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Periodic jetting and monodisperse jet drops from oblique gas injection
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When air is blown in a straw or tube near an air-liquid interface, typically one of two behaviors is observed: a
dimple in the liquid’s surface, or a frenzy of sputtering bubbles, waves, and spray. Here we report and characterize
an intermediate regime that can develop when a confined air jet enters the interface at an angle. This regime
is oscillatory with a distinct characteristic frequency and can develop periodic angled jets that can break up
into monodisperse aerosols. The underlying mechanisms responsible for this highly periodic regime are not well
understood. Here we flow a continuous stream of gas through a tube near a liquid surface, observing both optically
and acoustically the deformation of the liquid-air interface as various parameters are systematically adjusted.
We show that the Kelvin-Helmholtz instability is responsible for the inception of waves within a cavity formed
by the gas. Inertia, gravity, and capillary forces both shape the cavity and govern the frequency and amplitude
of these gas-induced cavity waves. The flapping cavity focuses the waves into a series of periodic jets that can
break up into droplets following the Rayleigh-Plateau instability. We present scaling arguments to rationalize
the fundamental frequencies driving this system, as well as the conditions that bound the periodic regime. These
frequencies and conditions compare well with our experimental results.
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I. INTRODUCTION

When a steady stream of gas passes through a tube near
a stationary liquid interface, the interface typically exhibits
one of two behaviors. If the orifice is relatively far away or if
the flow rate is low enough, the liquid surface dimples [1,2].
Alternatively, if the orifice is close to or below the liquid
surface, or if the flow rate is relatively high, the surface erupts
into a frenzy of waves, bubbles, and droplets [1]. This bubbling
can be random or regular, as is the case with air sparging
[3]. Many previous studies have focused on the vertical
impingement of gas jets above a liquid surface, resulting in
the production of waves and polydisperse droplets [4,5]. We
explore a regime between these two expected behaviors for
oblique impingement, a regime that is characterized by the
formation of periodic jets formed by the flow of a gas through
a nozzle angled near or below the liquid interface. Although
this regime has been noted [6], to our knowledge it has not
been systematically investigated.

The existence and boundaries of the periodic jetting regime
explored in this article, as well as surrounding regimes, can be
seen by flowing gas through a tube near a liquid surface while
varying the tube angle (Fig. 1). Here nitrogen gas steadily
flows through a tube resting on the bottom of a shallow Petri
dish filled with 10 cSt silicon oil. At shallow angles, the liquid
interface is deformed slightly by the flowing gas, creating a
steady, stationary cavity [Fig. 1(a)]. As the angle of inclination
increases, it reaches a critical value θwave, above which the
interface becomes unstable and waves propagate radially
across the surface [Fig. 1(b)]. As the angle increases further,
the waves focus into a wide oscillating jet, or bulge, near the
end of the tube outlet [Fig. 1(c)]. This jet continues to focus
with increasing angle and eventually becomes sufficiently
long and narrow to pinch into monodisperse droplets that
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roll along the liquid interface [Fig. 1(d)]. Indeed, if the jet is
sufficiently long and narrow, more than one drop can pinch
off as the jet recoils [Fig. 1(e)]. Ultimately the tube will
reach another critical angle, θbubble, where periodicity gives
way to an irregular eruption of bubbles, jets, and droplets
[Fig. 1(f)]. This irregular regime appears qualitatively similar
to the sputtering or splashing regime observed in asymmetric
air jet impingement [1,5,7]. The phenomenon resembles the
regimes created by gas jets vertically impinging on a liquid
surface [4] and, along with the presence of gas flowing across
the fluid interface, draws parallels with typical atomization
[8,9]. Unlike the monodisperse droplets observed in the current
study, the droplet distribution from vertically impinging jets
or typical atomisation is irregular and polydisperse, indicating
distinct mechanistic differences.

Although we are not aware of any previous studies detailing
the regular oscillatory jets of liquid formed by air injection
[Figs. 1(c)–1(e)], aspects of the phenomenon resemble various
known multiphase oscillators. The onset of waves is similar to
the transition to large amplitude waves in stratified two-phase
pipe flow, where the Kelvin-Helmholtz instability governs the
transition [10]. The oscillations of liquid and gas at the end of
the tube also bear similarities with the glug-glug of an inverted
closed bottle, an instability linked to compressibility effects
of the gas [11]. The formation of a stationary oscillatory jet
is characteristic of the parametric excitation responsible for
Faraday waves [12]. The oscillation frequency is similar to an
observed turbulence-induced interface-instability [13], and the
formation of a stream of equal-sized droplets resembles that
formed by the Rayleigh-Plateau instability in flow-focusing
microfluidic devices [14].

