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A drop falling onto a solid substrate will disintegrate into smaller parts when its impact velocity V exceeds
the so-called critical velocity for splashing, i.e., when V > V ∗. Under these circumstances, the very thin liquid
sheet, which is ejected tangentially to the solid after the drop touches the substrate, lifts off as a consequence of
the aerodynamic forces exerted on it. Subsequently, the growth of capillary instabilities breaks the toroidal rim
bordering the ejecta into smaller droplets, violently ejected radially outward, provoking the splash [G. Riboux
and J. M. Gordillo, Phys. Rev. Lett. 113, 024507 (2014)]. In this contribution, the effect of the growth of the
boundary layer is included in the splash model presented in Phys. Rev. Lett. 113, 024507 (2014), obtaining very
good agreement between the measured and the predicted values of V ∗ for wide ranges of liquid and gas material
properties, atmospheric pressures, and substrate wettabilities. Our description also modifies the way at when
the liquid sheet is first ejected, which can now be determined in a much more straightforward manner than that
proposed in Phys. Rev. Lett. 113, 024507 (2014).

DOI: 10.1103/PhysRevE.96.013105

I. INTRODUCTION

Current technological applications, such as coating, clean-
ing, cooling, combustion, microfabrication through droplet
deposition, or the generation of aerosols, require precise
knowledge of the conditions under which a drop hitting a
solid substrate either conserves its integrity after the impact,
or disintegrates into smaller parts [1]. The relevance of droplet
splashing in many natural and engineering processes, and even
in forensic sciences [2], together with the advances in high-
speed imaging [1], have stimulated the appearance, during the
past 20 years, of a vast number of experimental, numerical, and
theoretical studies on the subject [3–17]. It is our purpose here
to improve the agreement between the critical velocities for
splashing predicted by the model presented in [18] and the ex-
perimental data. It has been recently reported that the model in
[18] (hereafter denoted R&G) is able to quantitatively predict
V ∗, namely the critical velocity for splashing, in a wide variety
of experimental conditions [19–21], this being the reason why
we believe that the improvements to the R&G model described
here could be useful for researchers working on the description
of droplet splashing. Here, we will only refer to the problem of
splashing caused by the impact of a drop onto a solid substrate.
For information on the analogous physical situation of droplet
splashing by impact onto a liquid film, the interested reader is
directed to other recent contributions in [22–27].

The starting point of the model proposed by R&G is to
determine the ejection time of the lamella Te, as well as the
initial values of the thickness and the velocity of the edge
of the liquid sheet, Ht (T = Te) and Vt (T = Te) (see Fig. 1).
Following R&G, R, V , R/V , and ρV 2 are, respectively,
the characteristic length, velocity, time, and pressure used
to define the different dimensionless variables, written in
lower-case letters to differentiate them from their dimensional
counterparts. Here, R indicates the droplet radius, V is the
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impact velocity, and ρ is the liquid density. Some of the main
findings in R&G can be summarized as follows:

(i) The radius of the circular wetted area illustrated in Fig. 1
evolves in time as a = √

3t (see R&G).
(ii) The velocity at which the lamella is initially ejected

is vt (te) � ȧ(te) = 1/2
√

3/te, with dots denoting time deriva-
tives.

(iii) The thickness of the edge of the lamella at the instant
of ejection is ht ∝ ha = 2t

3/2
e /(

√
3π ) (see the supplementary

material in R&G).
(iv) Since ȧ = vt at t = te and the lamella can only be

ejected if its tip advances faster than ȧ, te is calculated by
imposing that the deceleration of the edge of the lamella, v̇t ,
coincides with the deceleration of the wetted area, ä.

In R&G, the ejection time, which is determined by imposing
the condition v̇t = ä, yields the following equation for te:

c1 Re−1 t−1/2
e + Re−2 Oh−2 = äh2

t = c2t3/2
e , (1)

where Re = ρV R/μ and Oh = μ/
√

ρRσ denote, respec-
tively, the impact Reynolds and Ohnesorge numbers, σ is the
interfacial tension coefficient, and c1 � √

3/2 and c = 1.1
are constants adjusted experimentally; the Weber number
is defined here as We = ρV 2R/σ = Re2 Oh2. Equation (1)
expresses that, in the limit Oh � 1, te ∝ We−2/3, whereas in
the moderate to high values of the Ohnesorge number, te ∝
Re−1/2. We also demonstrate in the supplementary material of
R&G that, under the potential flow assumption and for impact
velocities such that V > V ∗, the thickness of the lamella and
the liquid velocity at r = √

3t , i.e., at the radial position where
the drop intersects the substrate, are given, respectively, by

ha = 2 t3/2/(
√

3 π ) and va =
√

3/t. (2)

Equations (2) were also deduced in [28] in a rather different
way from that followed in R&G for the analogous case of the
entry of a solid object into a liquid [29–33].

