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Analytical scalings of the linear Richtmyer-Meshkov instability when a rarefaction is reflected
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The Richtmyer-Meshkov instability for the case of a reflected rarefaction is studied in detail following the
growth of the contact surface in the linear regime and providing explicit analytical expressions for the asymptotic
velocities in different physical limits. This work is a continuation of the similar problem when a shock is reflected
[Phys. Rev. E 93, 053111 (2016)]. Explicit analytical expressions for the asymptotic normal velocity of the rippled
surface (δv∞

i ) are shown. The known analytical solution of the perturbations growing inside the rarefaction fan
is coupled to the pressure perturbations between the transmitted shock front and the rarefaction trailing edge.
The surface ripple growth (ψi) is followed from t = 0+ up to the asymptotic stage inside the linear regime.
As in the shock reflected case, an asymptotic behavior of the form ψi(t) ∼= ψ∞ + δv∞

i t is observed, where ψ∞
is an asymptotic ordinate to the origin. Approximate expressions for the asymptotic velocities are given for
arbitrary values of the shock Mach number. The asymptotic velocity field is calculated at both sides of the contact
surface. The kinetic energy content of the velocity field is explicitly calculated. It is seen that a significant part
of the motion occurs inside a fluid layer very near the material surface in good qualitative agreement with recent
simulations. The important physical limits of weak and strong shocks and high and low preshock density ratio are
also discussed and exact Taylor expansions are given. The results of the linear theory are compared to simulations
and experimental work [R. L. Holmes et al., J. Fluid Mech. 389, 55 (1999); C. Mariani et al., Phys. Rev. Lett.
100, 254503 (2008)]. The theoretical predictions of δv∞

i and ψ∞ show good agreement with the experimental
and numerical reported values.

DOI: 10.1103/PhysRevE.96.013102

I. INTRODUCTION

The Richtmyer-Mehskov instability develops after the
refraction of a planar incident shock across a rippled contact
surface [1,2] and has been continuously studied during the
last 50 years, due to its importance in several fields like
inertial confinement fusion (ICF), high energy density physics
(HEDP), shock tube research, and astrophysics [3–32]. In
Fig. 1, we indicate the flow quantities immediately after the
incident shock refraction at the material interface, for the
situation in which a rarefaction has been reflected back to
the right. For t < 0, an incident shock comes from the right
(fluid b) with velocity −Dix̂ and arrives to the contact surface
(located at x = 0) at t = 0. It has compressed fluid b from
ρb0 to ρb1. Pressures behind and in front of the incident shock
are p1 and p0, respectively. We assume inviscid fluids with
an ideal gas equation of state (EOS). The specific heat ratio
is γb to the right of the material surface, and γa to the left.
The fluid velocity behind the incident shock is U1. We define
an incident shock strength parameter zi = (p1 − p0)/p0 as in
[33]. The initial sound speed of fluid b is cb0 = √

γbp0/ρb0.
Therefore, the incident shock Mach number is [33]

Mi = Di

cb0
=
√

1 + (γb + 1)

2γb

zi . (1)

On the other side of the contact surface, the preshock density
is ρa0 and the preshock sound speed is ca0 = √

γap0/ρa0.
The preshock density ratio at the material surface is defined
as R0 = ρa0/ρb0. We will only consider cases in which a
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rarefaction is reflected to the right at t = 0+. As discussed
in [15], for given values of the isentropic exponents γa , γb,
and the incident shock Mach number Mi , this will happen for
small enough values of the preshock density ratio: R0 < Rtt

0 ,
where the expression for Rtt

0 is given by

Rtt
0 = γb(γb + 1)M2

i

γa − γb + γb(γa + 1)M2
i

. (2)

For the case R0 = Rtt
0 there is no reflected shock and only a

transmitted shock is driven into the fluid to the left, a case called
total transmission. For equal values of the isentropic exponent,
γa = γb, it is Rtt

0 = 1. For γa �= γb, Rtt
0 could be above or below

unity and a rarefaction is always reflected if R0 < Rtt
0 . We

assume that the contact surface is initially rippled in the form
�i(y,t < 0) = ψ0 cos ky, where k = 2π/λ is the perturbation
wave number, and λ is the perturbation wavelength. In linear
theory, we assume ψ0 � λ. After the time t = 2ψ0/Di , which
we assume vanishingly small, the incident shock disappears
and a transmitted shock is driven inside fluid a while a
rarefaction fan is traveling back inside fluid b. We describe
the different wavefronts in Fig. 1 where we have indicated the
zero order background velocities. The contact surface moves
to the left with speed −Ux̂ and the transmitted front travels
to the left with velocity −Dt x̂. The rarefaction region is
composed of a heading front, traveling at the local sound of
speed cb1 − U1 in the laboratory frame, and a trailing edge,
moving with velocity cbf − U , also in the laboratory frame.
The final density of fluid b, between the contact surface and the
rarefaction tail, is ρbf and that of fluid a is ρaf . The pressure
between the transmitted shock and the rarefaction tail is pf .
The Richtmyer-Meshkov instability (RMI) for the case of a
rarefaction reflected has been less studied theoretically than
the shock reflected case, probably due to the mathematical
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FIG. 1. Rippled wavefronts at t = 0+ when a rarefaction is
reflected from the contact surface. The front and fluid velocities are
indicated.

difficulties associated with perturbation growth inside the
rarefaction fan. The original experiments of Meshkov [2]
contemplated both scenarios which were discussed some years
later by Meyer and Blewett [4] using numerical simulations.
It was observed that the growth of the ripple surface changed
phase in the rarefaction reflected situation and the asymptotic
velocity had an opposite sign with respect to the shock reflected
scenario. They observed that in order to obtain agreement
between the numerical solution and the linear theory at low
compression, an averaged initial post-shock ripple amplitude
had to be used in the impulsive formula proposed by Richtmyer
[1,4]. After that, the problem of a rarefaction wave traveling
alone was analyzed theoretically by Kivity and Hanin in
[17], who found an analytical expression for the tangential
velocity perturbations inside the rarefaction wave. They used
that solution to numerically solve the RMI for the reflected
rarefaction case in [18]. Some time later, Yang et al. [5] have
numerically solved the linear RMI in both cases and discovered
that, in the rarefaction scenario, the rarefaction tail ripple also
showed a linear asymptotic growth, similar to the contact
surface ripple. This problem was considered later in [19] who
studied the behavior of the rarefaction profiles and obtained
analytical expressions for rarefaction tail ripple growth in
different physical limits (weak and strong rarefactions). In
[20], the perturbations growing inside a rippled rarefaction
were also studied based on the solution obtained before by [17],
and explicit analytical expressions for the trailing edge ripple
growth were obtained, valid for any incident shock intensity, as
well as explicit Taylor expansions of the asymptotic velocity
in the regimes of strong and weak expansions. The results of
[20] confirmed the expressions found in [19] in the different
physical limits. Besides, it was shown that the growth of the
rarefaction tail ripple is not of the same type as that occurring
at the contact surface. In [6], the RMI for the rarefaction case
was studied using Taylor series expansions in time, and the
solutions compared very well with existing numerical results.
Further analytical studies of the RMI in the rarefaction scenario
were also done in [7,8,11] with different analytical techniques
and focusing in different time intervals of the linear growth. In
particular, in [11] the asymptotic linear velocity was calculated
with an exact analytical expression. It is known that the normal
asymptotic linear velocity can be written as the sum of two

terms [10,11]

δv∞
i = ρbf δv0

yb − ρaf δv0
ya

ρbf + ρaf

+ −ρbfFb + ρafFa

ρbf + ρaf

, (3)

where δv0
ya and δv0

yb are the initial tangential velocities at both
sides of the contact surface and Fa,b are spatial averages of
the vorticity profiles generated by the rippled fronts in each
fluid. For a rarefaction reflected inside fluid b, no vorticity
is generated and, hence, Fb = 0. For a rederivation of the
above expression in this work, the reader is referred to
the calculations shown later in Sec. II [Eqs. (107)–(115)].
The Fm averages become relevant for strong incident shocks,
highly compressible fluids, and/or large density contrast at
the material surface. In order to have bounded velocity
perturbation fields far from the interface, we must require∣∣δv∞

i

∣∣− ∣∣δv∞
ya

∣∣ = Fa,∣∣δv∞
i

∣∣− ∣∣δv∞
yb

∣∣ = 0 (4)

because Fb = 0.
Unfortunately, the second term in the right hand side of

Eq. (3) can not be expressed yet in a closed form, as it has to
be obtained after solving a functional equation in the complex
plane, that couples the dynamics of the rarefaction fan, the
contact surface ripple, and the corrugated transmitted front.
This technical complication makes it cumbersome to calculate
the asymptotic velocity for arbitrary values of the preshock
parameters. The validity of Eq. (3) has been previously shown
in [11] inside limited regions of the space of the preshock
parameters. On the other hand, its counterpart with Fb �= 0,
in the shock reflected case, has been recently studied in a
wide region of the space of the preshock parameters [10,15].
Nevertheless, for the rarefaction reflected situation, no further
attempt has been made since the first results of [11] to
obtain explicit analytical expressions of the linear asymptotic
velocity, even approximate, in the range of moderate to strong
shock compression, or to present Taylor expansions valid in
the important physical limits of weak and strong shocks, weak
and strong rarefactions, as recently done for the shock reflected
case in [15] or in [21] for a single rippled shock traveling inside
an ideal, homogeneous fluid.