In the present study, we investigate the conditions necessary
to create focused periodic perturbations on the deformed
interface, a phenomenon that we refer to as cavity waves.
We design a setup to systematically measure the characteristic
frequency and present a map to depict the regime boundaries.
We analyze the acoustic data to assess the periodicity of the
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FIG. 1. Gas injection into a Petri dish of silicone oil can exhibit
various dynamics. As the angle of the tube with the liquid surface
is increased, there is a progression from a steady cavity to periodic
waves, a stream of monodisperse droplets, and eventually a frenzy of
bubbles and polydisperse droplets.

regimes. Finally, we develop scaling arguments for the regime
transitions and the underlying parameters responsible for the
fundamental frequency in the particular region in which cavity
waves focus to form oscillating jets.

A relevant feature of the oscillating jets documented in this
study is their ability to break up into aerosol droplets. We
expect the periodic jets to behave similarly to isolated finite
liquid filaments, breaking up into one or more droplets based
on the aspect ratio and liquid properties [15]. Aerosols are
pertinent to a variety of industrial applications and natural
global processes [16,17]. Certain aerosol formation can be
detrimental, such as those that vectorize and transport airborne
pathogens through the pulmonary tract [18]. Aerosols of
various sizes are generated from different sites within the
airways, and the precise mechanisms leading to the formation
of respiratory aerosols are still not well understood [19].
Indeed, of the four modalities of aerosol formation, three are
related to airflow near an air-liquid interface [20]. Thus, a
better understanding of how a gas flow near an interface can
generate aerosols may help to explain why and how some of
these respiratory aerosols form. More generally, the dynamics
arising from an impinging gas jet is of importance in certain
industrial processes, such as arc welding [21] and steel making
[7]. The transitions between different interfacial dynamics for
inclined jets may be relevant to these processes.

FIG. 2. A schematic of the experimental setup. The liquid is
placed in a tank on a microstage to precisely control the distance
Z that the tube is submerged. The tube angle θ and flow rate Q are
also measured and varied.

II. METHODS

The experimental setup used to investigate the parameter
space of the periodic jetting phenomenon is shown in Fig. 2.
A liquid-filled tank sits atop a microstage, allowing this
liquid bath to move vertically (± 40 μm) relative to a
circular tube used to inject gas across the liquid surface.
This relative distance sets the depth Z of the bottom of
the tube beneath the free surface. The angle of the tube
can be adjusted independently of the bath, allowing for a
variation in the angle θ between the horizontal and tube
axes. The depth of the liquid in the bath h0 = 30 mm is
chosen to be deep enough to have a negligible influence on
the interface dynamics. It should be noted that even with a
much shallower liquid depth in the Petri dish (Fig. 1) the
jetting phenomenon investigated is qualitatively similar. We
have selected 10 cSt silicone oil as the bath liquid and nitrogen
gas as the injected fluid. Elements of the phenomenon can
be observed with water, but the full features are sharpened
by using a slightly more viscous liquid with lower surface
tension to attenuate shorter-wavelength capillary waves. These
shorter waves are sensitive to experimental details affected
by boundary conditions and confound interpretation of the
underlying mechanisms that we investigate here. The viscosity
μ and density ρ of each fluid are reported in Table I, along
with the interfacial tension γ between these fluids, as reported
by the manufacturer. The fixed, circular tube has an internal
diameter of either d = 4.8 mm or d = 6.2 mm and is connected
to a high-pressure nitrogen tank via a regulation system that
provides precise control over the flow rate Q. The flow rate
can be adjusted with a precision of ± 4 ml/s.

Thus, the relevant geometrical properties of the system
are the tube depth Z , angle θ , and diameter d. The relevant
physical properties are the densities ρ1, ρ2 and viscosities

TABLE I. Viscosity, density, and surface tension of the two fluids
used in the experiments.