In R&G it is also shown that, once the sheet is ejected, its
edge experiences a vertical lift force per unit length,

FL = KlμgVt + Ku ρgV
2
t Ht , (3)
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FIG. 1. Sketch of the lamella for T > Te for V > V ∗, i.e., for
impact velocities above which the lamella dewets the substrate. The
regions in which the pressure is larger or smaller than the reference
atmospheric pressure are indicated with either a plus or a minus
sign. The lift force responsible for droplet splashing results from the
integration of the pressure distribution along the edge of the lamella.
This figure also illustrates the definitions of the different variables
needed to describe the position of the rim.

which results from the addition of the lubrication force exerted
by the gas in the wedge region located between the advancing
lamella and the substrate (see Fig. 1), Klμg Vt , and the suction
force exerted by the gas at the top part of it, KuρgV

2
t Ht [18].

Here, the subscript g represents gas quantities, Ku � 0.3 is
a constant determined numerically, and Kl is deduced using
lubrication theory once it is assumed that the front part of
the advancing liquid sheet can be approximated to a wedge of
constant angle α � 60◦ while it is in contact with the substrate.
The origin of the constant wedge angle α relies on the fact
that the no-slip condition provokes the edge of the liquid
sheet to be convected further downstream than the region in
contact with the solid. This argument is in agreement with the
experimental observations in [20], where it was also reported
that the substrate wettability does not appreciably affect the
splash threshold velocity through α.

The coefficient Kl in (3) is deduced using lubrication theory
in the supplementary material of R&G, yielding

Kl = −(6/ tan2 α){C2[a ln(1 + a) − a ln a]

+C3[b ln(1 + b) − b ln b]}, (4)

with

a = 2(�̄g + �̄μ) + 2
√

(�̄g − �̄μ)2 + �̄g�̄μ,

b = 2(�̄g + �̄μ) − 2
√

(�̄g − �̄μ)2 + �̄g�̄μ. (5)

The different coefficients in (4) and the dimensionless vari-
ables in (5) are defined as

C1 = 2 �̄μ

a b
, C2 = 1 − C1 b

b − a
, C3 = −(C1 + C2),

�̄μ = �μ/H0, and �̄g = �g/H0. (6)

Here, H0 = Ht/4, �g � 1.2λ is the slip length of the gas
[34], λ = kBTg/(

√
2πd2pg) is the mean free path between

gas molecules, kB is the Boltzmann constant, Tg and pg are
the gas temperature and pressure, respectively, and d indicates
the effective diameter of gas molecules. Values of λ, μg , and
ρg for different gases are provided in Table I. Contrarily to
R&G, where �̄μ in Eq. (5) was set to zero, yielding

Kl = −[6/ tan2(α)](ln[8�g/Ht ] − ln[1 + 8�g/Ht ]), (7)

TABLE I. Physical properties of the gases used in the experiments
of Fig. 9(b) for Tg0 = 298.15 K and pg0 = 105 Pa. Therefore,
for arbitrary values of the gas temperature Tg and pressure pg ,
λ = λ0(Tg/Tg0)(pg0/pg) and ρg = ρg0(Tg0/Tg)(pg/pg0).

λ0 μg ρg0

(×10−9 m) (×105 Pa s) (kg m−3)

Helium 180 1.98 0.16
Air 65 1.85 1.18
Krypton 55 2.51 3.42
SF6 39 1.53 6.04

here we will retain the complete expression of Kl given by (4),
with �μ = Ht μg/μ (see the supplementary material in [18]
for details).

