 and 0.04. The other parameters are given in the
caption.

We observe a mismatch in the motion of the different
parts of the interface (interface at the contact line and at the
central part of the channel) with a change in ηr , with the
other parameters and time remaining unchanged. A closer
look at Fig. 11(a) indeed reveals that with a decrease in
ηr (<1), the interface at the contact line advances, meeting
a retardation effect at the channel center. These two events
lead to an increase in filling time and a decrease in wetting
time, as confirmed in Figs. 10(a) and 10(b). Also, Fig. 11(b),
which shows the variation of the viscous resistance felt by
the contact line in the process, indicates that, with a decrease
in ηr (for a high-viscosity advancing phase fluid), the overall
viscous drag on the contact line gradually decreases as the
interface progresses along the channel. Since with time fluid B
recedes from the channel, the viscous resistance offered by the
receding phase fluid to the contact line decreases, culminating
in reduction in overall viscous resistance. This reduction in
viscous resistance leads to an enhancement of contact line
velocity, which is also reflected in Fig. 10(c). We should
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FIG. 11. (a) (Inset) Color contour plots depicting the evolution of the interface inside the channel for different values of ηr 1,0.1and0.04.
(Main figure) Interface contours at dimensionless time t = 1.2. The other parameters considered for are θs = 90◦, Ha = 1, εr = 1, ρr = 1,
Pe = 0.2, Ca = 0.08, and Re = 0.03. (b) The variations of viscous drag acting at the contact line FR,viscous for two different ηr = 0.04 and 0.1.
The other parameters considered are θs = 90◦, Ha = 1, Pe = 0.2, Ca = 0.08, and Re = 0.03.

mention that the variations in viscous resistance illustrated
in Fig. 11(b) are in clear support of the contact line dynamics
depicted in Fig. 10(c).

2. Effect of contrast in electrical conductivity

The conductivity ratio is an important parameter in the
context of this analysis, since the magnetic forces acting over
the interface largely depend on the ratio of the conductivities
of the fluids in the immiscible binary system (εr ). To obtain
some insights into the effect of contrasting conductivity of
the fluids (εr ), we show the variations of filling, wetting
lengths, and contact line motion for two different values of
εr = 0.1 and 0.01 in Figs. 12(a)–12(c), respectively. Also,
we considered the variations for εr = 1 in Figs. 12(a)–12(c)
to isolate the effects of contrast in conductivity ratio on the
underlying transport. The other parameters are given in the
figure caption. An increase in conductivity of the advancing

phase fluid as manifested by a smaller value of εr (<1) leads
to a delay in filling time, while speeding up the wetting phe-
nomenon, as confirmed in Figs. 12(a) and 12(b), respectively.
Figure 12(c) indicates that the contact line velocity increases
in tune with a decrease in conductivity ratio (εr < 1), which,
in turn, makes the wetting phenomenon faster, essentially
by delaying the filling of the advancing phase fluid into
the capillary.

This contradictory behavior of the wetting and filling
phenomena are due to the mass conservation in the
flow field. To elucidate the physical explanations behind
our observations of the contact line dynamics and their
consequential effects on the filling and wetting phenomena
as delineated in Figs. 12(a)–12(c), we investigated in detail
the underlying transport features from the perspective of
the variations in magnetic field-induced force (Fx,Mag|MCL)
that the contact line experiences during its movement
along the channel. This magnetic force can be expressed
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FIG. 12. Plot showing the variation of (a) capillary filling, (b) capillary wetting, and (c) the contact line velocity, obtained for three different
values of conductivity ratio, εr = 0.01, 0.1, and 1, respectively. The other parameters are θs = 90◦, ηr = 1, ρr = 1, Ha = 1, Pe = 0.2,
Ca = 0.08, and Re = 0.03. With an increase in viscosity of the advancing phase fluid (for a smaller value of ηr ), the filling time increases and
the wetting time decreases. The contact line velocity also increases with increasing viscosity of the advancing phase fluid.
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FIG. 13. (a) Plot showing the interfacial shape for different values of εr obtained at time t = 1.2 and (b) the variation of net magnetic force
acting at the contact line for two values of εr . The other parameters are θs = 90◦, Ha = 1, ηr = 1, ρr = 1, Pe = 0.2, Ca = 0.08, and Re = 0.03.
For a relatively higher conducitivity of the advancing phase fluid (εr < 1), the interface bending at the middle of the channel is higher. The
magnetic force acting on the contact line becomes higher for εr = 0.01.

as Fx,Mag|MCL = {Ha2[0.5(1 + φ)(1 − εr ) + εr ]u}. From
Figs. 13(a) and 13(b), which show the deformation of the
interface for different εr obtained at t = 1.2 and the net
magnetic force acting over the contact line for two different
values of εr = 0.01 and 0.1, respectively, we try to explain
the contrasting conductivity-induced alterations in interfacial
dynamics. For a relatively higher value of the electrical
conductivity of the advancing phase fluid as realized through
a smaller εr (<1) in the context of the present analysis, a
weak deformation of the interface is observed in the channel
[see Fig. 13(a)], whereas a larger deformation is witnessed for
εr = 1.

