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Derivation of stable Burnett equations for rarefied gas flows
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A set of constitutive relations for the stress tensor and heat flux vector for the hydrodynamic description of
rarefied gas flows is derived in this work. A phase density function consistent with Onsager’s reciprocity principle
and H theorem is utilized to capture nonequilibrium thermodynamics effects. The phase density function satisfies
the linearized Boltzmann equation and the collision invariance property. Our formulation provides the correct
value of the Prandtl number as it involves two different relaxation times for momentum and energy transport by
diffusion. Generalized three-dimensional constitutive equations for different kinds of molecules are derived using
the phase density function. The derived constitutive equations involve cross single derivatives of field variables
such as temperature and velocity, with no higher-order derivative in higher-order terms. This is remarkable
feature of the equations as the number of boundary conditions required is the same as needed for conventional
Navier-Stokes equations. Linear stability analysis of the equations is performed, which shows that the derived
equations are unconditionally stable. A comparison of the derived equations with existing Burnett-type equations
is presented and salient features of our equations are outlined. The classic internal flow problem, force-driven
compressible plane Poiseuille flow, is chosen to verify the stable Burnett equations and the results for equilibrium
variables are presented.
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I. INTRODUCTION

Accurate description of rarefied gas flows is required for
various microelectromechanical systems and vacuum appli-
cations [1–5]. These flows are characterized by high Knudsen
number Kn (the ratio of the mean free path to the characteristic
length scale). The governing equation describing flow in
the transition regime (Kn � 0.1) is however not available.
The Navier-Stokes equations do not describe the physics of
gas flows in the transition regime due to the failure of the
continuum hypothesis, fundamental to the derivation of these
equations. A second-order slip model at the walls can push
the limit of the Navier-Stokes equations to the initial transition
regime but not beyond [6–8]. Therefore, alternate transport
models, namely, Burnett and Grad 13-moment equations have
been derived, with kinetic theory playing the central role.
The search for accurate transport models is however far from
over, as the proposed models are plagued by several severe
shortcomings, which explains the reason for the existence of
their numerous variants. Derivation of accurate continuum
transport models is invaluable as they provide a theoretical
description of the problem (thereby opening the exciting
possibility of obtaining an analytical solution) and serve as
an alternative to performing expensive simulations [the most
popular being the direct simulation Monte Carlo (DSMC)
technique].

The Boltzmann equation describes the dynamics of gas
flow over the entire Knudsen number range [1–3,9]; however,
solving this equation is rather involved. Linearization of the
equation reduces the complexity to some extent; however, this
simplification is only possible for weak departures from equi-
librium, while significant deviations from equilibrium requires
the solution of the full Boltzmann equation. Computational
techniques to solve the Boltzmann equation are not as well
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developed as, for example, the Navier-Stokes equations in
computational fluid dynamics. The Chapman-Enskog expan-
sion of the distribution function (with Knudsen number as
the small parameter) is used to construct an approximate
solution of the full Boltzmann equation. Nonlinear constitutive
relations for the stress tensor and heat flux vector are obtained
by retaining second-order-accurate terms in the Chapman-
Enskog series [1,2]. These constitutive relations provide a
computationally inexpensive alternative for describing gas
flow in the rarefied regime (Kn � 0.001) and capture many
rarefied gas flow phenomena [4,5,10–14]. The truncation of the
Chapman-Enskog expansion to second-order results in Burnett
equations, which yield linearly unstable rest states [15,16], is a
major drawback of the Chapman-Enskog expansion approach.

Zhong [17] derived augmented Burnett equations by adding
linearly stabilizing terms from super-Burnett equations. The
augmented equations provide more accurate solutions in
the shock layer than the Navier-Stokes equations [15,18].
However, these equations involve derivatives of fourth order,
thereby requiring several additional boundary conditions for
their solution. Moreover, the H theorem (or entropy consis-
tency) is not proven for these set of equations. Interestingly,
generalized Burnett equations that do not contain third-order
derivatives of velocity and temperature have been found to
be better than the classical Burnett equations [19]. Welder
et al. [20] discussed the instability of Burnett equations in
view of the nonlinear terms present. This instability has
been addressed by Jin and Slemrod [21] with a viscoelas-
tic relaxation approximation. The proposed system satisfies
entropy inequality, ensuring irreversibility of the relaxation
process. Jin and Slemrod [21] obtained a system of weakly
parabolic equations, with a hyperbolic convection part, by
relaxing the pressure tensor and heat flux vector through rate
equations. The resulting equations were found to be linearly
stable and yield Burnett equations when expanded via the
Chapman-Enskog expansion. Agarwal et al. [15] employed
the Bhatnagar-Gross-Krook (BGK) model to represent the
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nonlinear collision integral in deriving entropy consistent
equations. The BGK model assumes the same time for thermal
and momentum diffusion leading to a Prandtl number of unity.

The Chapman-Enskog expansion assumes small Knudsen
number in its derivation, which makes its validity questionable
in transition and free molecular regimes, where Kn exceeds
unity. Burnett equations contain third-order derivatives of
velocity requiring additional boundaries that are not available.
Burnett equations suffer from many other issues [17,22–24].
For example, Struchtrup and Torrilhon [25] showed that
small oscillations at a point results in large oscillations at
other points. Burnett equations do not yield a solution to the
Boltzmann equation in the Knudsen layer [26,27]. We have
recently provided an analytical solution of Burnett equations
for Couette flow [28], planar flow [29], and cylindrical
Poiseuille flow [6]. Apart from these nonlinear constitutive
relationships, for a description of rarefied gas flows, equations
for higher-order moments such as Grad’s moment [30],
regularized 13-moment equations [25,31], or regularized 26-
moment equations [32,33] have also been derived. These
equations have been shown to have success in predicting
many rarefied gas flow phenomena. Those derivations have
ignored some of the key nonequilibrium thermodynamics ideas
such as Onsager-Casimir relations [34–36]. We have recently
proposed 13-moment equations [37], where we close equations
for higher-order moments using Onsager’s principle consistent
distribution function.