The vertical velocity at which the lamella is initially
expelled, Vv(Te), can be deduced from the force balance pro-
jected in the vertical direction, ρ H 2

t V̇v ∝ FL = Ku ρgV
2
t +

Kl μg Vt , from which it can be deduced that

Vv(Te) ∝
√

FL/(ρHt ). (8)

The splash criterion in [18] results from imposing that the
vertical velocity (8) is such that β = Vv/VT C , with VT C =√

2σ/ρHt the capillary retraction velocity [35,36] and β �
0.14.

Equation (4) reveals that the lift force exerted by the
lubrication layer located beneath the advancing front depends
logarithmically on the ratio λ/Ht , with λ the mean free path
of the gas. It will be shown below that the ratio λ/Ht could
be of order unity or even larger. This is the reason why the
splash threshold velocity is sensitive to small changes of Ht .
Motivated by this fact, and in order to account for the effect
of the boundary layer developing upstream of the ejected
liquid sheet, the equations for the ejection time (1) and for
the thickness of the lamella, Ht , will be slightly changed with
respect to the corresponding expressions derived in R&G.

II. INFLUENCE OF THE BOUNDARY LAYER
ON THE EJECTION TIME

The large values of the Reynolds number characterizing
the splashing of a droplet impacting against a wall suggest
that we should describe the tangential deceleration of the fluid
at the solid substrate by means of boundary-layer theory. As
a first step, the results of the types of simulations describing
the impact of a drop against a shear free wall described in
[37] and illustrated in Figs. 2(a) and 2(b) provide the velocity
field at the solid substrate for different instants of time: the
radial velocity field computed using potential flow theory
corresponds to the far-field boundary condition for the velocity
component tangent to the solid, vr , in the boundary-layer
equations. Interestingly, Fig. 2(b) reveals that the stagnation-
point type of flows used in previous studies [38–40] are in clear
disagreement with the real ones. More precisely, Fig. 2(b)
reveals that, in the neighborhood of the spatial region from
which the lamella is ejected, r = a(t) = √

3t , the computed
radial velocity at z = 0 is much larger than the corresponding
velocity corresponding to a stagnation-point type of flow,
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(a)

(b)

FIG. 2. (a) Computed shapes of a drop using the potential flow
numerical code described in [37] for a value of the Weber number
We = 100. The inset indicates the position of the stagnation point
existing in the flow in a relative frame of reference translating with
a velocity ȧ for different instants of time. (b) Comparison between
the computed values of the radial velocity vr (r,z = 0) corresponding
to the different drop shapes depicted in part (a) (continuous lines)
and the radial velocity field assumed ad hoc in [38] (dashed lines).
The origin r = 0 corresponds to the impact point. The vertical lines
indicate the radial position of the root of the lamella, r = a = √

3t .

vr ≈ r/t . This analytical form of the radial velocity, vr ≈ r/t ,
is used, for instance, in Refs. [38–40]; it will also be shown
below that the relevant outer velocity field for the development
of the boundary-layer flow entering the ejected thin liquid sheet
is not the one considered in [16,41] either.

Indeed, Fig. 3(a) represents the radial velocity field com-
puted using potential flow simulations [37] in a frame of
reference moving at ȧ, namely the speed at which the root of
the lamella, located at r = a, propagates radially. Interestingly
enough, Fig. 3(a) shows that, in agreement with potential
flow theory [28,30–32] and by virtue of the Euler-Bernoulli
equation applied in the moving frame of reference [18], the
velocity entering into the lamella in the moving frame of
reference is ȧ once the lamella is ejected, i.e., the velocity
of fluid particles entering into the lamella is 2ȧ in the
fixed frame of reference. Figure 3(a) also indicates that fluid
particles entering into the lamella come from a very narrow

(a)

(b)

FIG. 3. (a) Time evolution of the values of the radial velocity
profiles depicted in Fig. 2(b) represented in a frame of reference
translating at a velocity ȧ = 1/2

√
3/t . The values of the radial

velocity are normalized by ȧ and are represented as a function
of the distance to the root of the lamella, r − a. Notice that the
relative radial velocity is ȧ at r = a and it is zero at r = rs , with rs

indicating the radial position of the stagnation point in the relative
frame of reference, marked using a colored dot. (b) The radial
velocity vr varies linearly between r = rs and r = a, namely the
spatial region located between the stagnation point of the flow in
the relative frame of reference and the root of the lamella. Indeed,
notice that distances are normalized here by rs − a = cn ha(t), with
cn = 1.5 a constant (see the inset). The relevant region for the
development of the boundary-layer flow entering into the lamella
is 0 < (r − rs)/(cn ha) < 1, whereas the region (r − rs)/(cn ha) > 1
corresponds to that of the ejected liquid sheet, which can be described
using a ballistic approximation [37,42].