One of the aims of this work is to present an explicit analytic
formula that works reasonably well for weak to strong shocks
and to give accurate Taylor expansions as powers of a small
parameter in different physical limits: weak and strong shocks
and low and high values of the density ratio at the contact
surface. We stress the importance of the vorticity generation
behind the transmitted front, showing the spatial structure of
the asymptotic velocity fields at both sides of the contact
surface, after the fronts have separated away from the material
surface. An analysis of the contact surface ripple growth as a
function of time is also shown and compared to experiments,
where the asymptotic scaling ψi(t) ∼= ψ∞ + δv∞

i t is obtained,
in agreement with the findings of [4] or recently of [15].
Bessel series and Taylor series in powers of time are presented
to describe the transient temporal evolution of perturbed
velocities and ripple either at the transmitted shock and at the
contact surface. Besides, the kinetic energy of the asymptotic
velocity field is calculated at both sides of the contact surface
and the importance of the bulk vorticity field is discussed.
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These studies are done for a series of experiments reported in
[12,13,22].

This work is structured as follows: the mathematical details
are given in Sec. II. The background equations are carefully
discussed showing the exact analytical solutions and several
approximations corresponding to different physical limits.
The perturbed fluid equations are described in the different
regions: the fluid between the transmitted shock and the
contact surface, the rarefaction wave, and the fluid between
the contact surface and the rarefaction trailing edge. The
differential equations are briefly reviewed and emphasis is
put to obtain accurate descriptions of the temporal evolution
of pressure and front corrugations. With this scope in mind,
we have made use of analytical results published in earlier
works, when necessary, in order to make a self-contained
mathematical description. There are some features in the
development of these calculations, not published before, i.e.,
the closed analytical expression for the pressure amplitude
function at the rarefaction tail, the Taylor series in powers of
time for the normal and tangential velocities, either at the shock
front corrugation and at the contact surface ripple. As for the
contact surface ripple growth, the asymptotic linear behavior
ψ∞ + δv∞

i t is obtained, where the value of ψ∞ is not equal
to the initial post-shock ripple amplitude, as first observed by
Meyer and Blewett [4]. An analytical formula to calculate ψ∞
is provided in the general case. The asymptotic linear velocities
(normal and tangential) at the rippled contact surface are
shown and the iterative procedure for their calculation is briefly
reviewed. The asymptotic velocity profiles in both fluids have
been carefully calculated as a function of the space coordinates
in conditions of strong compression. The kinetic energy stored
inside each fluid has been also calculated, showing the error
incurred in its calculation if we had neglected the vorticity
field inside the fluid compressed by the transmitted shock.
In Sec. III, we compare the exact value of the asymptotic
normal velocity with an irrotational approximation in different
regions of the space of the preshock parameters. Besides, we
discuss the goodness of a lowest order approximate formula
that consistently includes the effect of the bulk vorticity stored
inside fluid a. In Sec. IV, we show Taylor expansions in powers
of a small parameter in different physical limits. In Sec. V,
our predictions are compared with previously reported experi-
ments and simulations. We have found a very good agreement
during the interval of time in which linear theory is acceptable.
A brief summary is presented in Sec. V. Finally, in the
Appendix section, we describe the mathematical procedure to
calculate the asymptotic ordinate ψ∞, and the detailed numer-
ical calculations for a particular experiment. The readers who
do not want to delve at first into the mathematical details might
skip Sec. II and go directly to Secs. III, IV, and V. Of course,
some necessary notation might be required, which is explained
at the beginning of the different subsections inside Sec. II.

II. MATHEMATICAL MODEL

A. Background profiles

As explained in the Introduction and taking into account
Fig. 1, we consider an incident shock that comes from the left
inside fluid b. The incident shock Mach number is given by

Eq. (1). The ratios of the density and sound speed (downstream
and upstream values) are given by

ρb1

ρb0
= 2γb + (γb + 1)zi

2γb + (γb − 1)zi

= (γb + 1)M2
i

(γb − 1)M2
i + 2

, (5a)

cb1

cb0
=
√

(1 + zi)
ρb0

ρb1
=
√(

2γbM
2
i − γb + 1

)[
(γb−1)M2

i +2
]

(γb + 1)Mi

.

(5b)

The velocity U1 is given by

U1

cb0
= zi

√
2√

γb[2γb + (γb + 1)zi]
= 2

γb + 1

(
Mi − 1

Mi

)
. (6)

The downstream Mach number βi , in terms of Mi , is

βi = Di − U1

cb1
=
√

(γb − 1)M2
i + 2

2γbM
2
i − γb + 1

. (7)

After shock refraction, at t = 0+, a rarefaction fan is formed
that expands fluid b and a shock is transmitted inside fluid a.
The density at the rarefaction head is ρb1 and it is ρbf at its
trailing edge. The sound speed at the rarefaction head is cb1

and cbf at its tail. We define the parameter M1 = cbf /cb1, as
proposed in [19], in order to characterize the strength of the
expansion. Due to the self-similar character of the centered
rarefaction fan, all the thermodynamic quantities inside the
expanding fluid are functions of the combination x/t . As in
[20], we define the dimensionless variable ζ = x/(cb1t) and
the variable A = c/cb1, which is the sound speed normalized
with the sound speed at the rarefaction head, as defined in [19].
It can be seen that the following relationships hold:

cb1ζ = vx + c, (8a)

A = c

cb1
= 2M1

γb + 1
+ γb − 1

γb + 1
ζ, (8b)

where vx is the velocity at a given position inside the rarefac-
tion. The origin of coordinates is located at the unperturbed
contact surface after compression. The ζ coordinates of the
rarefaction head and tail are

ζrh = γb + 1 − 2M1

γb − 1
, (9a)

ζrt = M1. (9b)

Density and pressure can be written as functions of the
variable A:

ρ

ρb1
= A2/(γb−1), (10a)

p

pb1
= A(2γb)/(γb−1). (10b)

The transmitted shock strength is defined by zt = (pf −
p0)/p0, where pf is the fluid pressure across the contact
surface. The upstream transmitted shock Mach number is
therefore

Mt = Dt

ca0
=
√

1 + (γa + 1)

2γa

zt , (11)
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and its downstream Mach number βt is

βt = Dt − U

caf

=
√

(γa − 1)M2
t + 2

2γaM
2
t − γa + 1

. (12)

The ratios of the density and sound speed across the transmitted
shock are given by

ρaf

ρa0
= 2γa + (γa + 1)zt

2γa + (γa − 1)zt

= (γa + 1)M2
t

(γa − 1)M2
t + 2

, (13a)

caf

ca0
=
√

(1+zt )
ρa0

ρaf

=
√(

2γaM
2
t − γa+1

)[
(γa − 1)M2

t +2
]

(γa + 1)Mt

. (13b)

The contact surface speed U is

U

ca0
= zt

√
2√

2γa + (γa + 1)zt

= 2

γa + 1

(
Mt − 1

Mt

)
. (14)

We define the post-shock density ratio

R = R0
ρaf

ρa0

ρb0

ρb1

ρb1

ρbf

, (15)

and the ratio of post-shock sound speeds

N = N0

M1

caf

ca0

cb0

cb1
, (16)

where

N0 = ca0

cb0
=
√

γa

γbR0
. (17)

Given the four preshock parameters zi (or Mi), γa , γb,
and R0 = ρa0/ρb0, we have to calculate both the transmitted
shock strength zt and the rarefaction strength M1. Asking for
continuity of the normal velocity and pressure at the contact
surface, we get the following system of nonlinear equations:

zt

√
2√

2γa + (γa + 1)zt

=
√

γbR0

γa

[
zi

√
2√

2γb + (γb + 1)zi

+ 2(1 − M1)

γb − 1

√
(1 + zi)

ρb0

ρb1

]
, (18a)

M1 =
(

1 + zt

1 + zi

)(γb−1)/(2γb)

. (18b)

Unfortunately, there is no known analytical solution to the
above system for arbitrary values of the preshock parameters
and its solution must be obtained numerically. Nevertheless,
we can try approximate solutions in the limits of very weak
incident shocks (zi � 1) and very strong rarefactions M1 � 1.

For very weak shocks (zi � 1), we obtain

zt
∼= 2

√
γaR0√

γb + √
γaR0

zi + O
(
z2
i

)
, (19a)

M1
∼= 1 −

(
γb − 1

2γb

)√
γb − √

γaR0√
γb + √

γaR0
zi + O

(
z2
i

)
. (19b)

From the above results, we deduce that in order to have a
rarefaction reflected in the weak incident shock limit, the
inequality γaρa0 < γbρb0 has to be fulfilled, which is the weak
shock version of the condition R0 < Rtt

0 . Besides, we see that
it is always zt < zi because the final pressure pf driving the
transmitted shock is lesser than the pressure p1 > p0.

If we consider an incident shock of infinite strength (zi �
1), the ratio of sound velocities at the rarefaction trailing front
and heading front (M1) will reach its minimum value, which
we call Mmin

1 [20]. The system of equations [Eq. (18)] also
allows us to find Mmin

1 numerically for a given set of preshock
parameters. We can obtain an analytic estimate of the minimum
rarefaction strength in the limit of vanishingly small preshock
density ratio (R0 � 1) and very strong incident shocks. After
some algebra, we obtain the following results, at the lowest
order in R0, under the assumption Mmin

1 � 1:

Mmin
1

∼= (ζ0R0)(γb−1)/(2γb), (20a)

zt

zi

)
zi�1,R0�1

∼= ζ0R0, (20b)

where

ζ0 = γa + 1

γb(γb + 1)

(
1 + γb

√
2

γb − 1

)2

. (21)

For small preshock density ratio but finite strength incident
shocks, we obtain the following expansions in powers of R0:

M1
∼= (1 + zi)

( γb−1
2γb

)
[

1 + (γb − 1)ζ1

2γb

√
R0 + O(R0)

]
, (22a)

zt
∼= ζ1

√
R0 + O(R0), (22b)

where

ζ1 = √
γaγb

⎧⎨
⎩2

[
1 − (1 + zi)

1−γb
2γb

]
γb − 1

cb1

cb0
+ U1

cb0

⎫⎬
⎭. (23)

The expansions given by Eqs. (20) and (22) are valid in
different ranges. Equation (20) is valid in the interval 0 <