Sharipov [38] expanded the Boltzmann equation in terms of
power series of thermodynamic forces and utilized Onsager’s
reciprocal relations in its construction. The phase density
function relaxing to a Maxwellian distribution in the absence
of any thermodynamic force at any Knudsen number makes
the approach interesting. Other classes of transport equations
that comply with nonequilibrium thermodynamics deal with
maximization of entropy production. For instance, Dadzie [39]
introduced an additional moment for a variable that accounts
for the local number of molecules and their spatial distribution.
He did not employ the Chapman-Enskog approach nor did
he solve the Boltzmann equation. Öttinger [40] proposed
13 parameter solutions of Boltzmann’s kinetic equation and
provided a closure.

These earlier attempts that have not been entirely successful
motivated us to construct continuum models whose core
lies in satisfying the principles of nonequilibrium thermo-
dynamics [24,35,40]. In order to capture strong deviations
from equilibrium, the transport equations should (a) represent
the approximate solution of the full Boltzmann equation
and (b) have closure based on principles of nonequilibrium
thermodynamics (such as maximum entropy production and
symmetry in thermodynamic fluxes). The core idea of our
approach is to satisfy these requirements, thus making the
definition of the entropy production and thermodynamic fluxes
consistent with Gibbs’ relation. The evaluation procedure of
the phase density function ensures that the function is in
agreement with the solution of the Boltzmann equation and
satisfies the H theorem. We recently derived the distribution
function [37] that we utilize further in the present work.
This phase density function, derived without invoking the
Chapman-Enskog series, is then utilized to obtain generalized
three-dimensional constitutive equations. Interestingly, no ad-

ditional boundary conditions are needed to solve the proposed
Burnett-type equations. The phase density function provides
the correct value of Prandtl number. The derivation does not put
any cap on the Knudsen number, making it possible to apply
the proposed equations to the transition regime, Kn > 0.1.

II. CONSTITUTIVE RELATIONSHIPS:
DERIVATION PROCEDURE

The single-particle distribution function f , which expresses
the probability of finding the molecules in phase space element
dxdc, can be obtained from the Boltzmann equation

∂f

∂t
+ c · ∇xf + G · ∇cf = Jm(f,f ), (1)

where x is the space vector, c is the molecular velocity, G
is the external force, which is considered to be independent
of the molecular velocity c, and Jm(f,f ) is the binary
particle collision integral. The Maxwellian distribution that
corresponds to the equilibrium distribution is

f0 = ρ

m

(
β

π

)3/2

exp[−β(c − u)2], (2)

where β = 1/2RT , R is the specific gas constant, T is the
absolute temperature, u is the bulk velocity, ρ is the density,
and m is the molecular mass.

The moments of the single-particle distribution function
with � (= m{1,ci,

1
2 |C|2}) upon its inner product 〈�,f 〉 ≡∫

�f dc yield variables that are assumed to describe the
state of the gas completely (C is the peculiar velocity,
C = c − u). The inner product results in density ρ = m

∫
f dc,

momentum ρui = m
∫

cif dc, and energy ρε = 3
2ρkT /m =

m
∫ |C|2f dc, where k is the Boltzmann constant. These

moments of the Boltzmann equation result in conservation
laws for the macroscopic quantities [30,41]. For instance, if
f = f0, the approach yields the Euler equations. The resulting
generalized conservation equations are

∂ρ

∂t
+ ∂ρuk

∂xk

= 0, (3)

ρ
∂ui

∂t
+ ρuk

∂ui

∂xk

+ ∂p

∂xi

+ ∂σik

∂xk

= ρGi, (4)

ρ
∂ε

∂t
+ ρuk

∂ε

∂xk

+ ∂qk

∂xk

+ p
∂uk

∂xk

+ σij

∂ui

∂xj

= 0, (5)

where Gi is the external body force, p is the pressure, and pij

and qi are

pij = pδij + σij = m

∫
CiCjf dc, qi = m

∫
|C|2Cif dc,

(6)

which still need to be evaluated.

III. ONSAGER’S PRINCIPLE CONSISTENT PHASE
DENSITY FUNCTION

A. Onsager’s reciprocity principle and earlier approaches

In this section we construct the phase density function
that is consistent with Onsager’s principle of reciprocity. We
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do not construct higher-order corrections to the equilibrium
distribution function using the Chapman-Enskog expansion or
Grad’s approach of using a Hermite polynomial.

The entropy produced in any process can be expressed
in terms of the thermodynamic forces Xi and fluxes Ji .
Onsager [42,43] proposed the phenomenological linear law
to relate these fluxes and forces: Ji =∑n

k=1 LikXk , where
Lik = Lki also holds. De Groot and Mazur [35] have shown
that only a first approximation of the phase density function
in the Chapman-Enskog series that yields Navier-Stokes con-
stitutive relationships satisfies Onsager’s symmetry principle.
Furthermore, the second approximation of the Chapman-
Enskog expansion, which leads to Burnett-type higher-order
continuum equations, leads to entropy production and fluxes
different from Gibbs’ relation and do not satisfy the symmetry
principle [34–36,44]. These thermodynamic inconsistencies
of the distribution function may cause generation of unstable
modes observed in Burnett-type hydrodynamic equations
[16,45,46]. Therefore, we derive a distribution function pre-
serving Onsager’s symmetry by expressing it in terms of
appropriate thermodynamic forces and fluxes.