region, located between r = rs (which is the radial position
of the stagnation point of the flow in the moving frame of
reference) and the root of the lamella. Therefore, the relevant
spatial region to describe the boundary-layer flow of interest
here is the one located between rs < r <

√
3t , where the

radial velocity field computed using potential flow theory
[37] notably differs from that assumed in previous studies
[16,38–41], as will be shown below.

First, Fig. 3(b) shows that
√

3t − rs(t) = cnha(t) ∝ t3/2,
with cn = 1.5, a result that is consistent with Eq. (6) for the
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FIG. 4. Log-log plot of the radial velocity as a function of the
distance to the root of the lamella. In agreement with Eq. (9), the
radial velocity decays as (a − r)−1/2 for r � rs .

velocity in the relative frame of reference provided in the
supplementary material of [18],

vr − ȧ ex = −
√

2a

π
√

a − r
[sin (θ/2)er + cos (θ/2)eθ ] − ȧ ex,

(9)

from which it can be deduced that

(a − rs)
−1/2

√
2a

π
= ȧ ⇒ (a − rs) = 4

π
ha. (10)

Figure 4 shows that, in agreement with Eq. (9), the radial
velocity in the fixed frame of reference varies with the distance
to the root of the lamella as (a − r)−1/2 for r � rs . Even more
interestingly, Fig. 3(b) shows that the radial velocity field for
rs(t) < r < a(t) can be well approximated by

vext � ȧ

(
1 + r − rs

cn ha

)
, (11)

with cn = 1.5 ≈ 4/π ; see Eq. (10). Due to the fact that in
the spatial region rs < r < a, vr/r ∼ vr/a, and ∂vr/∂r ∼
vr/ha , it can be deduced that, for t � 1, vr/r � ∂vr/∂r

because a(t) � ha(t) (a ∝ t1/2 and ha ∝ t3/2). Therefore, the
continuity and momentum equations describing the radial and
normal components of the velocity field within the boundary
layer developing in the spatial region rs < r < a can be
simplified to

∂Vr

∂X
+ ∂Vz

∂Z
= 0,

Vr

∂Vr

∂X
+ Vz

∂Vr

∂Z
= Vext

dVext

dX
+ ν

∂2Vr

∂Z2
. (12)

In Eq. (12), the variable X = R(r − rs) has been defined to
describe the boundary-layer flow between rs = a − cnha and
r = a = √

3t , Vext = V ȧ[1 + (r − rs)/(cn ha)] is defined in
Eq. (11), and the quasisteady Euler-Bernoulli equation has
been used to compute the pressure gradient in the boundary-
layer region. Indeed, the local acceleration term has been
neglected in the system (12) due to the fact that the residence
time Tr of fluid particles in the spatial region, rs < r < a, is

pa

pa + ρ V 2ȧ2/2

Stagnation

point

FIG. 5. Sketch of the flow developing between the stagnation
point in the relative frame of reference and the root of the lamella.

Tr ∼ Rha/(V ȧ) ∼ (R/V )t2, whereas the characteristic time
of variation of the flow field in this region is T0 ∼ (R/V )t .
Consequently, since the process of droplet splashing described
here takes place for t � 1, and O(∂Vr/∂T ) ∼ (V ȧ)/T0 and
O(Vr∂ Vr/∂X) ∼ V 2 ȧ2/(R ha), the order of magnitude of the
ratio of the local and the convective acceleration terms in the
momentum equation is ∼Tr/T0 ∼ t � 1, and thus the flow
in the boundary-layer region, rs < r < a, can be considered
quasisteady.