R0 � Rmin
0 (zi) and Eq. (22) is only valid in the complementary

interval Rmin
0 (zi) � R0 < Rtt

0 , where Rmin
0 is obtained by

imposing equality of both expansions at Rmin
0 . The value of

Rmin
0 can be written as

Rmin
0 =

ζ 2
1 + 2ζ0(1 + zi) + ζ1

√
ζ 2

1 + 4ζ0(1 + zi)

2[ζ0(1 + zi)]2 , (24)

which depends on the incident shock strength zi . It is easy to
see that Rmin

0 → 0 for zi → ∞.
At intermediate values of R0, inside the interval Rmin

0 <

R0 < Rtt
0 , we can make the rarefaction tail stationary in

the laboratory frame. Let us call Rcrit
0 the value of R0 for

013102-4



ANALYTICAL SCALINGS OF THE LINEAR RICHTMYER- . . . PHYSICAL REVIEW E 96, 013102 (2017)

which U = cbf . For greater values of the preshock density,
the rarefaction tail moves following the contact surface
and the rarefaction head in the laboratory frame.
For R0 < Rcrit

0 , the rarefaction trailing edge moves to

the left, following the transmitted shock, in the laboratory
frame. The case R0 = Rcrit

0 is analogous to the case in which the
reflected shock wave remains steady in the laboratory frame,
as studied in [16]. The analytical expression of Rcrit

0 is

Rcrit
0 = [2γb + (γb + 1)zi] [1 + γb − (γb − 1)(1 + zi)ζ2]2

{(γb − 1)zi + √
2γb(1 + zi)[2γb + (γb − 1)zi]}2[1 − γb + (γa + 1)(1 + zi)ζ2]

, (25)

where

ζ2 =
{

2

γb + 1
+

√
2
(
γ 2

b − 1
)
zi√

γb(1 + zi)[2γb + (γb − 1)zi]

} 2γb
γb−1

. (26)

B. Fluid perturbations behind the transmitted shock

Between the contact surface and the transmitted shock, fluid
a has been compressed and set in motion. To simplify the
algebra, we work in a system of reference comoving with
the compressed fluid a. The coordinate origin is located at the
contact surface. Because of the front corrugation, pressure and
vorticity (entropy) perturbations are generated. Inside fluid
a we normalize the perturbations of pressure, density, and
velocity according to

δpa(x,y,t) = p̃a(x,t) cos(ky) ρaf caf Dikψ0, (27a)

δρa(x,y,t) = ρ̃a(x,t) cos(ky) ρaf kψ0, (27b)

δvxa(x,y,t) = ũa(x,t) cos(ky)Di kψ0, (27c)

δvya(x,y,t) = ṽa(x,t) sin(ky)Di kψ0. (27d)

The dimensional transmitted front ripple is assumed to be
of the form

�t (y,t) = ψ̃t (t) cos(ky) ψ0. (28)

The dimensionless initial shock ripple amplitude is given by
ψ̃t0:

ψ̃t0 = ψt (t = 0+)

ψ0
= 1 − Dt

Di

, (29)

and, because tangential velocity must be conserved across the
corrugated front, an initial tangential velocity perturbation is
generated behind it, which is given by

δv0
ya = −Ukψt0. (30)

We define the dimensionless velocity

ṽ0
ya = δv0

ya

kψ0Di

. (31)

After t = 0+, pressure perturbations are created inside the
compressed fluid. In linear theory, the usual approach is to
solve the wave equation for the pressure perturbations. The
dimensionless linearized fluid equations (x and y momentum
equations, mass conservation, and entropy conservation) are,
respectively,

∂ũa

∂τa

= −∂p̃a

∂kx
, (32a)

∂ṽa

∂τa

= p̃a, (32b)

∂ρ̃a

∂τa

= − Di

caf

(
∂ũa

∂kx
+ ṽa

)
, (32c)

∂p̃a

∂τa

= caf

Di

∂ρ̃a

∂τa

. (32d)

Note that the conservation of entropy for the compressed fluid
particles does not strictly imply ρ̃a ∝ p̃a . Actually, Eq. (32d)
only states that their partial time derivatives are proportional.
A first integral of this equation gives a relationship of the form

ρ̃a(x,t) = Di

caf

p̃a(x,t) + f (x), (33)

where the function f (x) stands for the generation of entropic
perturbations of density, which only depend on space, in the
reference frame used [7,25,31]. The above result tells us that
density perturbations are composed of an acoustic part (related
to the fluctuations in pressure) and an entropic part (due to
the conservation of the entropy generated at the shock front)
as discussed in [7,25,26]. The strict proportionality between
p̃ and ρ is only true for the particles that travel inside the
rarefaction fan, inside fluid b, because no entropy is generated
in this other situation [20].

From now on, we use the coordinate transformation [34]

kx = ra sinh χa, kcaf t = ra cosh χa. (34)

Combining Eqs. (32), we get the linear wave equation for the
pressure perturbations can be written as [7]

ra

∂2p̃a

∂r2
a

+ ∂p̃a

∂ra

+ rap̃a = ∂h̃a

∂χa

, (35a)

h̃a = 1

ra

∂p̃a

∂χa

. (35b)

The solution to the above equations can be found in the form
of an infinite series of Bessel functions [7] or in terms of the
Laplace transform of the pressure perturbations [11]. As for
the first method, it can be seen that

p̃a(χa,ra) =
∞∑

n=0

{
πa

2n+1 cosh[(2n + 1)χa]

+ωa
2n+1 sinh[(2n + 1)χa]

}
J2n+1(ra), (36)

where J2n+1 is the ordinary Bessel function of order 2n + 1
[35], and the coefficients πa

2n+1 and ωa
2n+1 have to be obtained

through the boundary conditions at the shock and at the contact
surface when matching with the perturbation field inside fluid
b [7,8]. We later show an efficient method to calculate πm

2n+1
and ωm

2n+1 in order to follow the initial transient evolution of
the different perturbed quantities.

013102-5



F. COBOS-CAMPOS AND J. G. WOUCHUK PHYSICAL REVIEW E 96, 013102 (2017)

Before attacking the problem of the temporal evolution,
it is very convenient to work with the Laplace transform of
the pressure perturbations. Laplace transforms in this work
have two goals: on one hand, they will enable us to obtain
the coefficients πa

2n+1, ωa
2n+1, and, besides, to obtain exact

analytical formulas for the asymptotic normal and tangential
velocities at the rippled contact surface. To this scope, we
define the Laplace transforms

P̃a(χa,sa) =
∫ ∞

0
p̂a(χa,ra)e−rasa dra, (37a)

H̃a(χa,sa) =
∫ ∞

0
h̃a(χa,ra)e−rasa dra. (37b)

We take the Laplace transform of both Eqs. (35) and make
sa = sinh qa . After some algebra, the solution to the wave
equation can be written, in terms of Laplace transforms, as
[11]

P̃a(χa,qa) = Fa1(qa − χa) + Fa2(qa + χa)

cosh qa

, (38a)

H̃a(χa,qa) = Fa1(qa − χa) − Fa2(qa + χa), (38b)

for some functions Fa1,2. For the sake of simplicity, we use
the same notation for the Laplace transform of P̃a , written
indistinctly as a function of sa in Eq. (37a), or of qa in Eq. (38a).
The same applies to the function H̃a .

The pressure amplitudes Fa1,2 are functions to be deter-
mined from the boundary and initial conditions. It can be seen
that Fa1 represents pressure perturbations that escape from the
contact surface towards the shock, and Fa2 represent the waves
that reach the transmitted shock from downstream [23]. If we
take the Laplace transform of Eq. (36) in the domain of the
variable ra , we find

Fa1(qa) = 1

2

∞∑
n=0

(
πa

2n+1 + ωa
2n+1

)
e−(2n+1)qa , (39a)

Fa2(qa) = 1

2

∞∑
n=0

(
πa

2n+1 − ωa
2n+1

)
e−(2n+1)qa . (39b)

The functions Fa1,2 have to be related through the linearized
boundary conditions at the shock front, that is, the linearized
Rankine-Hugoniot equations [11]. They are written, at first,
in the domain of the time variable rt = kcaf t

√
1 − β2

t . The
relationship between the transmitted shock ripple and the
shock pressure perturbations is [see Eq. (18) of [7] or
Eq. (13) of [31]]

dψ̃t

dτa

= γa + 1

4βt

Di

caf

p̃t . (40)

The factor Di/caf appearing in the right hand side of the
former equation is due to the different scaling factor used to
define the dimensionless pressure, which is ρaf caf Dikψ0 here,
in contrast to ρaf c2

af kψ0 in [24,31]. The equation that relates
the pressure and pressure gradient with the shock ripple just
behind the transmitted shock is

ht (rt ) = −M2
t + 1

2M2
t βt

dp̃t

drt

− β2
t√

1 − β2
t

(
ρaf

ρa0
− 1

)
ψ̃t . (41)

If we make a Laplace transformation in the domain of the
variable rt , we obtain (after making sa = sinh qa)

H̃t (qa) = αa1(qa)P̃t (qa) + αa2(qa), (42)

where

αa1(qa) = αa10 sinh qa + αa11

sinh qa

, (43a)

αa2(qa) = αa20

sinh qa

, (43b)

and

αa10 = κt + β2
t

2κtβt

, (44a)

αa11 = 1

2

βt

κt

κt − β2
t

1 − β2
t

ρaf

ρa0
, (44b)

αa20 = −ṽ0
ya sinh χt . (44c)

The parameter κt is the dimensionless slope of the R-H curve
of fluid a, evaluated in its final state, and normalized with
respect to the adiabatic sound speed of the shocked fluid

κt = 1

c2
af

(
dp

dρ

)
ρaf

. (45)

Its analytical expression for an ideal gas with isentropic
exponent γa is

1

κt

= 1

4
(γa − 1)2(1 + zi)

[
1 − ρa0

ρaf

(
γa + 1

γa − 1

)]2

. (46)

Finally, after some algebra, we find a relationship between
both pressure amplitudes:

Fa2(qa) = ṽ0
ya

sinh(qa − χt )η+(qa − χt )

− η−
t (qa − χt )

η+
t (qa − χt )

Fa1(qa − 2χt ), (47)

where tanh χt = −βt and the functions η±
t are defined below:

η±
t (qa) = αa1(qa)

cosh qa

± 1. (48)

We see that Eq. (47) is a functional equation. The argument
of the unknown function Fa1 is shifted by −2χt . The shift
turns out to be an important quantity that can not be neglected
for moderate to strong shocks. Physically, it is related to the
sound wave reverberation between the contact surface and the
ripped transmitted shock front. For very weak shocks (zi � 1),
it is χt ∝ ln zi . Hence, the shifted argument of Fa1 in the
previous equation becomes infinitely large. As the pressure
functions Fa1,2 behave like decaying exponentials for large
absolute values of their arguments, the functional equation
becomes a simpler algebraic equation relating Fa2 and Fa1. In
the very weak shock limit, the sonic perturbations radiated
by the contact surface ripple barely catch the transmitted
shock, which behaves almost as an isolated shock wave. In
the opposite limit (zi � 1), it is χt ∼ O(1) and, hence, χt

can not be neglected inside the argument of Fa1. In this
limit, the velocity of the shock relative to the contact surface
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decreases, thus enhancing the sonic interaction. We have not
enough information inside fluid a in order to solve for the
two unknown functions Fa1 and Fa2 in the general case
because Eq. (47) is a single equation for two unknowns.
In order to solve the problem inside fluid a, we must also
solve the perturbation problem inside fluid b and connect both
perturbation fields across the contact surface, by requiring the
continuity of pressure and normal velocity perturbations. To
perform this task, we must formally solve for the perturbed
pressure function inside fluid b, and we use the same formalism
as in fluid a. However, the perturbations growing to the right of
the contact surface are also influenced by the perturbations that
are generated inside the rarefaction fan, as shown in [6,19,20].
In the next subsection, we review at first the perturbation fields
inside the rippled rarefaction wave. After that, the pressure
perturbations inside fluid b are solved and the matching of the
solutions across the rippled material surface can then be done.

C. Rarefaction region

For the analysis of the perturbations growing inside the
rarefaction fan, we refer to [20]. The results derived there
will be later useful in order to describe the perturbations at
the rarefaction tail as a function of time and, hence, to later
calculate the temporal evolution of the contact surface ripple.
We will only briefly review here the main results and refer
to [20] for the derivations of the formulas. We work in the
Eulerian system of reference that moves with the unperturbed
contact surface. We use the definitions

δvx(x,y,t) = cb1ũraref(x,t)kψ0 cos ky, (49a)

δvy(x,y,t) = cb1ṽraref(x,t)kψ0 sin ky (49b)

for the longitudinal and tangential velocities. Notice that the
velocity scale used to measure velocities inside the rarefaction
wave is cb1 and not Di . The pressure and density perturbations
are written as

δp(x,y,t) = p̃raref(x,t) cos kyρb1c
2
b1kψ0, (50a)

δρ(x,y,t) = ρ̃raref(x,t) cos kyρb1kψ0, (50b)

We assume adiabatic flow inside the rarefaction and, hence,
p̃raref = ρ̃raref [see the discussion concerning Eq. (33)] and/or
[19,20]. Note that the proportionality factor between the
dimensionless pressure and density is unity here because of
the different normalization used compared to the relationship
between the same quantities in fluid a [see Eq. (32d)]. At t =
0+, after the incident shock has been refracted, the rarefaction
leading and trailing edges become rippled. The initial dimen-
sionless amplitudes of their ripples are, respectively [6,11],

ψ̃0
rh = ψ0

rh

ψ0
= 1 − cb1 − U1

Di

, (51a)

ψ̃0
rt = ψ0

rt

ψ0
= 1 + cbf − U

Di

. (51b)

As explained in [19], or in [5], immediately after shock
refraction, an initial profile of the tangential velocity perturba-
tion is formed inside the centered expansion fan. In terms of the
self-similar variable ζ , the distribution of tangential velocity

inside the expansion fan at t = 0+ is given by

ṽraref(ζ,t = 0+) = 1

γb + 1

ψ̃0
rt − ψ̃0

rh

ζrh − ζrt

(
ζ 2
rh − ζ 2

)

− 2

γb + 1

(
ψ̃0

rt − ψ̃0
rh

ζrh − ζrt

+ ψ̃0
rt

)
(ζrh − ζ ).

(52)

The perturbations growing inside the expansion fan evolve in
time, and for t > 0, the tangential velocity fluctuations inside
the rarefaction region can be written in the form [17,18,20]

ṽraref(ξ,η) =
√

ξ

∫ ξ

1
J0[

√
nKH η(ξ − z)]

dw0

dz
, (53)

where the new variables ξ and η are defined by

ξ = Aβ, η = (kcb1t)
2Aα, (54)

with

α = γb + 1

γb − 1
, (55a)

β = γb − 3

γb − 1
, (55b)

nKH = γb + 1

3 − γb

. (55c)

The function J0 is the ordinary Bessel function of order
0 [35,36]. The function w0 is related to the initial tangential
velocity profile, in the new variables [17,18,20]. It can be
written as

w0(z) =
2∑

j=0

αjz
εj , (56)

where the coefficients αj and the exponents εj are given by

α0 =
[

ζ 2
rh

γb + 1
− 4M2

1(
γ 2

b − 1
)
(γb − 1)

][
ψ̃0

rt − ψ̃0
rh

ζrh − M1

]

−
(

2ζrh

γb + 1
+ 4M1

γ 2
b − 1

)[(
ψ̃0

rt − ψ̃0
rh

)
M1

ζrh − M1
+ψ̃0

rt

]
, (57)

α1 =
(

1

γb − 1

)[(
ψ̃0

rt − ψ̃0
rh

)
M1

ζrh − M1
+ 2ψ̃0

rt

]

+ 4M1

(γb − 1)2

[
ψ̃0

rt − ψ̃0
rh

ζrh − M1

]
, (58)

α2 = − γb + 1

(γb − 1)2

[
ψ̃0

rt − ψ̃0
rh

ζrh − M1

]
, (59)

ε0 = −1

2
, ε1 = γb + 1

2γb − 6
, ε2 = 3γb − 1

2γb − 6
. (60)

D. Fluid perturbations inside the expanded fluid b

In the space between the contact surface and the rarefaction
trailing edge the background mass density is constant and
equal to the fluid density at the rarefaction trailing edge: ρbf .
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We scale here pressure, density, and velocity perturbations in
the form

δpb(x,y,t) = p̃b(x,t) cos ky ρbf cbf Di kψ0, (61a)

δρb(x,y,t) = ρ̃b(x,t) cos ky ρbf kψ0, (61b)

δvxb(x,y,t) = ũb(x,t) cos ky Di kψ0, (61c)

δvyb(x,y,t) = ṽb(x,t) cos ky Di kψ0. (61d)

We define the variables χb and rb:

kx = rb sinh χb, kcbf t = rb cosh χb. (62)

The wave equation can be treated in the same way as in
fluid a and its solutions written in a similar form [11]. We
show the solution as a function of time and space, in the form

p̃b(χb,rb) =
∞∑

n=0

{
πb

2n+1 cosh[(2n + 1)χb]

+ωb
2n+1 sinh[(2n + 1)χb]

}
J2n+1(rb). (63)

Working with the Laplace transform of the wave equation for
the pressure fluctuations inside fluid b, we arrive to a similar
decomposition, as in fluid a:

P̃b(χb,qb) = Fb1(qb − χb) + Fb2(qb + χb)

cosh qb

, (64a)

H̃b(χb,qb) = Fb1(qb − χb) − Fb2(qb + χb). (64b)

Analogously as with fluid a, the pressure amplitudes Fb1,2

can be expressed in terms of the coefficients πb
2n+1, ωb

2n+1:

Fb1(qb) = 1

2

∞∑
n=0

(
πb

2n+1 + ωb
2n+1

)
e−(2n+1)qb , (65a)

Fb2(qb) = 1

2

∞∑
n=0

(
πb

2n+1 − ωb
2n+1

)
e−(2n+1)qb . (65b)

As discussed in [11], the function Fb1 is explicitly given
by the perturbations growing at the rarefaction trailing edge,
inside the rarefaction wave. The explicit formula for the
function Fb1(qb) is

Fb1(qb) = −1

2

δv0
yb

Di

eqb + eqb sinh qb

×
∫ ∞

0
ṽrt (τb)exp(−τbe

qb ) dτb, (66)

where δv0
yb is the (dimensional) initial rarefaction tail tangen-

tial velocity, and can be calculated using Eq. (52):

δv0
yb = 1

γb + 1

[(
ψ̃0

rt − ψ̃0
rh

)
(ζrh + ζrt )

− 2

γb + 1

(
ψ̃0

rt − ψ̃0
rh

ζrh − ζrt

+ ψ̃0
rt

)
(ζrh − ζrt )

]
cb1. (67)

It is convenient to define here a normalized velocity with
respect to the incident shock speed (Di), as this is necessary
when matching with the velocity perturbations at the contact
surface. We define, for later use,

ṽ0
yb = δv0

yb

kψ0Di

= cb1

Di

(
a + b ζrt + c ζ 2

rt

)
, (68)

where

a = ζ 2
rh

γb + 1

ψ̃0
rt − ψ̃0

rh

ζrh − ζrt

− 2ζrh

γb + 1

[(
ψ̃0

rt − ψ̃0
rh

)
ζrt

ζrh − ζrt

+ ψ̃0
rt

]
,

(69a)

b = 2

γb + 1

[(
ψ̃0

rt − ψ̃0
rh

)
ζrt

ζrh − ζrt

+ ψ̃0
rt

]
, (69b)

c = − 1

γb + 1

ψ̃0
rt − ψ̃0

rh

ζrh − ζrt

, (69c)

as defined in [11].
The function ṽrt inside the integral in Eq. (66) is the

dimensionless rarefaction tail tangential velocity as a function
of dimensionless time τb = kcbf t . We use Eq. (53) to write the
function ṽrt , after noting that the time inside the rarefaction is
scaled with cb1:

ṽrt (τb) = ṽraref
(
ξ = M

β

1 ,η = τbM
α−2
1

)
, (70)

where β = (γb − 3)/(γb − 1) and α = (γb + 1)/(γb − 1). Af-
ter some algebra, we obtain

Fb1(qb) = − ṽ0
yb

2
eqb + ξ

1/2
rt

cb1

Di

eqb sinh qb

×
∫ ξrt

1

dw0

dz

[
e2qb + nM

−β

1 (ξrt − z)
]
dz. (71)

The integral in the above equation can be obtained analytically
in terms of known transcendent functions. An exact analytical
expression for Fb1, not reported before, is given by the
following lengthy expression:

Fb1(qb) = − ṽ0
yb

2
eqb + cbf

Di

ξ
1/2
rt eqb sinh(qb)�(qb), (72)

where

�(qb) = b1ξ
�1+1
rt√
nKH

⎧⎨
⎩2

(
e2q

nKH

+ 1

)�1
√

e2q

nKH

− 1

ξrt

+ 1 2F1

[
1

2
, − �1;

3

2
; 1 − 1(

1 + e2q

nKH

)
ξrt

]

− 2

√
e2q

nKH

(
e2q

nKH

+ 1

)�1

2F1

(
1

2
, − �1;

3

2
; 1 − 1

1 + e2q

nKH

)⎫⎬
⎭
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+ b2ξ
�2+1
rt√
nKH

⎧⎨
⎩2

(
e2q

nKH

+ 1

)�2
√

e2q

nKH

− 1

ξrt

+ 1 2F1

[
1

2
, − �2;

3

2
; 1 − 1(

1 + e2q

nKH

)
ξrt

]

− 2

√
e2q

nKH

(
e2q

nKH

+ 1

)�2

2F1

(
1

2
, − �2;

3

2
; 1 − 1

1 + e2q

nKH

)⎫⎬
⎭

+ b3ξ
�3+1
rt√
nKH

⎧⎨
⎩2

(
e2q

nKH

+ 1

)�3
√

e2q

nKH

− 1

ξrt

+ 1 2F1

[
1

2
, − �3;

3

2
; 1 − 1(

1 + e2q

nKH

)
ξrt

]

− 2

√
e2q

nKH

(
e2q

nKH

+ 1

)�3

2F1

(
1

2
, − �3;

3

2
; 1 − 1

1 + e2q

nKH

)⎫⎬
⎭, (73)

in which 2F1(z1,z2; z3; z4) is the Gauss hypergeometric series [35,36], and

μ1 = γb + 1

γb − 1
, μ2 = − 2M1

γb − 1
, nKH = γb + 1

3 − γb

, b1 = ε0
(
a + bμ2 + cμ2

2

)
,

b2 = ε1(bμ1 + 2cμ1μ2), b3 = ε2cμ
2
1, �1 = −3

2
, �2 = 7 − γb

2γb − 6
, �3 = γb + 5

2γb − 6
, (74)

where ε and α were defined in Eqs. (57)–(60).
In order to later calculate πm

2n+1 and ωm
2n+1, it is convenient to have an expansion of Fb1 in powers of e−qb . This can be done

by using Eq. (72) written above. However, a much simpler way is to make an expansion in powers of e−qb directly inside the
integrand in Eq. (71). We obtain

Fb1(qb) =
∞∑

n=0

f 2n+1
b1 e−(2n+1)qb ≡

∞∑
n=0

�[�(n + 1) − �(n)]e−(2n+1)qb , (75)

where

� =
√

ξrt

2

cbf

Di

, δ = γb − 1

γb − 3
,

�(n) = (−1)n(nKH )n

2
√

π�(n + 1)�
(
n + δ + 1

2

)
�
(
n + 2δ + 1

2

)
ξrt

×
{
c(4δ − 1)μ2

1�

(
2δ − 1

2

)
�

(
n + 1

2

)
�(n + 1)�

(
n + δ + 1

2

)
ξ

2δ+ 1
2

rt

+�

(
n + 2δ + 1

2

)[
(2cμ2 + b)(2δ − 1)μ1�

(
δ − 1

2

)
�

(
n + 1

2

)
�(n + 1)ξ

δ+ 1
2

rt

− 2�

(
n + δ + 1

2

)√
ξrt (−

√
π [(cμ2 + b)μ2 + a])�(n + 1)

+�

(
n + 1

2

)√
ξrt

(
[(cμ2 + b)μ2 + a]2F1

(
−1

2
, − n;

1

2
;

1

ξrt

)

+ μ1

(
cμ1 2F1

(
−n,2δ − 1

2
; 2δ + 1

2
;

1

ξrt

)
+ (2cμ2 + b)

)
2F1

(
−n,δ − 1

2
; δ + 1

2
;

1

ξrt

)))]}
. (76)

E. Functional equation for Fa1

We can match the perturbation fields at both sides of
the contact surface requiring the continuity of pressure and
normal velocity at both sides of x = 0. We write this set of
conditions in terms of the Laplace transforms in the way

RP̃a(χa = 0,qa) = P̃b(χb = 0,qb), (77a)

H̃a(χa = 0,qa) = H̃b(χb = 0,qb), (77b)

which can be rewritten in terms of the functions Fm1,2 using
Eq. (38) as

R
cosh qb

cosh qa

[Fa1(qa) + Fa2(qa)] = Fb1(qb) + Fb2(qb), (78a)

Fa1(qa) − Fa2(qa) = Fb1(qb) − Fb2(qb). (78b)

When matching the perturbation fields at the contact
surface, the following relationship between sa and sb has been
used: N sinh qa = sinh qb. In the above system of equations
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[Eq. (78)], we remind that Fb1(qb) is already given by Eq. (72),
which is information given at the rarefaction tail. Besides, the
linearized Rankine-Hugoniot conditions give us a relationship
between Fa1 and Fa2 in Eq. (47). Therefore, we have a
linear system of four equations to solve for the four pressure
amplitudes Fm1,2 (m = a, b). After some algebra, we arrive to
a single functional equation for Fa1:

Fa1(qa) = φa1(qa) + φa2(qa)Fa1(qa − 2χt ), (79)

where [11]

φa1(qa) = 2

� + 1
Fb1(qb) − � − 1

� + 1

δv0
ya sinh χt

η+
t (qa − χt ) sinh qa − χt

,

(80a)

φa2(qa) = � − 1

� + 1

η−
t (qa − χt )

η+
t (qa − χt )

, (80b)

and

� = R
cosh qb

cosh qa

. (81)

We can solve it by iterations, as shown in [11]. We need a
starting function to initiate the iteration sequence. It can be
easily obtained by solving Eq. (79) for qa � −2χt . We get

F
[0]
a1 (qa) = φa1(qa)

1 − φa2(qa)
. (82)

The nth step in the iteration sequence is then

F
[n]
a1 (qa) =

n∑
l=0

⎡
⎣φa1(qa − 2lχt )

l−1∏
j=0

φa2(qa − 2jχt )

⎤
⎦

+
[

n∏
l=0

φa2(qa − 2lχt )

]
F

[0]
a1 (qa − 2nχt ),

n � 1. (83)

The above functional equation has been discussed for the first
time in [11] and in [14] to calculate the asymptotic velocity
at the contact surface ripple. We use it here with the same
purpose, but also to calculate the Bessel series coefficients
πa

2n+1 and ωa
2n+1 in Eq. (36) in order to follow the initial

transient of the pressure perturbations. It is noted that Fb1(qb)
inside the expression for φa1(qa) [Eq. (80a)] is understood as
a function of qa through the relationship N sinh qa = sinh qb.

F. Time evolution of the pressure perturbations

1. Bessel series for arbitrary values of position and time

According to Eq. (36), we can follow the transient growth
of the perturbations at any position if we have the coefficients

πa
2n+1 and ωa

2n+1. This denumerable set of numbers can be
obtained with the aid of the Laplace transforms developed in
the previous subsections. Our task in this section is to build
the equations that enable us to calculate πa

2n+1 and ω2n+1. If
we write the pressure perturbations P̃a and H̃a at the contact
surface (at x = 0 or, equivalently, χa = 0), we have

P̃ai(qa) = Fa1(qa) + Fa2(qa)

cosh qa

=
∞∑

n=0

πa
2n+1

(√
s2
a + 1 − sa

)2n+1√
s2
a + 1

, (84a)

H̃ai(qa) = Fa1(qa) − Fa2(qa)

=
∞∑

n=0

ωa
2n+1

(√
s2
a + 1 − sa

)2n+1
, (84b)

where the subindex i indicates the location of the con-
tact surface. Besides, the Laplace transforms of the Bessel
functions have also been used [35,36]. From the linearized
Rankine-Hugoniot relationship at the transmitted shock front
[Eq. (47)] we know that Fa2 is related to Fa1. Therefore, the
left hand sides of Eq. (84) are known in terms of Fa1 which
is the solution to the functional equation (79). Therefore, the
desired coefficients πa

2n+1 and ωa
2n+1 could be obtained through

a convenient series expansion of Fa1 and Fa2 in powers of 1/sa .
We make

Fa1(qa) =
∞∑

n=0

f a1
2n+1

s2n+1
a

, (85a)

Fa2(qa) =
∞∑

n=0

f a2
2n+1

s2n+1
a

. (85b)

The idea is to substitute Eq. (85a) inside Eq. (79), expand
both members in powers of 1/sa , and obtain an infinite
system of equations, from which the coefficients f a1

2n+1 can
be retrieved. Then, substituting both expansions given by
Eqs. (85) inside Eq. (47), another system of equations can
be constructed to obtain the coefficients f a2