Fluid μ (Pa s) ρ (kg m−3) γ (mN m−1)

Nitrogen (gas) 1.76 × 10−5 1.16
Silicone oil 10 cSt 9.35 × 10−3 935 20.1
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μ1, μ2 of the two fluids, where 1 refers to the liquid in the bath
and 2 the gas flowing through the tube, surface tension γ , and
gravity g. The single dynamic property is the flow rate of the
gas Q. The overall dynamics of the system are recorded with
a combination of high-speed video using a Photron Fastcam
SA5 high-speed camera and high-resolution images with a
Nikon D7000 DSLR. In addition, acoustic data are recorded
using a hydrophone immersed in the liquid bath at the same
initial horizontal distance from the tube outlet.

To assess the relative role of tube angle θ and depth Z on
the interface dynamics, we sweep these two parameters and
create a regime map. In the absence of flow (Q = 0 ml/s),
the tube is fixed at a particular angle θ and the bath raised
until the inner edge of the tube outlet is at the same height
as the liquid surface; this position defines the tube depth
Z = 0. Gas flow is introduced at a particular flow rate and
fixed for the duration of a single sweep. The liquid bath is
raised until a regime transition is detected from the high-speed
photography. The value of the tube depth Z at this height is
recorded as a transition point. The bath continues to be raised,
such that the subsequent transition points can be recorded in
the same manner, until the random bubbling-sputtering regime
is reached (see supplemental movie 1 [22]). The bath is then
lowered and the transition points recorded a second time to
confirm the absence of hysteresis in this system. The procedure
is then repeated for different angles θ .

III. EXPERIMENTAL RESULTS

A regime map is portrayed in Fig. 3 with a flow rate
Q = 24 ml/s, the internal diameter d = 4.8 mm and all other
parameters fixed as described above. The lack of hysteresis
and precision of the experimental setup lead to error bars
smaller than the graphing markers used, and as a result the
error bars are not plotted. For a given angle θ , as the tube depth
Z is increased, the interface transitions from a steady cavity
to waves to breaking jets, and finally to a bubbling-sputtering
regime. The same transition behavior, in terms of the order

FIG. 3. An experimentally derived regime map illustrates the
interplay between tube submersion distance Z and inclination angle
θ . Here the flow rate is Q = 24 ml/s, the internal diameter of the tube
is d = 4.8 mm, and all other parameters are fixed.

of regimes and lack of hysteresis, can be obtained by fixing
the tube depth Z and increasing the angle θ , as indicated in
Fig. 1.

A relation between the depth Z and angle θ becomes
apparent when rescaling the data in Fig. 3 by Z/(d cos θ )
[Fig. 4(a)]. Below angles of approximately θ ≈ 50◦, the
transition points between the different regimes occur at
constant values of Z/(d cos θ ). This independence of the
transition points for θ � 50 also holds for the d = 6.2 mm
tube. For these smaller values of θ , more of the air flows
tangentially across the interface than normally impacts it. In
contrast, at the higher values of θ , more of the flow impinges
the liquid surface, and the dynamics may be more similarly to
the impact of an impinging vertical air jet [1,2].

Physically, the scaling Z/(d cos θ ) can be interpreted as
the ratio of the submerged depth � = Z/cos θ orthogonal
to the tube relative to the tube diameter d [Fig. 4(b)].
This ratio therefore represents an approximation for the
fraction of the tube that is closed. Further parameter sweeps
carried out in this paper are conducted at an angle θ = 30◦
and presented in terms of �/d to take advantage of this
reduction in dimensionality.

Note that we have selected the phases boundaries in Figs. 3
and 4 to correspond with abrupt changes in the interface
dynamics. Specifically there is a sharp transition at the onset of
waves (circles in Figs. 3 and 4), a topological change associated
with the aerosol formation from the breaking jets (squares),
and a sudden audible breakdown in periodicity associated with
sputtering (triangles). The periodic jets identified in this article
do not have a clear onset and instead develop smoothly from the
waves interacting with a pronounced cavity [Fig. 1(c)]. From
experiments it appears that this onset occurs when �/d ≈ 1
(see supplemental movie 1 [22]).