In terms of the new dimensionless variables,

x̄ = X

Rcn ha

, z̄ = Z

Rcn ha

(Re cn)1/2 (ȧha)1/2,

v̄r = Vr

V ȧ
, v̄z = Vz

V ȧ
(Re cn)1/2(ȧha)1/2, (13)

the system (12) reads

∂v̄r

∂x̄
+ ∂v̄z

∂z̄
= 0,

v̄r

∂v̄r

∂x̄
+ v̄z

∂v̄r

∂z̄
= 1 + x̄ + ∂2v̄r

∂z̄2
. (14)

The system (14) describes the growth of a boundary layer
within an outer potential flow, which imposes a favorable
pressure gradient: indeed, the pressure reaches a maximum
at the stagnation point existing in the flow in the relative frame
of reference, located at r = rs , where p = pa + 1/2ρ V 2ȧ2,
and pressure decreases downstream to match the atmospheric
pressure, p = pa , at the radial position from which the thin
liquid sheet is ejected, r � a; see Fig. 5.

The parabolic system of Eqs. (14), which needs to be solved
subjected to the following boundary conditions:

x̄ = 0, v̄r = v̄r0(z̄),

z̄ = 0, v̄r = 0,

z̄ → ∞, v̄r → 1 + x̄,

(15)

admits a solution of the type

v̄r = (1 + x̄)
df

dz̄
(z̄), v̄z = −f (z̄), (16)

with f given by the solution of the Falkner-Skan-type of
equation [43],

d3f

dz̄3
+ 1 −

(
df

dz̄

)2

+ f
d2f

dz̄2
= 0, (17)
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FIG. 6. Solution of Eq. (17) subjected to the boundary conditions
given in Eq. (18).

satisfying the following boundary conditions:

f (0) = df

dz̄

∣∣∣∣
0

= 0 and z̄ → ∞,
df

dz̄
→ 1. (18)

Since the system of equations is parabolic, the downstream
evolution of the velocity profiles loses memory of the initial
condition at x̄ = 0, a fact favoring the solution convergence
to that provided by Eq. (17) [44]. The solution of Eq. (17)
subjected to the boundary conditions (18), which is represented
in Fig. 6, reveals that the shear force per unit length Fτ exerted
at the wall in the region rs < r < a and the thickness of the
boundary layer δ are given, respectively, by

Fτ = μ

∫ R(a−rs )

0

∂Vr

∂Z

∣∣∣∣
Z=0

dX

= 3

2
c1/2
n

d2f

dz̄2

∣∣∣∣
0

μV Re−1/2ȧ(ȧ ha)1/2

� 1.1μV Re1/2,

δ

R
� z∞ c1/2

n

(
ha

ȧ

)1/2

Re−1/2

� 2.45

(
ha

ȧ

)1/2

Re−1/2, (19)

where use of the values z̄∞ � 2 (see Fig. 6), c1/2
n = √

3/2, and
d2f/dz̄2(0) = 1.23 ≈ √

3/2 has been made.
Making use of the estimation of the boundary-layer thick-

ness in Eq. (19) and of Eq. (2), it can be concluded that, at the
ejection time te,

δ

Ha

� 4.34 Re−1/2 t−1/2
e . (20)

In the usual limit δ/Ha � 1, the fluid within the ejected
liquid sheet will be decelerated only by the action of interfacial
tension forces. This assertion is true except in a very narrow
region of thickness δ � Ha located near the wall, where
viscous stresses also contribute to decelerate the liquid.
Excluding the effect of this very thin region, the ejection
condition v̇t = ä [18], with dvt/dt the deceleration of the

2σ
ht

vt

r

Fτ

FIG. 7. Sketch of the forces decelerating the advancing front of
the lamella.

edge of the lamella sketched in Fig. 7, reads

ρH 2
a V̇T ∼ −2σ ⇒ v̇t ∝ −We−1

h2
a

, (21)

yielding the following expressions for both the ejection time
and for the initial thickness of the lamella:

v̇t ∝ −We−1/h2
a ∝ ä

⇒ te ∝ We−2/3, ha(te) ∝ t3/2
e ∝ We−1. (22)

The scalings in (22), which have been verified numerically
in [37], are valid only if

δ

Ha

� 4.34 Re−1/2 t−1/2
e < 1

⇒ 4.34 Re−1/2 We1/3 = 4.34 Re1/6 Oh2/3 < 1 (23)

⇒ Re1/6 Oh2/3 � 0.25,

where use of Eqs. (2), (20), and (22) has been made. In view of
Eqs. (22) and (23), the ejection time is given by te ∝ We−2/3

if Re1/6Oh2/3 < 0.25. However, when the thickness of the
boundary layer is similar to that of the lamella, namely
Re1/6Oh2/3 � 0.25, fluid particles entering the ejected liquid
sheet will also be decelerated by the action of the viscous shear
force per unit length Fτ acting on a region of length ∼ Ha , with
Fτ calculated in Eq. (19) (see Fig. 7). Consequently,