2n+1, as functions of
f a1

2n+1. A recurrence equation to calculate f a1
2n+1 can be easily

implemented inside a Mathematica notebook or a similar
mathematical software. All we need is to expand the functions
φa1, φa2 and the shifted function Fa1(qa − 2χt ) and equate
equal powers in 1/sa . The general term would be too large to
be written here and be of practical use. We only show the first
two coefficients. We have

f a1
1 = 1

2N

βtN (NR−1) + (βt+1)(αa10+1)�[�(1)−�(0)]

βt+NR+(βtNR+1)αa10

(86)

and

f a1
3 = 1

8N3
(
ν

f a
3

1 + ν
f a

3
2 αa10 + ν

f a
3

3 α2
a10

) [−2βtN
2
(
σ

f a
3

1 + σ
f a

3
2 αa10 + σ

f a
3

3 αa11
)

+ (βt + 1)�[�(1) − �(0)]
(
σ

f a
3

4 + σ
f a

3
5 αa10 + σ

f a
3

6 α2
a10 + σ

f a
3

7 αa11
)

+ (βt + 1)3�[�(2) − �(1)]
(
σ

f a
3

8 + σ
f a

3
9 αa10 + σ

f a
3

10 α2
a10

)]
, (87)
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where

σ
f 3

a1
1 = 2R2N3β2

t + R
[
N2(2β3

t + β2
t + 4βt + 1

)− (βt + 1)3]− Nβt

(
β2

t + 1
)
,

σ
f 3

a1
2 = 2R2N3β3

t − R
[
N2βt

(
β2

t − 6βt − 3
)+ (βt + 1)3

]− N
(
3β2

t − 1
)
,

σ
f 3

a1
3 = 2

[
R2N3βt

(
β2

t − 1
)+ RN2

(−β3
t + β2

t + βt − 1
)− N

(
β2

t − 1
)]

,

σ
f 3

a1
4 = R[2N3(3βt + 1) − 3N (βt + 1)2] + 2N2βt (βt − 1) − βt (βt + 1)2,

σ
f 3

a1
5 = R[8N3βt (βt + 1) − 3N (βt + 1)3] + 2N2

(
β3

t − β2
t − βt + 1

)− (βt + 1)3,

σ
f 3

a1
6 = RNβt [2N2βt (βt + 3) − 3(βt + 1)2] − 2N2βt (βt − 1) − (βt + 1)2,

σ
f 3

a1
7 = 4N2

(
β3

t − β2
t − βt + 1

)
[RN − 1],

σ
f 3

a1
8 = RN + βt ,

σ
f 3

a1
9 = (βt + 1)[RN + 1],

σ
f 3

a1
10 = RNβt + 1,

ν
f 3

a1
1 = R2N2

(
3β2

t + 1
)+ 4RNβt

(
β2

t + 1
)+ β2

t

(
β2

t + 3
)
,

ν
f 3

a1
2 = 4R2N2βt

(
β2

t + 1
)+ 2RN

(
β4

t + 6β2
t + 1

)+ 4βt

(
β2

t + 1
)
,

ν
f 3

a1
3 = R2N2β2

t

(
β2

t + 3
)+ 4RNβt

(
β2

t + 1
)+ 3β2

t + 1. (88)

Once we have the coefficients f a1
2n+1, we substitute the series for Fa1 inside Eq. (84). Expanding both members in powers of 1/sa

we obtain the quantities πa
2n+1 and ωa

2n+1. The equations can be easily implemented inside a Mathematica notebook or any similar
software, and solve them for arbitrary values of n. Writing the general term would be of little practical value, as the analytical
expressions soon become cumbersome [32]. We only show here the first two coefficients in each fluid, πa

1 , πa
3 and ωa

1 , ωa
3 :

πa
1 = 2

N

−βtN + (βtαa10 + 1)�[�(1) − �(0)]

βt + NR + (βtNR + 1)αa10
(89)

and

πa
3 = 2

N3
(
ν

πa
3

1 + ν
πa

3
2 αa10 + ν

πa
3

3 α2
a10

) [N2βtδv
0
ya

(
σ

πa
3

1 + σ
πa

3
2 αa10 + σ

πa
3

3 αa11
)

+�[�(1) − �(0)]
(
σ

πa
3

4 + σ
πa

3
5 αa10 + σ

πa
3

6 α2
a10 + σ

πa
3

7 αa11
)+ �[�(2) − �(1)]

(
σ

πa
3

8 + σ
πa

3
9 αa10 + σ

πa
3

10 α2
a10

)]
, (90)

where

σ
πa

3
1 = R

[
N2

(−5β2
t − 3

)+ 6β2
t + 2

]+ Nβt

(
β2

t − 1
)
,

σ
πa

3
2 = Rβt

[
N2(β2

t − 9
)+ 2β2

t + 6
]+ 3N

(
β2

t − 1
)
,

σ
πa

3
3 = −4N

(
β2

t − 1
)
[RNβt + 1],

σ
πa

3
4 = (

3β2
t + 1

)
(N2 − 1)[3RN + βt ],

σ
πa

3
5 = 12RNβt

(
β2

t + 1
)
(N2 − 1) + N2

(
3β4

t + 2β2
t + 3

)− β4
t − 6β2

t − 1,

σ
πa

3
6 = βt

(
β2

t + 3
)
(N2 − 1)[3RNβt + 1],

σ
πa

3
7 = −4N2

(
β2

t − 1
)2

,

σ
πa

3
8 = (

3β2
t + 1

)
[RN + βt ],

σ
πa

3
9 = 4RNβt

(
β2

t + 1
)+ β4

t + 6β2
t + 1,

σ
πa

3
10 = βt

(
β2

t + 3
)
[RNβt + 1],

ν
πa

3
1 = ν

f a1
3

1 , ν
πa

3
2 = ν

f a1
3

2 , ν
πa

3
3 = ν

f a1
3

3 , (91)

ωa
1 = 2

N

βtN
2R + (αa10 + βt )�[�(1) − �(0)]

βt + NR + (βtNR + 1)αa10
, (92)
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and

ωa
3 = 2

N3
(
ν

ωa
3

1 + ν
ωa

3
2 αa10 + ν

ωa
3

3 α2
a10

) [RN2βtδv
0
ya

(
σ

ωa
3

1 + σ
ωa

3
2 αa10 + σ

ωa
3

3 αa11
)

+�[�(1) − �(0)]
(
σ

ωa
3

4 + σ
ωa

3
5 αa10 + σ

ωa
3

6 α2
a10 + σ

ωa
3

7 αa11
)

+�[�(2) − �(1)]
(
σ

ωa
3

8 + σ
ωa

3
9 αa10 + σ

ωa
3

10 α2
a10

)]
, (93)

where

σ
ωa

3
1 = −RN3

(
β2

t − 1
)− N2βt

(
3β2

t + 5
)+ 2βt

(
β2

t + 3
)
,

σ
ωa

3
2 = −3RN3βt

(
β2

t − 1
)− N2

(
9β2

t − 1
)+ 6β2

t + 2,

σ
ωa

3
3 = 4N2

(
β2

t − 1
)
[RNβt + 1],

σ
ωa

3
4 = βt

(
β2

t + 3
)
(N2 − 1)[3RN + βt ],

σ
ωa

3
5 = RN

[
N2

(
β4

t + 22β2
t + 1

)− 3
(
β4

t + 6β2
t + 1

)]+ 4βt

(
β2

t + 1
)
(N2 − 1),

σ
ωa

3
6 = (

3β2
t + 1

)
(N2 − 1)[3RNβt + 1],

σ
ωa

3
7 = 4RN3(β2

t − 1
)2

,

σ
ωa

3
8 = βt

(
β2

t + 3
)
[RN + βt ],

σ
ωa

3
9 = RN

(
β4

t + 6β2
t + 1

)+ 4βt

(
β2

t + 1
)
,

σ
ωa

3
10 = (

3β2
t + 1

)
[RNβt + 1],

ν
ωa

3
1 = ν

f a1
3

1 , ν
ωa

3
2 = ν

f a1
3

2 , ν
ωa

3
3 = ν

f a1
3

3 . (94)

2. Taylor series in time for the shock pressure perturbations

An alternative way of studying the temporal evolution of the
shock pressure perturbations consists in using an expansion in
powers of time, as done in [6,19]. We write the Taylor series
for the pressure perturbation at the transmitted shock:

p̃t (rt ) =
∞∑

n=0

p
(2n+1)
t0

(2n + 1)!
r2n+1
t , (95)

where rt = τa/ cosh χt = τa

√
1 − β2

t and p
(2n+1)
t0 is the 2n + 1

derivative of the shock pressure perturbation (with respect to
the variable rt ) at t = 0+. Our task in this subsection is to
build the equations that allow us to find the quantities p

(2n+1)
t0 .

If we make a Laplace transform of the above equation, we get

P̃t (sa) =
∞∑

n=0

p
(2n+1)
t0

s2n+2
a

. (96)

According to Eqs. (38), (39), (47), and (85), the derivatives
p

(2n+1)
t0 are combinations of the quantities f a1

2n+1. However, it

is simpler to relate the derivatives p
(2n+1)
t0 with the Bessel series

coefficients πa
2n+1 and ωa

2n+1. According to Eq. (36), we write
the pressure perturbation at the shock in the form

p̃t (rt ) =
∞∑

n=0

Dt
2n+1J2n+1(rt ), (97)

where Dt
2n+1 = πa

2n+1 cosh[(2n + 1)χt ] + ωa
2n+1 sinh[(2n +

1)χt ]. The Laplace transform of Eq. (97) is

P̃t (sa) =
∞∑

n=0

Dt
2n+1

(√
s2
a + 1 − sa

)2n+1√
s2
a + 1

. (98)

After expanding the right hand side of Eq. (98) in powers of
1/sa and equating with Eq. (96) we can retrieve the general
term p

(2n+1)
t0 . The two first initial derivatives are

p
(1)
t0 = Dt

1

2
, p

(3)
t0 = Dt

3 − 3Dt
1

8
, (99)

and the general term p
(2n+1)
t0 can be easily calculated, for

example, inside a Mathematica notebook.