The acoustic signal of the flow can provide insight into
the different regimes in Fig. 4, especially as it relates to
their regularity [23,24]. In our setup, a hydrophone records a
one-minute audio file for a given set of parameters. The mean
spectrum is obtained by averaging over the Fourier transform
of every 10 s of the audio file. Figure 5 presents the acoustic
signature in both the spatial and frequency domains. When the
cavity develops waves [Fig. 5(a)], the hydrophone measures
pressure fluctuations that correspond to these interfacial waves.
Indeed, high-speed imaging confirms that the fundamental
frequency from the acoustics matches with the frequency of
the air-liquid interface displacement. The breaking jet regime
exhibits a more complex acoustic signature, rich in harmonics
and subharmonics [Fig. 5(b)]. Note that there is a slight shift
in the fundamental frequency between these two regimes;
however, both frequencies are in the range of 30 to 40 Hz. The
electronic noise at 60 Hz is also visible in the spectrum but has a
negligible contribution. In the bubbling-sputtering regime, the
acoustics are far more complex and lack a clear fundamental
frequency, providing evidence for the chaotic nature of this
regime [Fig. 5(c)]. The spectrum of the bubbling regime
changes when the flow rate is significantly reduced, forming a
range of distinct frequencies [Fig. 5(d)]. Here a single bubble
stream is emitted from the completely submerged tube and
the detected sound is likely due to both the collapse of the
air connection at bubble detachment [25] and by the rupturing
bubble at the surface [26].
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FIG. 4. Reducing dimensionality. (a) The regime map in Fig. 3 is nondimensionalized and plotted in terms of Z/(d cos θ ) and θ . At low
angles, the regime boundaries occur at constant values of Z/(d cos θ ) when all other parameters are fixed. Here the flow rate is Q = 24 ml/s,
the internal diameter d = 4.8 mm. (b) The parameter Z/(d cos θ ) can be geometrically interpreted as the fraction of the tube outlet that is
submerged �/d .

It is natural to inquire whether a change in flow rate affects
other boundaries and frequencies. To address this question, we
complete another parameter sweep in which the flow rate Q

and depth Z are varied, while maintaining a fixed tube angle
θ = 30◦. The regime map and the accompanying fundamental
frequency for each flow rate are shown in Fig. 6. The fraction
�/d at which the tube needs to be submerged to generate
waves decreases with increased flow rate of gas Q [circles
in Fig. 6(a)]. When the tube is fully submerged (�/d > 1),
the system can create periodic jets or bubbling-sputtering. Here
it appears that the transition to jet break-up and bubbling are
nearly independent of the flow rate. At low flow rates, the
bubbling is periodic [denoted by the asterisk in Fig. 6(a)];
however, the transition to this regime of periodic bubbling was
not systematically investigated. Repeating these experiments
for a larger tube (d = 6.2 mm), we find the dynamics follow

the same trend. The fraction �/d at which the tube needs to be
submerged to generate waves decreases with increased flow
rate of gas. Similarly when the larger tube is fully submerged
(�/d > 1), the system also can create periodic jets or bubbling-
sputtering with transition for periodic jets occurring around
�/d = 1 and bubble or sputtering at values between 1.2 and
1.3 that also appear independent of flow rate and θ .

Between the steady cavity and bubbling-sputtering regimes,
there is a clear fundamental frequency f obtained from the
acoustics [Fig. 6(b)]. For the d = 4.8 mm tube [open symbols
in Fig. 6(b)], this frequency ranges from approximately 20 to
40 Hz. As the tube outlet fraction �/d increases, the frequency
f increases. The dependence of frequency on the flow rate
Q is less pronounced and appears to be nonmonotonic, first
decreasing and then increasing with increasing flow rate. Of
particular interest is the frequency when �/d � 1 [darker

FIG. 5. Acoustic signatures captured by the hydrophone for the various dynamic regimes: (a) wave regime (�/d = 1.0, Q = 47 ml/s),
(b) breaking jet regime (�/d = 1.4, Q = 47 ml/s), and (c) irregular bubbling-sputtering regime (�/d = 1.4, Q = 16 ml/s). (d) A distinctly
different acoustic signature appears for the bubbling regime at a low enough flow rate that a periodic stream of bubbles rise to the liquid surface
and rupture (�/d = 1.4, Q = 8 ml/s). Each set of acoustic data is plotted in both the spatial domain (left) and the frequency domain (right).
Here d = 4.8 mm and θ = 30◦.
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FIG. 6. Experimental data illustrating the role of flow rate Q. (a) The regime map as a function of tube outlet fraction �/d and flow rate Q