ρH 2
t V̇T � −Fτ − 2σ

� −μV Re1/2[1 + O(Re−3/2 Oh−2)]

� −μV Re1/2

⇒ v̇t ∝ −Re−1/2/h2
a. (24)

The final result expressed by Eq. (24) has been deduced
neglecting the term Re−3/2 Oh−2. This is done based on the fact
that, in the regimes for which δ ∼ Ha , namely Re1/6Oh2/3 �
0.25, the Ohnesorge number satisfies the condition Oh � 0.03
(see Table II). Therefore, for the usual range of Reynolds
numbers for which millimetric droplets splash, namely Re ∼
102−103, Re−3/2 Oh−2 < 1. Finally, it can be concluded that
the ejection time te in the regime Re1/6Oh2/3 � 0.25 can be
calculated as

v̇t = ä ⇒ −Re−1/2 ∝ äh2
a ∝ −t3/2

e

⇒ te ∝ Re−1/3. (25)

Figure 8 shows good agreement between the ejection times
predicted by Eqs. (22) and (25) and the experimental ejection
times reported in [18] and in [9]. Notice also that, while the
ejection times predicted by Eq. (1) are also in good agreement
with experiments for sufficiently low values of the Ohnesorge
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TABLE II. Values of the material properties of the liquids, values
of critical velocity for splashing V ∗, values of the corresponding
Reynolds numbers Re = ρ R V ∗/μ as well as the Ohnesorge numbers
Oh = √

We/Re = μ/
√

ρ Rσ , and type of solid substrate: G, glass;
P , parafilm; and S, steel, used to plot Fig. 9(a). (a) Acetone,
(b) water, (c) methanol, (d) ethanol, (e) decamethyltetrasiloxane,
(f) dodecamethylpentasiloxane, (g) poly(dimethylsiloxane), and
(h) 10 cP silicone oil.