B. Derivation of the distribution function

The first-order distribution function obtained from the
Chapman-Enskog expansion can be cast in terms of thermo-
dynamic forces Xi and fluxes ϒj around the local equilibrium
distribution in the following way [35,47]:

f (1) = f0 − (ϒτ : Xτ + ϒq · Xq), (7)

ϒj = −f0tr(j )ϒ̄j , (8)

ϒ̄τ = −{C ⊗ C − 1
2 [|C|2(γ − 1)]I

}
,

ϒ̄q = −
(

5

2β
− |C|2

)
C, (9)

Xτ = β[∇ ⊗ u + (∇ ⊗ u)T ], Xq = ∇β, (10)

where ⊗ is the outer product, tr(τ ) is the relaxation time for
momentum transport (= μ/p), tr(q) is the relaxation time for
energy transport [= κ(γ − 1)/Rγp], subscripts τ and q have
been used with both flux and force associated with stress and
heat flux, respectively, μ is the viscosity, κ is the thermal
conductivity, and γ is the ratio of specific heat. Macroscopic
thermodynamic flux can be obtained as Ji = 〈ϒ̄i,f 〉. This form

of distribution function is standard and has been shown to yield
constitutive relationships that satisfy Onsager’s symmetry
principle [35]. Note that the thermodynamic forces and fluxes
for the precise form of distribution function in Eqs. (7)–(10)
can also be obtained from the following Chapman-Enksog-like
expansion [47,48]:

ϒj � Xj = tr(j )

(
∂f0

∂t
+ ∇x · (cf0)

)
Xj =0∀j 	=i

, (11)

where � denotes full tensor contraction of ϒi and Xi

of the same tensorial order. This formulation assumes the
standard BGK collision model with two different time scales
corresponding to momentum and thermal diffusion. Thermo-
dynamic forces (Xτ and Xq) relax the nonequilibrium state
to the equilibrium state in these two characteristic time scales.
The variation of the momentum diffusion and thermal diffusion
time scales is taken into account using μ = μ0(T/T0)ϕ and
κ = κ0(T/T0)ϕ , where μ0 and κ0 are the viscosity and thermal
conductivity at reference temperature and ϕ depends on the
interaction type between molecules (for example, ϕ ≈ 0.75 for
air). Any assumption about the type of molecule is not required
in this formulation. Note that two different relaxation times
(for momentum transport and energy transport) are involved
above, which resolves the issue of the Prandtl number being
nonunity for most gases.

Since the first-order correction satisfies the symmetry
principle owing to the form in which the distribution function
is constructed, we keep the functional form of the distribution
function in terms of forces and fluxes and then derive a
second-order correction to the Maxwellian distribution. The
distribution function with a second-order correction therefore
can be expanded in terms of ϒi � Xi as follows (also in [47]):

f =f0 −
∑

j

ϒj � Xj +
∑
k,j

(ϒkj � Xk) � Xj + · · · . (12)

The second-order correction to the distribution function in
Eq. (12) is evaluated in a manner similar to Eq. (11), with the
Maxwellian distribution replaced by the first-order correction
function [48]

ϒkj � Xk = tr(j )

(
∂ϒj

∂t
+ ∇x · (cϒj )

)
Xj =0∀j 	=i

. (13)

The second-order corrections can be obtained from Eq. (13)
in a form consistent with the first-order correction as

ϒjj = f0t
2
r(j )ϒ̄jj , (14)

where

ϒ̄ττ � Xτ

= −

ω1︷ ︸︸ ︷
Ci

[
C ⊗ ∂u

∂xi

+
(

C ⊗ ∂u
∂xi

)T
]

+

ω2︷ ︸︸ ︷
1

2β
[C ⊗ ∇g + (C ⊗ ∇g)T ] −

⎡
⎢⎢⎣

ω3︷ ︸︸ ︷
1

2β
(γ − 1)C · ∇g −

ω4︷ ︸︸ ︷
1

2β
(γ − 1)(C ⊗ C) : Xτ

⎤
⎥⎥⎦I

−

ω5︷ ︸︸ ︷
ϒ̄τ

⎛
⎝ 1

tr(τ )

∑
j

ϒj � Xj

⎞
⎠+

ω6︷ ︸︸ ︷
ϒ̄τ

{
[ϕ(γ − 1) − γ ]∇ · u + ϕ

β
C · ∇β + C · ∇g

}
, (15)
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ϒ̄qq � Xq = −

ξ1︷ ︸︸ ︷
ϒ̄q

⎛
⎝ 1

tr(q)

∑
j

ϒj � Xj

⎞
⎠−

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ2︷ ︸︸ ︷
1

β
[C · ∇g] −

ξ3︷ ︸︸ ︷
1

β
(C ⊗ C) : Xτ +

ξ4︷ ︸︸ ︷(
5

2β

)
(γ − 1)∇ · u +

ξ5︷ ︸︸ ︷(
5

2β2

)
(C · ∇β)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭C

−

ξ6︷ ︸︸ ︷[
5

2β
− |C|2

][
1

2β
∇g

]
−

ξ7︷ ︸︸ ︷[
5

2β
− |C|2

]
[C ⊗ ∇u] +

ξ8︷ ︸︸ ︷
ϒ̄q

{
[ϕ(γ − 1) − γ ]∇ · u + ϕ

β
C · ∇β + C · ∇g

}
, (16)

and g = log(ρ/β). Note that the terms ω6 and ξ8 are obtained from the variation of time scales. The distribution function with
known contractions of forces and fluxes can therefore be expressed as

f = f0 − (ϒτ : Xτ + ϒq · Xq + (ϒττ � Xτ ) : Xτ + (ϒqq � Xq) · Xq). (17)

The terms capturing deviations from equilibrium should also satisfy the additional constraint of the additive invariants property
of kinetic theory:

〈�,(f − f0)〉 = 0. (18)

The obtained second-order correction to the distribution function however does not satisfy Eq. (18) in the present form. The
function is therefore modified in such a way that it satisfies the additive invariance property without breaking Onsager’s symmetry.
Details of the modification procedure for satisfying the additive invariance property are available in our recent work [37]. For
brevity, we present here only the final form of the distribution function:

f ′ = f0 − [ϒτ : Xτ + ϒq · Xq + (ϒ ′
ττ � Xτ ) : Xτ + (ϒ ′

qq � Xq) · Xq], (19)

where

ϒ̄ ′
ττ � Xτ = ϒ̄ττ � Xτ +

ω7︷ ︸︸ ︷
�

tr(τ )
(ϒq · Xq)ϒ̄τ +

(
5

2β
− |C|2

)⎛⎝ ω8︷ ︸︸ ︷
�(ω6 + ω1)