with d = 4.8 mm. (b) The fundamental frequencies f in the periodic regime (waves and breaking jet) as a function of flow rate Q and tube
outlet fraction �/d . Conditions with �/d � 1 are repeated with a larger diameter d = 6.2 mm tube. Here the tube angle is fixed at θ = 30◦. The
region marked with an asterisk represents the regime of regular bubbling observed at high tube submersion and low flow rates. The transition
from the regular or periodic bubbling regime to irregular bubbling was not systematically investigated.

symbols in Fig. 6(b)], as this condition is linked to the periodic
jetting regime. When hydrophone experiments are repeated
for the larger tube (d = 6.2 mm) for these tube outlet fractions
�/d, a slightly lower fundamental frequency f is observed
[closed symbols in Fig. 6(b)].

IV. MODELING AND DISCUSSION

A. Onset of periodicity

The periodic jetting regime documented in this article is
bounded on one side by the onset of waves and on the other
by the formation of bubbles and sputters. Focusing first on the
transition from the steady cavity to the formation of waves,
our data show that the tube is never fully submerged (�/d < 1)
when this transition takes place [Fig. 7(b)]. Furthermore, the
amount of tube submersion at the onset of waves decreases
with increasing flow rate Q. This trend is consistent with a
shear-induced instability. Indeed, we can develop a falsifiable
model to test the hypothesis that the onset of waves is due to
a Kelvin-Helmholtz instability, rather than other instabilities
such as those responsible for the glug-glug in bottles [11].

The Kelvin-Helmholtz instability occurs when there is a
velocity difference at the interface between two fluids [27,28].

FIG. 7. Transition for steady cavity to waves. (a) A schematic of
the area of the tube outlet fraction available for the flow of gas.
(b) Experimentally measured transition values for two different
diameter tubes are plotted for various tube outlet fractions and
nondimensional flow rates and compared to theory.

If the velocity difference at the interface �U = |U2 − U1| is
greater than a critical value, the shear stress will overcome
the restoring forces of surface tension and gravity, amplifying
small perturbations of the interface into waves. For an initially
flat interface between two inviscid fluids the threshold velocity
is given by

Uc =
[

2
ρ1 + ρ2

ρ1ρ2

√
(ρ1 − ρ2)gγ

]1/2

. (1)

To estimate the instability criterion for the system described
in this paper, we relate U2 to the velocity of the gas at
the tube outlet and U1 to the velocity of the liquid at the
interface. We assume that this interface velocity U1 is nearly
stationary. Indeed, we directly measure the liquid velocity U1

to be consistently two orders of magnitude lower than the gas
velocity U2. These measurements are obtained by seeding the
liquid with micrometric-sized bubbles and tracking the bubble
motion near the interface.

For incompressible flow in a confined tube, the relationship
between the flow rate Q and the average gas velocity at the tube
outlet is given by U2 = Q

Ae
, where Ae is the cross-sectional area

of the exiting gas [Fig. 7(a)]. This area is related geometrically
to �/d by

Ae = 7
d2

8
ζ (�/d) with

ζ (x) = 2 arccos(2x − 1) − sin[2 arccos(2x − 1)]. (2)

Therefore the average velocity of the gas is given by

U2 = Q

/[
d2

8

{
2 arccos

(
2

�

d
− 1

)

− sin

[
2 arccos

(
2

�

d
− 1

)]}]
. (3)

If the transition from the steady cavity to the wave regime
is due to a Kelvin-Helmholtz instability, then we would
expect the transition to occur when the gas velocity U2 is
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approximately equal to the instability onset velocity Uc. With
a large density difference between the two fluids, as is the case
in this study, Eq. (1) can be simplified, so that the transition

between the regimes would occur when U2 =
√

2 (ρ1gγ )1/2

ρ2
.