ρ σ μ V ∗ Re Oh
Ref. Symb. (kg/m3) (mN/m) (cP) (m/s) (−) (×103) Type

(a) [18] • 789 24.0 0.3 3.12 7677 2.4 G

(b) [18] • 1000 71.8 0.95 3.68 7583 2.5 G

[18] � 1000 71.8 0.95 3.70 6760 2.7 G

[18] � 1000 71.8 0.95 3.98 6832 2.8 G

[18] • 1000 67.5 0.9 4.13 6395 2.9 G

(c) [18] � 791 23.5 0.6 2.20 4507 3.5 G

[18] � 791 23.5 0.6 2.74 3878 4.2 G

(d) [18] � 789 22.6 1.0 1.77 2130 6.1 G

[18] � 789 22.6 1.0 2.19 1834 7.3 G

(e) [18] � 854 17.2 1.3 1.56 1400 9.1 G

[18] � 854 17.2 1.3 1.71 988 11.4 G

(f) [18] 	 875 17.8 1.7 1.55 1062 12.0 G

[18] 	 875 17.8 1.7 1.81 830 14.7 G

(g) [18] � 913 18.6 4.6 1.77 466 30.5 G

[18] � 913 18.6 4.6 1.69 313 37.1 G

(h) [18] 
 1000 19.5 10.0 1.95 258 62.2 G

[18] 
 1000 19.5 10.0 2.02 182 75.3 G

[20] • 989 56.4 1.23 3.83 3394 5.0 P

[20] � 982 48.1 1.50 3.54 2548 6.6 P

[20] � 975 42.7 1.82 2.79 1492 8.9 P

[20] � 969 38.0 2.14 2.87 1233 11.5 P

[20] � 935 30.2 2.85 2.50 738 17.9 P

[20] � 891 26.2 2.55 2.48 694 18.6 P

[20] 
 843 23.8 1.88 2.34 840 14.8 P

[20] 	 789 21.8 1.20 2.26 1186 10.2 P

[20] • 989 56.4 1.23 4.68 4146 5.0 G

[20] � 982 48.1 1.50 3.81 2740 6.6 G

[20] � 975 42.7 1.82 3.22 1724 8.9 G

[20] � 969 38.0 2.14 2.93 1259 11.5 G

[20] � 935 30.2 2.85 2.50 739 17.9 G

[20] � 891 26.2 2.55 2.50 700 18.6 G

[20] 
 843 23.8 1.88 2.38 855 14.8 G

[20] 	 789 21.8 1.20 2.28 1198 10.2 G

[20] • 989 56.4 1.23 4.08 3615 5.0 S

[20] � 982 48.1 1.50 3.98 2868 6.6 S

[20] � 975 42.7 1.82 3.15 1689 8.9 S

[20] � 969 38.0 2.14 2.90 1246 11.5 S

[20] � 935 30.2 2.85 2.21 654 17.9 S

[20] � 891 26.2 2.55 2.21 619 18.6 S

[20] 
 843 23.8 1.88 2.18 783 14.8 S

[20] 	 789 21.8 1.20 2.15 1127 10.2 S

[14] • 786 20.5 2.0 1.51 738 14.1 G

[14] � 805 22.3 1.38 2.32 1045 11.7 G

[14] � 805 22.3 1.38 1.68 1271 9.1 G

[14] � 1050 60.0 1.78 3.16 3096 5.5 G

[14] � 792 22.2 0.52 3.27 3893 4.4 G

[14] � 792 22.2 0.52 2.50 4576 3.6 G

[14] 
 1000 70.8 1.00 3.61 6479 2.8 G

FIG. 8. Continuous lines represent the values of te calculated ei-
ther as te = 1.05 We−2/3 for Re1/6Oh2/3 < 0.25 or as te = 0.6 Re−1/3

for Re1/6 Oh2/3 > 0.25. Dashed lines represent the values of te
obtained solving Eq. (1). The numerical values associated with each
symbol represent 1000 × Oh. The value of the Ohnesorge number is
Oh = 2.3 × 10−3 for the case of the experiments reported in [9].

number, the deviations between the predictions of Eq. (1) and
measurements are apparent for the case of higher viscosity
fluids.

The thickening of the lamella provoked by the development
of a boundary layer between the stagnation point and the root
of the ejected sheet can be approximately quantified imposing
that the flow rate entering into the lamella coincides with that
predicted by potential flow theory. Assuming a velocity profile
within the boundary layer increasing linearly with the distance
to the wall, the thickness of the root of the lamella, h+

a , when
the effect of the boundary layer is taken into account (see the
sketch in Fig. 1) is given by

hava = va

(
h+

a − δ

R

)
+ δ

2 R
va

⇒ h+
a � ha(1 + 2.2/

√
Re te), (26)

with δ given in Eq. (19) and ha given by Eq. (2). To
improve the agreement with experiments for the smaller values
of the Reynolds number, and due to the fact that, in the
limit

√
Re te � 1, the result in Eq. (26) can be very well

approximated by

h+
a � ha

1 − 2.2/
√

Re te
, (27)

we alternatively use here the following expression to calculate
h+

a :

h+
a = ha

1 − Ka/
√

Re te
, (28)

where Ka is a constant that will be determined by matching the
predictions with the experimental data and whose precise value
will be very close to our prediction in Eq. (27). In addition, to
account for the thickening of the rim produced by the capillary
retraction during the first instants after the ejection of the
lamella (see the numerical shapes in Fig. 2 for illustrative
purposes), the thickness of the edge of the advancing lamella
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(a)

(b)

FIG. 9. (a) Comparison between the critical velocity V ∗ mea-
sured experimentally for the case Re1/6 Oh2/3 < 0.25 and the corre-
sponding velocities predicted by Eq. (30). The material properties of
the different liquids used, the type of solid substrate, the radii of the
impacting drops, and the corresponding values of the Ohnesorge
number are summarized in Table II. The inset represents the
comparison between predicted and measured values of V ∗ when
Re1/6 Oh2/3 > 0.25. In part (a), the surrounding gas is air at normal
atmospheric conditions (see Table I). (b) Comparison between the
predicted and measured values of the critical splash velocity for the
case of the experiments reported in [4]. In this case, Re1/6 Oh2/3 <

0.25 and the material properties of the gases and liquids used are
provided in Tables I and III, respectively. Continuous lines represent
the predicted value of V ∗ for Kh = 2, while dashed lines represent
the corresponding values of V ∗ for Kh = 2.5.

will be calculated here as

ht = Khh
+
a = Kh

ha

1 − Ka/
√

Re te
, (29)

a very similar expression to that suggested by the experiments
in [18], where we found that ht ≈ 2.8ha .