⎞
⎠,

ϒ̄ ′
qq � Xq = ϒ̄qq � Xq +

ξ9︷ ︸︸ ︷
�

tr(q)
(ϒτ : Xτ )ϒ̄q +

(
5

2β
− |C|2

)⎛⎝ ξ10︷ ︸︸ ︷
�C · ∇βC

⎞
⎠,

� = ϕ + 2, � = −2

5
, � = −ϕ

tr(τ )

tr(q)
− tr(q)

tr(τ )
+ 2, ϒ ′

jj = f0t
2
r(j )ϒ̄

′
jj .

The collision invariance property (18) of the distribution function (19) has been explicitly shown to be satisfied [37]. With this
final Onsager principle consistent distribution (19), we close conservation equations (3)–(6) in the next section.

IV. ONSAGER PRINCIPLE CONSISTENT BURNETT REGIME CONSTITUTIVE EQUATIONS

The phase density function (19) is substituted in Eq. (6) to evaluate the Burnett order constitutive relationships. The employed
distribution function being consistent with the principles of nonequilibrium thermodynamics has the promise of yielding more
accurate higher-order continuum transport equations. Note that the second-order correction to the distribution function involves
a huge number of terms as apparent from Eqs. (15) and (16). Some simplification is however possible by realizing that odd
moments of peculiar velocity with equilibrium distribution function are zero:

� = m

∫
C

λ1
i C

λ2
j C

λ3
k |C|λ4f dc, (20)

i.e., all the exponents λ1, λ2, λ3, and λ4 need to be even simultaneously.
We now present a detailed derivation for the new expression of σB

11 (where the superscript B indicates Burnett order). It can
be readily seen from Eq. (20) that the ω2, ω3, ξ3, ξ4, and ξ7 terms do not contribute to the integral in Eq. (6). The contributions
of the remaining ωi and ξi terms to the integrals are as follows:

m

∫
C2

1ω1 : Xτf0t
2
r(τ )dc = −4

μ2β

ρ

[
3u2

x + v2
y + w2

z + 2

(
uyvx + uzwx + 1

2
vzwy

)
+ 1

2

(
u2

y + u2
z + v2

z + w2
y + 3w2

x + 3v2
x

)]
,

(21)

m

∫
C2

1ω4 : Xτf0t
2
r(τ )dc = 4

μ2β

ρ

(γ − 1)

2

[
3u2

x + v2
y + w2

z + 2
(
2uxvy + 2uxwz + vywz

)]
, (22)
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m

∫
C2

1ω5 : Xτf0dc

= 4
μ2β

ρ

[
3

2
u2

y + 3

2
u2

z + 3

2
v2

x +
(

35γ 2 − 154γ + 179

8

)
u2

x + 1

2
v2

z +
(

35γ 2 − 98γ + 75

8

)(
v2

y + w2
z

)

+ 3

2
w2

x + vz + 1

2
w2

y + 3uyvx + 3uzwx +
(

35γ 2 − 126γ + 103

4

)
(uxvy + uxwz) +

(
35γ 2 − 98γ + 67

4

)
vywz

]
, (23)

m

∫
C2

1ω6 : Xτf0t
2
r(τ )dc = −4

μ2β

ρ

(
ϕ(γ − 1) − γ

4

)[
(5γ − 11)u2

x + (5γ − 7)uxvy + (5γ − 7)uxwz + (5γ − 11)uyux

+ (5γ − 7)uyvy + (5γ − 7)uywz + (5γ − 11)uzux + (5γ − 7)uzvy + (5γ − 7)uzwz

]
, (24)

m

∫
C2

1�ω8 : Xτf0t
2
r(τ )dc = �4

μ2β

ρ

1

5

[
(−9 + 3γ )u2

x + 4(−1 + γ )uxvy + 4(−1 + γ )uxwz + (−3 + γ )
(
v2

y + w2
z

)
+ 2(−1 + γ )vywz − 4uyvx − 4uzwx − u2

y − u2
z − v2

y − w2
z − 2vywz

]
, (25)

m

∫
C2

1ξ1 · Xqf0t
2
r(q)dc =

(
2κβ(γ − 1)

Rργ

)2[ 9

8β3

(
3β2

x + β2
y + β2

z

)]
, (26)

m

∫
C2

1ξ2 · Xqf0t
2
r(q)dc = −

(
2κβ(γ − 1)

Rργ

)2[ 1

4β2
(3βxgx + βygy + βzgz)

]
, (27)

m

∫
C2

1ξ5 · Xqf0t
2
r(q)dc = −

(
2κβ(γ − 1)

Rργ

)2[ 5

8β3

(
3β2

x + β2
y + β2

z

)]
, (28)

m

∫
C2

1ξ6 · Xqf0t
2
r(q)dc = 0, (29)

m

∫
C2

1ξ8 · Xqf0t
2
r(q)dc =

(
2κβ(γ − 1)

Rργ

)2[
ϕ

4β3

(
3β2

x + β2
y + β2

z

)+ 1

4β2
(3βxgx + βygy + βzgz)

]
, (30)

m

∫
C2

1�ξ10 · Xqf0t
2
r(q)dc = −�

(
2κβ(γ − 1)

Rργ

)2[ 1

4β3

(
3β2

x + β2
y + β2

z

)]
, (31)

m

∫
C2

1�(ω7 : Xτ + ξ9 · Xq)f0t
2
r(q)dc = 0. (32)

In these equations, u, v, and w are the velocity components along the x, y, and z directions, respectively.
The addition of Eqs. (21)–(32) yields the expression for σB