Therefore, the predicted transition can be expressed in terms
of the flow rate Q and tube submersion distance � as

�

d
= ζ−1

[
4
√

2

(
Q

d2

)√
ρ2

(ρ1gγ )1/2

]

≈ 1 −
(

2
√

2

π

)(
Q

d2

)√
ρ2

(ρ1gγ )1/2 . (4)

These expressions, both exact and the approximate, are
plotted in Fig. 7(b). The approximation can be physically
interpreted as the depth at which the transition to waves
would occur in an equivalent square tube. Alongside these
theoretical predictions are the experimental results from
Fig. 6(a), nondimensionalized and extended to include even
higher flow rates, as well as additional data taken with the
larger diameter tube. With a greater immersion depth �/d, and
thus smaller gas exit area Ae, the flow rate required to induce a
transition to the wave regime is lowered. When the flow rate is
scaled following Eq. (4), the experimental data for the onset of
waves collapse onto a master curve that is consistent with our
model [Fig. 7(b)]. Therefore our data suggest that the onset
of waves for the partially submerged tube is indeed due to the
Kelvin-Helmholtz instability.

Note that the model slightly underestimates the experimen-
tal data, likely attributable to the model’s assumption of a flat
static interface and a sharp velocity discontinuity in the flow
profile at the interface. The angle of the tube is included in the
analysis through its effect on the cross-sectional area Ae and
the length � = Z/cos θ . However, as noted in the schematic
Fig. 4(b), the flowing gas is also angled and exerts a deforming
force on the liquid surface. This force is balanced by gravity
and capillary forces acting to flatten the interface, which gives

rise to the steady cavity similar to that previously described for
perpendicular gas flow [1,2]. As the gas flow rate is increased,
the liquid level at the tube outlet decreases below � due to the
cavity [Fig. 4(b)]. This lowering of the liquid level effectively
increases the gas exit area Ae and requires a higher flow rate
Q to achieve the critical velocity Uc and may explain the
rightward shift of the experimental data from the theoretical
curve in Fig. 7(b). The model also assumes gas flow tangent
to the liquid interface, based on our experimental results on
the independence of the transition points �/d with θ � 50,
we expect the model to be valid over this range of angles θ

as well. A correction factor is not implemented in the model
as the assumption of an initially flat interface is sufficient
to capture the underlying relationship between the transition
points, flow rate, and the immersion depth, albeit offset from
the experimental data. Based on the similarity between the
model and experiments, corrections also do not seem to be
necessary to account for a continuous velocity profile, even
though it is known that the Kelvin-Helmholtz instability is
often sensitive to the precise shape of the gas boundary layer
[28,29].

B. Breakdown of periodicity

The transition from a steady cavity to the wave regime
marks the onset of periodicity in the system. With the continued
lowering of the tube, the waves form on a well-defined cavity
and focus to form periodic jets. Much of this periodic jetting,
including the breaking jets, occur when tube is fully submerged
below the interface (�/d > 1). Yet in these cases, there appears
to be a connected path for the gas to flow from the tube to the
atmosphere (Fig. 8). However, for sufficiently large values of
�/d, this pathway can pinch apart each period, severing the
connection to the surface and creating distinct bubbles. For
flow rates higher than in the periodic bubbling regime [marked
by an asterisk in Fig. 6(a)], the collapse of these bubbles at
the surface produces a cacophony of waves, jets, and droplets,

FIG. 8. (a) A time series of high-speed images representing one period of the breaking jet regime. Here the tube is fully submerged a
distance H from the free surface. (b) The high-speed images from (a) thresholded with the tube masked to provide better visualization of the
interface.

013112-6



PERIODIC JETTING AND MONODISPERSE JET DROPS . . . PHYSICAL REVIEW E 96, 013112 (2017)

which may be best described as sputtering [Fig. 5(c)]. For
values of �/d > 1, we are able to introduce a new dimension
H = Z − d cos θ ; H represents the vertical distance between
the top of the tube outlet and the unperturbed bath liquid
surface (Fig. 8).