G. Time evolution of the transmitted shock ripple

The shock ripple evolution is directly calculated by inte-
grating Eq. (40) [7]. If we use the Bessel functions series for
the transmitted shock pressure perturbation, we get

ψ̃t (rt ) = ψ̃t0J0(rt ) − (γa + 1)

2βt

√
1 − β2

t

Di

caf

∞∑
n=0

Dt
2n+1

×
[

n∑
k=1

J2k(rt )

]
, (100)
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where we remind that rt = kcaf t
√

1 − β2
t . On the other hand,

with the Taylor series, we get

ψ̃t (rt ) = ψ̃t0 + (γa + 1)

4βt

√
1 − β2

t

Di

caf

∞∑
n=0

p2n+1
t0

r2n+2
t

(2n + 2)!
.

(101)

H. Time evolution of the rarefaction tail ripple

To calculate the time evolution of the rarefaction tail
corrugation, we follow [20], specifically its Eq. (58). We take
care that in the results presented in [20], the dimensionless
time is scaled with kcb1. That is, the nondimensional time in
[20] is τraref . Therefore, we have

ψ̃rt (τraref) = ψ̃0
rt + 3 − γb

4M1

{
Di

cb1
ṽ0

yb − ṽrt (τraref) − τrarefM
−2

γb−1

1

√
nKH

∫ ξrt

1

dw0(z)

dz

j1[τraref

√
M

(γb+1)/(γb−1)
1 nKN (ξrt − z)]

√
ξrt − z

dz

}
,

(102)

where the function ṽrt (τraref) is given by

ṽrt (τb) = ṽraref(ξrt ,ηrt ), (103a)

ξrt = M
(γb−3)/(γb−1)
1 , (103b)

ηrt = τ 2
rarefM

(γb+1)/(γb−1)
1 . (103c)

Besides, the function j1 is given by

j1(x) = xJ0(x) − J1(x) + πx

2
[J1(x)H0(x) − J0(x)H1(x)].

(104)

Hν are ordinary Struve functions. The initial tangential
velocity ṽ0

yb is writen in Eq. (152), w0(z) in Eq. (56), and
nKH in Eq. (74). In [20], it was demonstrated that the normal
velocity at the trailing edge reaches an asymptotic value in
time. Thanks to this, we write a formula valid in the linear
asymptotic regime in the form

ψ̃rt (t → ∞) ∼= u∞
rt τraref . (105)

There is no asymptotic ordinate to the origin for the trailing
edge ripple growth. The normal velocity u∞

rt is taken from
Eq. (61) of [20]:

u∞
rt = cb1

Di

γb − 3

4
ξrt

√
nKH

∫ ξrt

1

dw0(z)

dz

1√
ξrt − z

dz. (106)

I. Vorticity generated by the transmitted shock and asymptotic
velocities at the contact surface ripple

1. Differential equations

After t = 0+, the rippled wavefronts escape from the
contact surface. The transmitted shock front generates vorticity
inside fluid a. On the contrary, no vorticity is created inside
fluid b. At each side of the contact surface, we have a steady
velocity field of the form (m = a or b)

�vm(x,y) = (um(x) cos ky,vm(x) sin ky). (107)

The vorticity inside fluid a can be expressed in dimensionless
form, as [7,15,25]

ω̃a(x,y) = δωa(x,y)

kDi

= ga(x̃) sin ky, (108)

where x̃ = kx, and the function ga is given by

ga(x̃) = �ap̃t [t = −x/(Dt − U )]

≡ �ap̃t [rt = −x̃/ sinh χt )]. (109)

In the above equation, p̃t refers to the pressure perturbation at
the transmitted shock. As the shock moves away, the pressure
perturbations show a damped oscillatory behavior in time. In
consequence, according to Eq. (109), this temporal behavior
of the pressure fluctuations translates into a spatial damped
oscillatory pattern for the vorticity spread inside fluid a.
The important information expressed by Eq. (109) is that
the vorticity at position x is proportional to the value of the
pressure perturbation at the transmitted shock at the time the
shock front arrived to that position. In other words, vorticity
stored in the bulk is the memory of the compressible history of
the shock ripple oscillations. The quantity �a is given by [8]

�a = −
(
M2

t − 1
)√

2γaM
2
t − γa + 1

M2
t

[
(γa − 1)M2

t + 2
]3/2 . (110)

For large times, when the rippled wavefronts have separated
off the contact surface, at least a perturbation wavelength,
we can assume that the pressure perturbation field becomes
negligible near the material surface and the velocity perturba-
tions become incompressible [8,10,11]. It can be seen, that for
large times, the dimensionless velocity components satisfy the
ordinary differential equations

d2ua

dx̃2
− ua = −ga(x̃), (111a)

d2ub

dx̃2
− ub = 0, (111b)

where ga is given above by Eq. (109) and is necessary in order
to calculate the vorticity generated by the transmitted shock
inside fluid a. Inside fluid b there is no vorticity and the velocity
field simply decays exponentially. The tangential component
of the velocity (v) is easily obtained from the previous
equations because of the asymptotic incompressibility of the
perturbation field, which in our units is simply written as

v = −du

dx̃
. (112)
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The fact that ga �= 0 implies that the normal and tangential
velocities at the contact surface ripple inside fluid a are
different. Their difference becomes more important in regimes
where shock compression is important. Let ui indicate the
dimensionless normal velocity at the interface and via the
dimensionless tangential velocity. It can be seen that

ui + via = −�a sinh χt P̃t (qa = −χt ) = Fa, (113a)

ui = vib, (113b)

where Fa is the dimensionless form of Fa [see Eq. (4)].
We see that Fa ∝ ∫∞

0 p̃t (r)exp(−r sinh χt ) dr is essentially
a weighted average of the vorticity spread inside fluid a.

To close the equations system above, we need another
relationship between the asymptotic velocities. It comes from
integrating the y component of the linearized momentum
equation at x = 0, and we obtain [8,11]

ρaf

(
via − ṽ0

ya

) = ρbf

(
ui − ṽ0

yb

)
. (114)

Using R = ρaf /ρbf [see Eq. (15)], we obtain

ui = ṽ0
yb − Rṽ0

ya

R + 1
+ RFa

R + 1
, (115a)

via = − ṽ0
yb − Rṽ0

ya

R + 1
+ Fa

R + 1
, (115b)

vib = ui. (115c)

The first term in the above equations is only dependent on the
initial tangential velocities generated by the rippled wavefronts
at both sides of the material interface and is enough to estimate
the asymptotic velocities for weak shocks. The second term
is proportional to the vorticity integrated inside fluid a, which
is represented by the parameter Fa , and is necessary when
one reaches shock compression becomes important. This is
typically the case when the incident shock Mach number
increases beyond 1.5 and/or any of the fluids’ isentropic
exponent approaches unity.

2. Calculation of Fa

The quantity Fa can be obtained after some careful algebra
[10,11]:

Fa =
[

1 + M2
t

M2
t − 1

4(Dt − U )

U

]−1[
ṽ0

ya − 2Fa1(−2χt )
]
.

(116)

The main difficulty in obtaining Fa is that we must get
Fa1(−2χt ) from Eq. (79). It must be solved by iterations as
shown in Eqs. (82) and (83). The number of iteration steps will
be dependent on the values of the four preshock parameters
and n might increase if Mi increases and/or γm → 1. For most
of the cases, and especially those found in the experiments
discussed later, it is enough considering n = 0, that is, without
iteration. We call F [0]

a the corresponding value and thus we
can write

F [0]
a =

[
1 + M2

t

M2
t − 1

4(Dt − U )

U

]−1[
ṽ0

ya − 2F
[0]
a1 (−2χt )

]
.

(117)

Mi �1

�Mi �1�3

a � 1.45 , b � 1.8 , R0 �0.0706

Fa �0.25073

� �

�

�

�

�

�

�

FIG. 2. Bulk vorticity parameter Fa in units of F ∞
a as a function

of Mi − 1 for the preshock conditions indicated in the legend.

The function F
[0]
a1 (−2χt ) has been shown in Eq. (82). The

quantity F [0]
a is the simplest analytical expression that contains

information of the vorticity field created by the transmitted
shock inside fluid a, which is a necessary ingredient to
estimate the asymptotic linear velocities in regimes where
compressibility is important.

In Fig. 2 we show Fa , normalized with its value at
high compression. For large Mach numbers, the parameter
Fa saturates at F∞

a
∼= 0.250 73 for the preshock parameters

chosen in Fig. 2. At low compression, it is seen that Fa ∝
(Mi − 1)3.

J. Velocity perturbations at the contact surface
ripple as a function of time

Having obtained the variation of the pressure perturbation
field in space and time between the fronts, it is possible to
obtain the velocity fields in space and time too. In this section,
we will concentrate at the contact surface ripple and follow
the growth in time of the normal and tangential velocities.
We can calculate the time evolution either via a Bessel series
representation or with a Taylor series of powers in time. Both
approaches are detailed below.

1. Time evolution with Bessel series

As has been already shown in [15] for the shock reflected
case, the Bessel series representation of the normal velocity
of the ripple is a good mathematical choice, as it depends on
the value of the asymptotic normal velocity δv∞

i = uiDi k ψ0,
thus becoming a convenient tool to evaluate the goodness of
the approximation done in calculating ui . The same feature
is observed here for the rarefaction reflected case. We must
integrate Eq. (32a) at x = 0 in time. We define ũai(τa) =
ũa(x = 0,τa), the subindex i indicates the contact surface
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location:
∂ũai

∂τa

= −h̃a(χa = 0,τa) ≡ −h̃ai(τa). (118)

The dimensionless function h̃a is defined in Eq. (35b). After using known properties of the Bessel functions [35,36], we obtain,
after time integration,

1

ψ0

dψi

dτa

= Di

caf

ui

{
τaJ0(τa) + πτa

2
[J1(τa)H0(τa) − J0(τa)H1(τa)] − J1(τa)

}
+ 4

τa

Di

caf

∞∑
n=0

ωa
2n+1

[
n∑

l=1

lJ2l(τa)

]
, (119)

where Jν(x) are ordinary Bessel functions of order ν and Hν(x)
are Struve functions of order ν [35,36].