11. In a similar manner, expressions for other elements of the stress
tensor and heat flux vector can be derived. For the sake of brevity, we present only the final expressions for other stress and heat
flux components. The proposed constitutive relationships therefore are

σB
11 = 4

μ2β

ρ

[(
125γ 2 − 576γ + ϕ(110 − 160γ + 50γ 2) + 643

40

)
u2

x + 4

5

(
u2

y + u2
z

)+ 1

5
(uyvx + uzwx) − 3

5

(
w2

x + v2
x

)

+
(

125γ 2 − 392γ + ϕ(70 − 120γ + 50γ 2) + 291

40

)(
v2

y + w2
z

)+(125γ 2 − 392γ + ϕ(70 − 120γ + 50γ 2) + 307

40

)
vywz

+
(

100γ 2 − 484γ + ϕ(90 − 140γ + 50γ 2) + 459

20

)
(uxvy + uxwz) − 2

5
(vzwy) − 1

5

(
w2

y + v2
z

)]
, (33)

σB
12 = 4

μ2β

ρ

(−1

10

)
[(23γ + 5γ ϕ − 5ϕ − 37)(uxuy + vxvy) − 10uzvz + (23γ + 5γ ϕ − 5ϕ − 51)(uxvx + uyvy + 4wxwy)

− 3(vzwx + uzwy) + (23γ + 5γ ϕ − 5ω̇ − 37)(uywz + vxwz)], (34)
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qB
1 = 4

μ2β

ρ

[(−47 + 25γ

8

)
gxux

β
+ ϕ

(
49 − 35γ

8β2

)
(βxvy + βxwz) − 1

2β
(gyuy + gyvx + gzwx)

+ϕ

(
77 − 35γ

8

)
βxux

β2
+ 7ϕ

4β2
(βyuy + βzuz + βyvx + βzwx) +

(−39 + 25γ

8β

)
(gxvy + gxwz)

]

+
(

2κ(γ − 1)

Rγ

)2 1

ρβ

[
−βyvx − βzwx

(−77 + 35γ + 10ϕ(−1 + γ )

8

)
βxux

− 7

4
(βyuy + βzuz) +

(−59 + 35γ + 10ϕ(−1 + γ )

8

)
(βxvy + βxwz)

]
. (35)

The full stress tensor and heat flux vector can be obtained by a suitable change of variables in the equations for σB
11, σB

12, and qB
1 .

For completeness, we note that the expression for σB
22 can be evaluated from the expression for σB

11 in Eq. (33) by performing an
appropriate change of variables u → v, x → y, v → u, and y → x. The expression for σB

33 can be evaluated from the expression
for σB

11 in Eq. (33) as u → w, x → z, w → u, and z → x. The expression for σB
23 can be evaluated from the expression for σB

12 in
Eq. (34) by replacing u → v, x → y, v → w, y → z, w → u, and z → x and the expression for σB

31 by u → w, x → z, v → u,
y → x, w → v, and z → y. Similarly, to obtain the heat flux vectors qB

2 and qB
3 we replace u → v, x → y, v → u, and y → x

and u → w, x → z, w → u, and z → x in Eq. (35), respectively.

V. PROPOSED BURNETT ORDER EQUATIONS

In this section we present the final set of conservation equations for mass, momentum, and energy, closed with consistent
Onsager symmetry principle thermodynamic fluxes, stress tensor, and heat flux vector

∂ρ

∂t
+ ∂ρuk

∂xk

= 0, (36)

ρ
∂ui

∂t
+ ρuk

∂ui

∂xk

+ ∂p

∂xi

+ ∂σik

∂xk

= ρGi, (37)

ρ
∂ε

∂t
+ ρuk

∂ε

∂xk

+ ∂qk

∂xk

+ p
∂uk

∂xk

+ σij

∂ui

∂xj

= 0, (38)

with expressions for σ11, σ12, and q1 are given below, obtained by adding the corresponding Navier-Stokes and Burnett terms

σ11 = σNS
11 + σB

11 = μδ1ux + μδ2vy + μδ2wz + 4
μ2β

ρ

[
α1u

2
x + α2u

2
y + α3u

2
z + α4uyvx + α5uzwx + α6w

2
x

+α7v
2
x + α8uxvy + α9v

2
y + α10w

2
z + α11vywz + α12uxwz + α13vzwy + α14w

2
y + α15v

2
z

]
, (39)

σ12 = σNS
12 + σB

12 = μδ3uy + μδ3vx + 4
μ2β

ρ

[
β1uxuy + β2vxvy + β3uzvz + β4uxvx + β5uyvy

+β6wxwy + β7vzwx + β8uzwy + β9uywz + β10vxwz

]
, (40)

q1 = qNS
1 + qB

1 = δ4κ
βx

2Rβ2
+ 4

μ2β

ρ

[
γ1

gxux

β
+ γ2

βxvy

β2
+ γ3

βxwz

β2
+ γ4

1

β
gyuy + γ5

1

β
gyvx + γ6

1

β
gzwx + γ7

βxux

β2

+ γ8
1

β2
βyuy + γ9

1

β2
βzuz + γ10

1

β2
βyvx + γ11

1

β2
βzwx + γ12

gxvy

β
+ γ13

gxwz

β

]

+
(

2κ(γ − 1)

Rγ

)2 1

ρβ
[γ14βyvx + γ15βzwx + γ16βxux + γ17βyuy + γ18βzuz + γ19βxvy + γ20βxwz]. (41)

The constants appearing in front of the derivatives of flow field variables are as follows:

δ1 = −4

3
, δ2 = 2

3
, α1 =

(
125γ 2 − 576γ + ϕ(110 − 160γ + 50γ 2) + 643

40

)
, α2 = 4

5
, α3 = 4

5
, α4 = 1

5
,

α5 = 1

5
, α6 = −3

5
, α7 = −3

5
, α8 =

(
100γ 2 − 484γ + ϕ(90 − 140γ + 50γ 2) + 459

20

)
,
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α9 =
(

125γ 2 − 392γ + ϕ(70 − 120γ + 50γ 2) + 291

40

)
, α10 = α9,

α11 = α9 + 18

40
, α12 = α11, α13 = −2

5
, α14 = −1

5
, α15 = α14,

δ3 = −1, β1 = 23γ + 5γ ϕ − 5ϕ − 37

10
, β2 = β1, β3 = −1, β4 = β1 − 14

10
,

β5 = β4, β6 = 4β4, β7 = − 3

10
, β8 = β7, β9 = β1,

δ4 = 1, γ1 =
(−47 + 25γ

8

)
, γ2 = ϕ

(
49 − 35γ

8

)
, γ3 = γ2, γ4 = − 1

2
, γ5 = γ4, γ6 = γ4, γ7 = +ϕ

(
77 − 35γ

8

)
,

γ8 = 7ϕ

4
, γ9 = γ8, γ10 = γ9, γ11 = γ8, γ12 =

(−39 + 25γ

8

)
, γ13 = γ12, γ14 = −1, γ15 = γ14,

γ16 =
(−77 + 35γ + 10ϕ(−1 + γ )

8

)
, γ17 = −7

4
, γ18 = γ17, γ19 = −59 + 35γ + 10ϕ(−1 + γ )

8
, γ20 = γ19.

These coefficients are a function of the type of gas, such as monatomic and diatomic, and the interaction potential variable ϕ

between molecules. Substitution of these stress and heat flux terms in Eqs. (36)–(38) completes the derivation of our proposed
Burnett-type equations.

VI. LINEAR STABILITY ANALYSIS

A linear stability analysis of the equations derived in the
preceding section is now performed. The analysis is performed
for a one-dimensional wave about the following equilibrium
state: u = 0, ρ = ρ0, and T = T0. Assume small perturbations
around equilibrium

u = u′(x,t),

ρ = ρ0 + ρ ′(x,t), (42)

T = T0 + T ′(x,t)

(where X′ denotes small quantities away from equilibrium)
and substitute Eq. (42) in the governing equations (36)–(38).
This yields the following set of equations upon linearization:

∂ρ ′

∂t
+ ρ0

∂u′

∂x
= 0, (43)

ρ0
∂u′

∂t
+ ρ0R

∂T ′

∂x
+ RT0

∂ρ ′

∂x
+ 4

3
μ

∂2u′

∂x2
= 0, (44)

3

2
ρ0R

∂T ′

∂t
− κ

∂2T ′

∂x2
+ p0

∂u′

∂x
= 0. (45)

It is remarkable to note that there are no Burnett order terms
in the above equations. This ensures that the stability of the
derived equations is the same as that for the Navier-Stokes
equations.

The above stems from the fact that Eqs. (33)–(35) involve
only the cross product of the derivative of velocity, tempera-
ture, and pressure. Therefore, the σB

11, σB
12, and qB

1 terms all
become identically zero for small perturbation. In contrast, the
presence of second derivatives of velocity and temperature in
the stress tensor and heat flux vector in Burnett equations leads
to the problem of stability.

VII. FORCE-DRIVEN PLANE POISEUILLE FLOW

Force-driven plane Poiseuille flow, an example of classic
internal flow, is chosen as the standard case to verify the stable
Burnett equations. Several nonintuitive and nonequilibrium
thermodynamic phenomena such as a nonconstant pressure
profile in the transverse direction, a characteristic temperature
dip at the center, and tangential heat flux are observed in force-
driven plane Poiseuille flow. The inability of Navier-Stokes-
Fourier equations to capture these effects has been widely
reported in the literature [15,24,49].

Uribe and Garcia [50] performed a comprehensive study
analyzing the flow characteristics of force-driven compressible
plane Poiseuille flow by Burnett equations for Knudsen
numbers equal to 0.025, 0.05, and 0.1. To validate these results,
they also conducted numerical simulations using the DSMC
technique. In order to establish the validity of the presently
derived stable Burnett equations, the problem is defined in
exactly the same way as by Uribe and Garcia [50] so as to
compare the results from the stable Burnett equations with
DSMC data and the conventional Burnett equations.

In the present study, we consider a steady-state one-
dimensional flow confined between two infinite and stationary
plane parallel walls, as shown in Fig. 1. The walls are located
at y = ±L/2 and maintained at a constant temperature TR .
An external body force a in the x direction drives the flow.
The velocity normal to the stationary walls (v) and the third
component of velocity (w) are both zero. All the flow variables
are assumed to be functions of the y direction only [50]. With
these assumptions, we have the following conditions:

ui = {u(y),0,0}, ∂uk

∂xk

= 0,
D

Dt
= ∂

∂t
+ uk

∂

∂xk

= 0.

(46)

In the two-dimensional framework of the problem, i.e., the
flow quantities independent of the third direction, the stress
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FIG. 1. Schematic of plane Poiseuille flow driven by an external
force a.

tensor and heat flux vector reduce to

σij =
⎡
⎣σ11(y) σ12(y) 0

σ12(y) σ22(y) 0
0 0 −σ11(y) − σ22(y)

⎤
⎦,

qi = [q1(y), q2(y), 0]. (47)

Conservation equations for momentum and energy [Eqs. (37)
and (38)] with the above simplifications and using the
constitutive relations for the stress tensor and heat flux vector
[Eqs. (39)–(41)] with suitable change of variables reduce to

− d

dy

(
μ

du

dy

)
= ρa, (48)

dp

dy
+ d

dy

[
2μ2α7

1

p

(
du

dy

)2]
= 0, (49)

d

dy

(
κ

dT

dy

)
+ μ

(
du

dy

)2

= 0. (50)

The expressions for dynamic viscosity and thermal conductiv-
ity for a dilute gas of rigid spheres are given as [1]

μ = 5cμ

16σ 2

(
mkT (y)

π

)1/2

, κ = 75cλ

64σ 2

(
k3T (y)