Pinch-off at the tube outlet occurs when buoyancy forces
overcome capillary forces [30], which translates roughly to
a detaching bubble diameter that is larger than the capillary

length λc =
√

γ

ρ1g
. Provided that the tube is submerged at a

depth below this critical detaching bubble diameter (H > λc),
a bubble can detach from the tube, separating the gas within the
tube from the surrounding atmosphere. Conversely, provided
that H < λc, there remains a conduit for the gas between
the tube and the atmosphere. If cavity pinch-off indeed is
responsible for the transition into the bubbling-sputtering
regime, then the transition would be expected to occur at a
critical tube depth Z ≈ d cos θ + λc, or equivalently

�bubble

d
≈ 1 + λc

d cos θ
. (5)

Note that this transition is independent of flow rate Q

and instead depends on the properties of the liquid λc, the
diameter of the tube d, and θ . This prediction is quantitatively
consistent with the experimentally observed transitions shown
in Fig. 6(a). For these parameters (λc = 1.48 mm, d = 4.8 mm,
θ = 30◦) the bubbling-sputtering transition is predicted to
occur when �/d ≈ 1.36. With the larger tube at this angle, the
transition is predicted to be slightly lower, which is consistent
with our observations. These comparisons illustrate that the
model captures the effects of flow rate and tube diameter;
however, Eq. (5) also predicts a dependence on inclination
angle θ , which interestingly is not readily apparent in the
experimental data shown in Fig. 4. For angles θ < 50◦, �bubble

d

is predicted to range from approximately 1.31 to 1.48 for
the d = 4.8 mm tube. Yet for higher inclination angles, the
predicted transition rapidly diverges from the experimental
data, suggesting that the model is only appropriate for lower
inclination angles.

C. Modeling the fundamental frequency

With both transitions theoretically defined, we now have a
lower and upper bound for the region of periodicity and can
look within the region itself. Our acoustic results indicate that
there is a fundamental frequency f in the periodic regime
that increases with increasing tube depth � and decreases with
increasing tube diameter d (Fig. 6). Here we have focused
on changing the dimension orthogonal to the tube tip � and
recorded the effect this change has on regime transition and
frequency. However, specific emphasis must be made of the
three-dimensional nature of this phenomenon, especially as it
relates to the focusing effect of the collapsing cavity. The
formation of jets from collapsing cavities has long been
appreciated in the oceanography community [31,32] and has
recently also been shown to occur when cavities are created
by single-pulsed air jets [33].

At a right azimuthal angle to �, the tube diameter d plays an
important role in setting the collapse dynamics of the cavity.
The collapsing cavity waves have to traverse not only the
vertical distance � but also a spanwise distance set by the tube

diameter d. For �/d < 1 there is an increase in the frequency
with increasing � which may be due to an increased restoring
force from the increased cavity curvature [Fig. 6(b)]. For
�/d � 1 there is a limitation, the distance d, on the vertical
distance the waves can travel due to the tube confinement.
With comparable length scales in the vertical and spanwise
directions, a focusing effect can be seen as the waves meet
during the collapse of the cavity, creating the periodic jetting
seen in Figs. 1(c)–1(e). Also, the effect of � on the frequency
is significantly diminished, reinforcing the use of d as the
dominant length scale in the periodic jetting regime [Fig. 6(b)].

Inspection of Fig. 8 reveals that when the tube is submerged
(�/d � 1), there is a convective time associated with the liquid-
gas interface rising and constricting the gas flow out the end of
tube. Indeed, once the liquid nearly constricts the tube opening
(�t = 14 ms in Fig. 8) this liquid is rapidly cleared. Therefore
the time τ for a wave traveling with speed c to constrict a tube
with diameter d can be related to the fundamental frequency
f as

τ = d

c
= 1

f
. (6)

The waves formed by the collapsing flapping cavity follow the
dispersion equation for waves under the influence of gravity
and capillarity at the interface of fluids of infinite depth (h0 �
1
2λ),

ω =
√

gk + γ k3

ρ1
, (7)

where ω is the angular frequency and k the wave number [34].
These waves propagate with a phase velocity vp given by

vp = ω

k
=

√
g

k
+ γ k

ρ1
. (8)

The cavity waves propagate naturally at the minimum of the
phase velocity, when there is a balance between gravitational
and capillary effects. This minimum occurs when the wave-
length is the capillary length of the bath liquid, λc. This
wavelength results in a critical wave number

kc = 1

λc

=
√

ρ1g

γ
, (9)

which when used in Eq. (8) gives the wave speed

c =
√

g

(
γ

ρ1g

)1/2

+ γ

ρ1

(
ρ1g

γ

)1/2

=
√

2

(
γg

ρ1

)1/4

. (10)

Equations (6) and (10) can be combined and rearranged to
reveal that

f d√
2
(

γg

ρ1

)1/4 = 1. (11)

This combination of parameters can be interpreted as a
nondimensional frequency, or alternatively as a Strouhal
number, and can be used to predict the fundamental frequency
based on the material and geometric parameters.