Figure 9 shows a comparison between the experimental val-
ues of the splash threshold velocities satisfying the condition
Re1/6Oh2/3 < 0.25 and the theoretical ones, determined using

(
FL

2σ

)1/2

= 0.14, (30)

with FL given by Eq. (3), te and ht calculated through
Eqs. (22) and (29), respectively, �μ = Ht μg/μ, Ka = 2.8, and

TABLE III. Values of the material properties of the liquids used
in [4], reproduced in Fig. 9(b), and values of the Ohnesorge numbers
Oh = √

We/Re = μ/
√

ρRσ corresponding to R = 1.7 mm. The
material properties of the different gases used in the experiments
reported in [4]—(a) helium, (b) air, (c) krypton, and (d) SF6—are
provided in Table I.

ρ σ μ Oh λ0 μg ρg0

Gas (kg/m3) (mN/m) (cP) (×103) (nm) (cP) (kg/m3)

(a) • 789 22.4 1.04 6.0 180 0.0198 0.16
(b) � 789 22.4 1.04 6.0 65 0.0185 1.18
(c) � 789 22.4 1.04 6.0 55 0.0251 3.42
(d) 
 789 22.4 1.04 6.0 39 0.0153 6.04
(b) 	 791 23.5 0.54 3.0 65 0.0185 1.18
(b) � 786 21.0 2.04 12.2 65 0.0185 1.18

the same values for the rest of the parameters as in [18]: vt =√
3/2 t

−1/2
e , α = 61◦, Kh = 2.5, and H0 = Ht/4. The agree-

ment between the predicted velocities and the experimental
ones is fairly good in view of the wide range of viscosities, drop
diameters, values of the interfacial tension coefficient, different
substrate wettabilities [20], different gases, and different gas
pressures considered [4], and this agreement can even be
improved if the constant Kh is set to Kh = 2 in Fig. 9(b). The
splash threshold velocities for the case Re1/6Oh2/3 > 0.25,
which are calculated in the same way as before, but making
use of Eq. (25) to calculate te, are also in good agreement with
the experimental data, as the inset in Fig. 9(a) shows.

Notice that, in the case of low viscosity liquids, and due
to the fact that te ∝ We−2/3 and since ht ∼ t

3/2
e ∝ We−1, the

height of the advancing liquid sheet can reach values close to
the mean free path of gas molecules. Indeed,

λ

Ht

∼ λ

R
We = Weλ = pg0

pg

(
Tg

Tg0

)
Weλ0, (31)

with Weλ = ρ V 2 λ/σ , and λ0 is the mean free path at
normal pressure and temperature conditions, pg0 and Tg0,
respectively. For instance, in the case of helium in Fig. 9(b),
V ∗ � 5 m s−1, σ � 20 × 10−3 N m−1, ρ � 780 kg m−3, λ0 �
180 × 10−9 m, and, therefore, Weλ � 0.2. This result suggests
that calculations of the type reported in [45,46] are necessary
to accurately predict the contribution of the gas lubrication
layer to the lift force.

III. CONCLUDING REMARKS

The model developed in [18] has been completed by
taking into account the effects associated with the growth
of the boundary layer, which, when the velocity field is
described in a moving frame of reference, develops between
the stagnation point of the flow and the root of the ejected
liquid sheet. Depending on the value of the ratio δ/Ht , with δ

the thickness of the boundary layer and Ht the initial thickness
of the advancing rim, the ejection time is calculated either as
te � 1.05 We−2/3 if Re1/6Oh2/3 < 0.25, or as te � 0.6 Re−1/3

if Re1/6Oh2/3 > 0.25. Interestingly enough, the predictions
for the ejection times for the larger values of the Ohnesorge
number, te ∝ Re−1/3, which contrast with te ∝ Re−1/2 in [18],
are in better agreement with the experimental measurements.
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The predicted splash velocities are in fairly good agreement
with experiments when both the modified ejection time and
the thickening of the ejected lamella caused by the growth
of the boundary layer are included in the splash criterion
(FL/2σ )1/2 = 0.14, deduced in [18].
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