πm

)1/2

, (51)

where σ is the particle diameter and accurate values of cμ =
1.016 034 and cλ = 1.025 13 are known [1]. The variables are
nondimensionalized as [50]

s = y

L
, p∗(s) = p(y)

p(0)
, T ∗(s) = T (y)

TR

,

u∗(s) = u(y)

(2kTR/m)1/2
, (52)

where TR is the temperature of the walls. Using the ideal gas
equation p = ρRT in the x-momentum equation to eliminate
density, the nondimensionalized form of the equations is
given as

d2u∗

ds2
= − 1

2T ∗
dT ∗

ds

du∗

ds
+ b0p

∗

T ∗3/2
, (53)

d2T ∗

ds2
= − 8cμ

15cλ

(
du∗

ds

)2

− 1

2T ∗

(
dT ∗

ds

)2

, (54)

dp∗

ds
=

− 2T ∗
p∗

du∗
ds

[− 1
2T ∗

dT ∗
ds

du∗
ds

+ b0p
∗

T ∗3/2

]+ ( du∗
ds

)2 1
p∗

dT ∗
ds

b2 − T ∗
p∗2

(
du∗
ds

)2 . (55)

The coefficients are

b0 = −8

5

L2a
√

2πp(0)mσ 2

cμk2T 2
R

,

b2 = 64

25

(
p(0)L

kTR

σ 2

cμ

)2
π

α7
. (56)

The above system of three ordinary coupled differential equa-
tions can be expressed as five coupled first-order differential
equations. The inherent symmetry in the problem provides
us with two initial conditions du∗

ds
|s=0 = 0 and dT ∗

ds
|s=0 = 0.

The centerline values taken from DSMC simulations [50] are
specified as

u∗(0) = u0, T ∗(0) = T0, p∗(0) = 1, (57)

Table I shows the values of the different parameters [p(0),
a, and L] as defined in the problem statement and the
initial conditions [u∗(0), T ∗(0), and p∗(0)] for three different
Knudsen numbers as taken from Uribe and Garcia [50]. In
order to simplify the comparison with the DSMC results, the
authors [50] specified m = σ = TR = 1 and k = 1

2 for all the
simulations.

The results of the conserved variables (u∗, p∗, and T ∗)
for the stable Burnett equations are compared with those
of the Burnett equations and the DSMC results obtained by
Uribe and Garcia [50] at Kn = 0.025, 0.05, and 0.1. The
variation of pressure in the cross stream direction at Kn =
0.025 is shown in Fig. 2(a). The genesis of the nonconstant
pressure profile can be explained when we closely examine
the y-momentum equation. On integrating the y-momentum
equation, we have p + σ22 = p(0). The contribution to the
normal stress comes only from the Burnett order terms and
hence the classical Navier-Stokes-Fourier theory is unable
to capture the nonconstant pressure profile. Another striking
feature of the pressure profile is evident in Fig. 2(a), which
shows very unusual bimodal behavior near the wall in the case

TABLE I. Values of different parameters as defined in the problem statement and initial conditions [50].

Parameters Initial conditions

Kn p(0) a L u∗(0) T ∗(0) p∗(0)

0.025 (6.555×10−4)2kTR/σ 3 (1.0×10−5)2kTR/mσ 7440σ 0.689452 1.09814 1.0
0.05 (6.727×10−4)2kTR/σ 3 (4.0×10−5)2kTR/mσ 3720σ 0.7575 1.1293 1.0
0.1 (7.13394×10−4)2kTR/σ 3 (1.6×10−4)2kTR/mσ 1860σ 0.90287 1.2052 1.0
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FIG. 2. (a) Pressure, (b) velocity, and (c) temperature distribution in the cross stream direction in force-driven compressible plane Poiseuille
flow at Kn = 0.025. In the case of velocity and temperature variation, the results of NSF equations, Burnett equations, and stable Burnett
equations overlap.

of DSMC and Burnett equations. As compared to this bimodal
behavior, the stable Burnett equations predict a monotonic
pressure profile with a minimum at the center. However, it
should be noted that the pressure profile according to Burnett
equations is constructed such that it closely follows the DSMC
profile by tweaking one of the coefficients in the differential
equation of pressure. Nonetheless, excellent agreement is
observed in the bulk region, whereas approximately 0.5%
deviation is observed near the wall when compared with the
DSMC results. It is worth mentioning here that the recent
molecular dynamics simulations performed by Rana et al.
[51] at Kn = 0.1 also predicted a similar monotonic behavior,
thereby lending support to the monotonic pressure profile as
predicted by the stable Burnett equations.

Figure 2(b) shows the variation of velocity in the cross
stream direction at Kn = 0.025 with Navier-Stokes-Fourier
(NSF) equations, Burnett equations, stable Burnett equations,

and DSMC simulations, all predicting the same trend, i.e.,
quadratic variation with a maximum at the center. The x-
momentum equation for Burnett equations and stable Burnett
equations reduces to the classical NSF equations and hence the
velocity profiles obtained from NSF theory, Burnett equations,
and stable Burnett equations are virtually indistinguishable. It
is quite evident from Fig. 2(b) that the velocity profile predicted
by the stable Burnett equations is in excellent agreement with
the DSMC results.

The variation of temperature in the cross stream direction
at Kn = 0.025 is shown in Fig. 2(c). The energy equation
in the case of Burnett and stable Burnett equations reduces
to the classical NSF equations and the resulting temperature
profile is quartic with a maximum appearing at the center. The
temperature profile predicted by the stable Burnett equations
is found to be in excellent agreement with the DSMC results,
as shown in Fig. 2(c).
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FIG. 3. (a) Pressure, (b) velocity, and (c) temperature distribution in the cross stream direction in force-driven compressible plane Poiseuille
flow at Kn = 0.05. In the case of velocity and temperature variation, the results of NSF equations, Burnett equations, and stable Burnett equations
overlap.