To test this prediction, we replot the experimental data
presented in Fig. 6(b) on axes that correspond to our proposed
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FIG. 9. The frequency response [Fig. 6(b)] for two different
diameter tubes plotted using the dimensionless frequency and the
dimensionless flow rate suggested from the proposed mechanism.
The broken lines are visual aids bounding the region of periodicity.

nondimensional flow rate and nondimensional frequency
(Fig. 9). Data points are bound by the steady cavity and
bubble regimes. For values of �/d � 1 [the darker symbols
in Figs. 6(b) and 9], values on which our model is based,
the nondimensional frequency is indeed approximately one,
revealing that our experimental results are consistent with our
model predictions. Equally important, the experimental data
for the two different diameter tubes collapse, supporting the
frequency scaling and its dependence on the tube diameter d.

Note that all of the dimensionless groups are independent
of viscosity. Viscous effects can be quantified through the
Ohnesorge number Oh ≡ μ1√

ρ1γ d
, which indicates the balance

between viscous, inertial, and surface tension forces. For the
results presented, Oh = 0.03; because this value is much less
than one, the dynamics are likely dominated by inertial and
surface tension forces. This balance reinforces the use of
the inviscid Kelvin-Helmholtz theory [35] and suggests that
the fundamental frequency should be independent of liquid
viscosity provided that Oh � 1. To test this prediction, we

FIG. 10. Effect of viscosity on frequency response. The dimen-
sionless frequency is plotted against an Ohnesorge number and
indicates the relative contribution of viscosity to the dynamics of
the phenomenon. The fluids used, in order of increasing viscosity,
are water and silicone oils of viscosity 10, 100, 1000, 10 000 and
100 000 cSt.

measure the fundamental frequency f at three different tube
depths in different viscosity silicone oils. Figure 10 gives
the dimensionless frequency plotted against the Ohnesorge
number. For Oh � 1 the dimensionless frequency is shown to
be independent of the Ohnesorge number, and by extension
viscosity. For an Oh � 1 there is a transition to a viscous time
scale with the dimensionless frequency scaling with Oh−1. The
results shown in Fig. 10 further support the use of the inviscid
Kelvin-Helmholtz theory provided that the Oh < 0.3. The use
of inviscid Kelvin-Helmholtz theory for the bath viscosity used
in this study is further supported by previous work [36], which
showed the independence of wave frequency and wavelength
below a critical viscosity on the same order of magnitude
shown in Fig. 10.

V. CONCLUSION

In this paper, we systematically investigate the phenomena
arising from steady gas injection through an angled tube
at a gas-liquid interface. In particular, we explore a novel
regime in which the stream of gas creates a periodically
collapsing cavity in the liquid. This flapping cavity gives rise
to an oscillating jet from which monodisperse droplets can be
produced through the Rayleigh-Plateau instability. Through
a combination of experiments and scaling arguments, we
provide evidence that waves, driven by a Kelvin-Helmholtz
instability, focus into jets through the periodic collapse of
the gas cavity. This periodic jetting regime is bounded on
one side by the onset of the Kelvin-Helmholtz instability and
the existence of a pronounced cavity (�/d ≈ 1) and on the
other side by the pinch-off of a conduit that permits gas to
travel continuously from the injection tube to the atmosphere.
Within these bounds, the system oscillates with a fundamental
frequency that appears to be set by the cavity collapse speed
and the tube diameter.

The gas-induced cavity waves bear the hallmarks of both
a shear induced instability and jet-drop formation from a
collapsing bubble. The combination of these two normally dis-
parate topics in fluid mechanics may help experimentalists and
theorists unlock a new class of liquid-gas oscillators capable
of producing highly repeatable events, such as monodisperse
droplets. Although our experiments are restricted to a liquid-
gas system, the high-frequency jet drop production may
extend to analogous liquid-liquid systems and provide an
efficient means to create monodisperse emulsions. Similarly,
the tube-bath setup in this study shares geometric features with
multiphase branched-tube networks, and our scaling results
may provide insight into the creation of certain respiratory
aerosols.
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