In fact, the change in the deformation of the interface is
an outcome of the variation of contact line velocity, largely
stemming from the alteration in magnetic field-induced force
with a change of contrast in conductivity ratio. Note that for
the given set of other parameters considered, the higher the
value of the advancing fluid conductivity (εr < 1), the higher
is the magnetic force being applied at the contact line, albeit
the strength of the imposed magnetic field remains unchanged.
Figure 13(b) verifies a relatively higher magnetic force for a
smaller εr (= 0.01), leading to an increased velocity of the
moving contact line [see Fig. 12(c)]. This higher contact line
velocity imparts a rapid wetting phenomenon, culminating in
a reduction in filling rate satisfying the mass conservation in
the flow field. This observation is further supported by the
interface deformation as delineated in Fig. 13(a). Notably, a
close look at Fig. 13(b) indicates that, with the movement of the
interface along the channel, Fx,Mag|MCL increases for εr = 0.01
(a representative case of a higher conductivity of the advancing
phase fluid), largely attributable to the higher momentum of the
advancing phase fluid inside the channel. We should mention
that the variations of Fx,Mag|MCL are in clear support of the
variation of contact line velocity as depicted in Fig. 12(c).

IV. CONCLUDING REMARKS

We have investigated the capillary filling dynamics of
an immiscible binary system constituted by two electrically
conducting fluids under the influence of an applied magnetic
field in a narrow fluidic channel. We used the energy-based

framework of the Cahn-Hilliard–Navier-Stokes system of
equations with the appropriate wetting conditions to perform
the numerical experimentation. We have shown how the
interfacial dynamics become affected under the influence of
an applied magnetic field, upon experiencing an intricate inter-
play among different forcings, viz., the magnetic field-induced
Lorentz force, the viscous drag, and the surface tension force
as modulated by the wettability of the surface. We studied the
behavior of capillary dynamics under the combined influence
of surface wettability and an imposed magnetic field for two
different cases. First, we investigated the underlying dynamic
behavior for a property-matched binary system, and in the
second case, we explored the effects of contrast in properties
on the underlying interfacial transport. We demonstrated that
the competition among these forces causes an alteration in the
net force on the interface, leading to a change in the contact
line motion, which, in turn, establishes an intricate control
over the capillary filling and wetting dynamics inside a narrow
fluidic channel. Further, we demonstrated that a change in
the ratio of the fluid properties leads to an alteration in the
forcing over the interface, and its ultimate effect culminates in
achieving a greater degree of controllability over the filling and
wetting dynamics in the process. We believe that the results
obtained from the present analysis may improve the design
of microfluidic devices and systems, which are relevant to
biomedical applications and products.
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APPENDIX: COUPLING BETWEEN HYDRODYNAMICS
AND THE PHASE FIELD

The coupling between the Navier-Stokes equations and the
phase field is through the additional body force term G∇φ

in the right-hand side of Eq. (5a). The expression within
brackets in the free-energy functional given by Eq. (1) is
known as Lagrangian,L and is a function of φ and ∇φ. Hence,
for a 1D case, the free-energy functional can be given as
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F = ∫
L(x,φ,φ′)dx. An arbitrarily small, virtual change in

this free-energy functional is given by

δF =
∫ [

∂L

∂φ
δφ + ∂L

∂φ′ δφ
′
]
dx. (A1)

Applying δφ = 0 at boundaries and with further simplifi-
cation, one arrives at the expression

δF =
∫ [

∂L

∂φ
− d

dx

(
∂L

∂φ′

)]
δφdx. (A2)

For extremization, δF is set to zero, being true for any
arbritrary δφ. This leads to a form of Euler-Lagrange equation

∂L

∂φ
− ∂

∂xi

(
∂L

∂(∇φ)

)
= 0. (A3)

By Noether’s theorem of calculus of variations, this can
also be expressed in the form of an equivalent conservation law

∇ · T = 0, where stress tensor T is the stress due to existence
of participating phases.

T = ∂L

∂(∇φ)
∇φ − Lδij . (A4)

This stress can be shown to take the form G∇φ where G

is given by Eq (3). Hence, the system of equations comprising
the Navier-Stokes equations in fluid dynamics and the Cahn-
Hilliard phase field equation are mutually coupled through the
phase field. While the Cahn-Hilliard equation takes care of the
evolution of the system with the thermodynamically consistent
principle of minimization of free energy, the Navier-Stokes
equations take care of the hydrodynamic aspects of the flow.
Under equilibrium conditions, the chemical potential G that
drives the evolution of phases due to residual free energy,
reduces to zero.
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