Similar trends are observed for all the conserved variables
at Knudsen number equal to 0.05. The results of stable Burnett
equations are found to be in excellent agreement with DSMC
results in the case of velocity and temperature, as shown in
Fig. 3. However, in the case of a pressure profile as shown in
Fig. 3(a), a deviation of about 1% is observed near the wall,
while in the bulk region the results are in good agreement with
the DSMC results.

At Kn = 0.1, i.e., in the transition regime, there is a
maximum deviation of 4% near the walls in the case of a
pressure profile when compared with the DSMC results as
shown in Fig. 4(a). Again, the bimodal pressure profile as
predicted by DSMC and Burnett equations is not captured
by the stable Burnett equations. However, when we compare
with the molecular dynamics results of Rana et al. [51],
the monotonic pressure profile as predicted by the stable
Burnett equations compares well with the molecular dynamics
simulation results. Rana et al. [51] suggested that the stochastic

mesoscopic DSMC simulations are inadequate to capture
the gas-wall interactions precisely and hence the pressure
profile is contaminated near the walls. With these recent
findings exposing some of the flaws associated with the DSMC
simulations, the monotonic pressure profile as predicted by the
stable Burnett equations is well justified by the MD simulations
as against the bimodal behavior predicted by the DSMC
simulations and the Burnett equations.

At Knudsen number equal to 0.1, a deviation of about 20%
is observed in the slip velocity as shown in Fig. 4(b). However,
in the bulk region, the velocity profile according to the stable
Burnett equations is in good agreement with the DSMC results.
The bimodal behavior of temperature with a characteristic dip
at the center is quite noticeable at Kn = 0.1 [see Fig. 4(c)]
according to DSMC results, however this dip is not captured
by the stable Burnett equations. It has been pointed out that this
characteristic dip in temperature is probably a super-Burnett
effect [50,52], and since the Burnett equations as well as
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FIG. 4. (a) Pressure, (b) velocity, and (c) temperature distribution in the cross stream direction in force-driven compressible plane Poiseuille
flow at Kn = 0.1. In the case of velocity and temperature variation, the results of NSF equations, Burnett equations, and stable Burnett equations
overlap.

stable Burnett equations are only second-order accurate, their
inability to capture this temperature dip at the center is not
surprising. Nonetheless, the maximum discrepancy between
the DSMC results and the stable Burnett results is found to be
about 1%.

In summary, we can safely say that the stable Burnett equa-
tions are indeed able to capture nonequilibrium phenomena
that are observed in force-driven plane Poiseuille flow with
the exception of a peculiar temperature dip at the center where
the difference in value is less than 1%. This dip is due to
the super-Burnett effect and therefore is not expected to be
captured by the present equations.

VIII. COMPARISON WITH EXISTING
BURNETT-TYPE EQUATIONS

There are differences in the structure of the proposed and
all available equations in the literature [1,15,17,21,22,53].

First, the proposed constitutive equations do not contain
second-order derivatives of velocity that are there in existing
Burnett-type equations. Along with resolving the issue of
stability discussed above, this circumvents the need to find
additional boundary condition for the proposed equations.
That is, the proposed equations require the same number
of boundary conditions as the Navier-Stokes equations for
their solution. This remarkable feature will broaden the range
of applications to which the equations can be applied by
altering the constitutive relationships. Bobylev et al. [19]
showed improved performance in capturing shock profiles
with generalized Burnett equations, which do not contain
third-order derivatives of velocity and temperature.

The second feature of the proposed equations is the absence
of temperature gradient terms in the stress tensor. In contrast,
temperature gradients are present in the stress tensor of
all Burnett-type equations. This reduced coupling between
velocity and temperature allows for complete solution of the
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mass and momentum equations in certain cases (such as
incompressible forced convection problems) before solving
the energy equation.

Third, note the appearance of two different relaxation times
[coefficient ( 2κ(γ−1)

Rγ
)2 1

ρβ
, which can also be expressed as

1/Pr2(μ/p)2, where Pr is Prandtl number] in the expression
of heat flux. Although the problem of deducing the correct
Prandtl number has been addressed [53] by assuming two
different relaxation times for momentum transport and energy
transport, those approaches are at the macroscopic level and
appear arbitrary. Here it is straightforward and natural to
assume two different relaxation times for momentum transport
and energy transport in Eq. (17) and then evaluate expressions
for the stress tensor and heat flux vector accordingly.

IX. CONCLUSION

In this work, a set of stable Burnett-type higher-order
continuum transport equation has been derived. An approach
involving Onsager’s reciprocity principle consistent phase
density function is utilized towards this end. The employed
phase density function satisfies the collision invariance prop-
erties and also satisfies the linearized form of the Boltzmann
equation. The phase density function therefore satisfies the
features of nonequilibrium thermodynamics.

The phase density function is then utilized to evaluate the
Burnett order constitutive relations. It is interesting to note
that the phase density function naturally involves two different
relaxation times for momentum and energy transport, thereby
ensuring the correct value of Prandtl number for any gas. The

derived equations are found to be second order, therefore these
equations do not require more boundary conditions beyond
the Navier-Stokes equations for their complete solution. In
addition, the absence of temperature gradient terms in the stress
tensor is noted. The presence of terms with two relaxation
time scales in the heat flux vector is a different feature of our
equations.

Because our derivation process does not involve the
Chapman-Enskog expansion, the validity of these equations
is not restricted to small Knudsen number. The problem of
stability that plagues the existing Burnett equations is not
there with the derived equations; the equations are shown
to be unconditionally stable. These are a generalized set of
Burnett-type equations applicable to any kind of molecule.

The derivation of these three-dimensional higher-order
continuum equations is an important achievement as it captures
departures from equilibrium in transport phenomena and
establishes the importance of ideas from nonequilibrium
thermodynamics. The validity of these equations is established
by analyzing the results of equilibrium variables in the case
of force-driven compressible plane Poiseuille flow. However,
these equations need to be tested rigorously to fully establish
their potential in capturing rarefied gas flow physics.
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