As for the tangential velocity at the contact surface on side
a, we must integrate Eq. (32b) in time at x = 0. We define
ṽai(τa) = ṽa(x = 0,τa):

∂ṽai

∂τa

= p̃(χa = 0,τa) ≡ p̃ai(τa). (120)

After integrating in time, we have [35,36]

ṽai(τa) = ṽ0
ya + (

via − ṽ0
ya

)
[1 − J0(τa)]

− 2
∞∑

n=0

ωa
2n+1

n∑
k=1

J2k(τa). (121)

2. Time evolution with a Taylor series in powers of time

The Taylor series representation is equivalent to the Bessel
series solution discussed above. To obtain it, we work with
the Laplace transforms of the quantities at x = 0. We multiply
both sides of Eqs. (118) and (120) by e−saτa and integrate
between 0 and ∞ to obtain

saŨai(sa) = −H̃ai(sa), (122a)

saṼai(sa) = ṽ0
ya + P̃ai(sa), (122b)

where the initial condition of zero normal velocity at x = 0
has been used. Besides, the initial value of the tangential
velocity behind the transmitted shock front ṽ0

ya has also been
used. The symbol Ũia stands for the Laplace transform of ũia

and Ṽia for ṽia .
Thanks to Eqs. (84) and (85) we know that

P̃ai = 1√
s2
a + 1

∞∑
n=0

f 2n+1
a1 + f 2n+1

a2

s2n+1
a

, (123a)

H̃ai =
∞∑

n=0

(2n + 1)

(
f 2n+1

a1 − f 2n+1
a2

)
s2n+1
a

, (123b)

where the procedure to calculate f a1
2n+1 and f a2

2n+1 has been
discussed before. Besides, we propose

P̃ai =
∞∑

n=0

p
(2n+1)
i0

s2n+2
a

, (124a)

H̃ai =
∞∑

n=0

h
(2n+2)
i0

s2n+1
a

. (124b)

If we expand Eqs. (123) and equate equal power terms in 1/sa

with the corresponding expansions defined in Eqs. (124), we
get the coefficients p

(2n+1)
i0 and h

(2n+1)
i0 , which are essential to

determine the functions Ũia and Ṽia . In fact, substituting inside
Eqs. (122) we have

Ũai = −
∞∑

n=0

h
(2n+2)
i0

s2n+2
a

, (125a)

Ṽai = ṽ0
ya

sa

+
∞∑

n=0

p
(2n+1)
i0

s2n+3
a

. (125b)

If we make an inverse Laplace transform of the above
equations, we obtain

ũai(τa) = −
∞∑

n=0

h2n+1
i0

(2n + 1)!
τ 2n+1
a , (126a)

ṽai(τa) = ṽ0
ya +

∞∑
n=0

p2n+1
i0

(2n + 2)!
τ 2n+2
a . (126b)

K. Contact surface ripple growth as a function of time

The results of experiments are usually shown as plots of
the contact surface ripple as a function of time. Our model
equations provide us with the time evolution of the contact
surface normal velocity, which after time integration give the
evolution of ψi(t). The mathematical procedure is essentially
the same as followed in [15].

The ripple amplitude ψi(t) is obtained by direct integra-
tion in time of the normal velocity δvi(t) at the material
interface:

ψi(t) = ψ∗
0 +

∫ t

0+
δvi(t

′) dt ′, (127)

where

ψ∗
0 =

(
1 − U

Di

)
ψ0 (128)

is the post-shock value of the ripple amplitude at t = 0+.
After using known properties of the Bessel functions and the
recurrence relationships (11.2.6) together with Eq. (11.3.22)
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of [36], we arrive to the following analytical result:

ψi(t) = ψ∗
0 + ψ0

Di

caf

ui

(
τa

{
τaJ0(τa) + πτa

2
[J1(τa)H0(τa) − J0(τa)H1(τa)] − J1(τa)

}
− 1 + J0(τa)

)

+ψ0
Di

caf

∞∑
n=0

2ωa
2n+1

n∑
l=1

[
1 − 2

τa

l∑
k=1

(2k − 1)J2k−1(τa)

]
. (129)

We can also obtain the asymptotic behavior of ψi(t). We define
the Laplace transform of ψi(t)/ψ0 as

ξ̃i(sa) = 1

ψ0

∫ ∞

0+
ψi(τa)e−saτa dτa. (130)

Taking the Laplace transform of Eq. (127), using the above
definition, and substituting inside Eq. (122a), we get

sa

[
saξ̃i(sa) − ψ∗

0

ψ0

]
= − Di

caf

Hai(sa)

sa

. (131)

We make a Taylor expansion of Hai(sa) in powers of sa , and
after some algebraic work, we arrive to

ξ̃i(sa) ∼=
[
ψ∗

0

ψ0
− Di

caf

H ′
ai(0)

]
1

sa

+ Di

caf

ui

s2
a

+ O(1). (132)

If we make an inverse Laplace transform, and reminding
that δv∞

i = uikψ0Di , we arrive to the result, written in
dimensional form

ψi(t � t1) ∼= ψ∞ + δv∞
i t, (133)

where ψ∞ is an asymptotic ordinate, given by

ψ∞ = ψ∗
0 − Di

caf

[F ′
a1(0) − F ′

a2(0)]ψ0, (134)

and the prime to the right of the functions Fa1,2 indicates the
derivative with respect to their argument. An accurate method
to calculate ψ∞ is detailed in the Appendix.

The characteristic time t1, inside the argument of ψ in the
left hand side of Eq. (133), defines the duration of the transient
phase, within linear theory, before the asymptotic is reached.
As observed in [15], a qualitative interpretation of ψ∞ can be
obtained, considering very large times inside Eq. (127). After
rearranging terms, we find

ψ∞ − ψ∗
0 =

∫ ∞

0+

[
δvi(t) − δv∞

i

]
dt, (135)

which tells us that ψ∞ − ψ∗
0 is a measure of the area difference

between δvi(t) and δv∞
i in a time plot of the normal velocity

evolution. We can see this in Fig. 3(a) for a specific choice
of the preshock parameters. The shaded area represents the
difference [ψ∞ − ψ∗

0 ]/ψ0.
If we define the dimensionless time τd = kδv∞

i t and
plot the difference [ψi(t) − ψ∞]/ψ0, all the curves would
asymptotically collapse into a single straight line of slope 45◦.
The universal scaling can be recognized in Fig. 3(b), where
the complete and asymptotic formulas are shown together for
several choices of the preshock parameters. Each curve joins
the asymptotic straight line at a different dimensionless time
τd1, which would be a function of the four preshock quantities.

We clearly notice the subtle sound wave reverberations for the
more compressible cases.

Meyer and Blewett had also observed a behavior like the
one predicted by Eq. (133) in [4]. They concluded that the
asymptotic ordinate measured from their simulations was
quite different from ψ∗

0 . Our Eqs. (133) and (134) answer
the question posed by them as early as 1974.

The contact surface ripple amplitude can also be obtained
by time integration of Eq. (126a), and get an expansion in
powers of time:

ψi(τa) = ψ∗
0 − ψ0

Di

caf

∞∑
n=0

h2n+1
i0

(2n + 2)!
τ 2n+2
a . (136)

FIG. 3. (a) Time evolution of the contact surface normal velocity
in units of kDit for the preshock parameters shown in the legend.
The physical meaning of the shaded area is explained in the text.
(b) Contact surface ripple amplitude, inferred from Eq. (133), in
units of kδv∞

i t . Different initial conditions are considered and the
corresponding preshock parameters are indicated in the legend.
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L. Calculation of the asymptotic velocity field in both fluids

We deal now with the velocity fields that remain in the
compressed and expanded fluids at both sides of the contact
surface when the corrugated fronts are far. Once the pressure
perturbations emitted by the rippled rarefaction and shock
fronts become negligible, the density perturbations tend to
a constant function of space inside fluid a, essentially given
by the amount of entropy generated at the transmitted shock
front. The density perturbations inside fluid b vanish for large
times, as no entropy has been generated by the rarefaction fan.
As a consequence, the velocity fields become incompressible,
but not irrotational, and Eqs. (111) hold. The most general
solution of Eq. (111) is

ua(x̃) = ui ex̃ + uap(x̃), x � 0 (137a)

ub(x̃) = ui e−x̃ , x � 0 (137b)

where uap is a particular solution of Eq. (111) in fluid a. Since
in fluid b there is no vorticity, the complete solution is equal
to the homogeneous part and ubp(x̃) = 0. In the shocked fluid,
we propose a particular solution in the form of a Taylor series:

uap(x̃) =
∑

n

θn

n!
x̃n. (138)

If we substitute Eq. (138) into Eq. (111), we obtain the
following recurrence equation for the coefficients θn:

θ2n+1 = θ2n−1 − �a

p
(2n−1)
t0

sinh2n−1 χt

, n � 1 (139)

where use has been made of Eqs. (109) and (95) for the pressure
perturbation evaluated at the shock front. To calculate the first
coefficient θ1, it is necessary to introduce Eq. (137) in Eq. (112)
evaluated at x = 0, and we obtain

ui + u′
ap(0) = −vai, (140)

from which we finally get

θ1 = −Fa. (141)

The asymptotic tangential velocity v(x) sin ky is easily ob-
tained from the above results, noting that, because of incom-
pressibility, it is v(x) = −u′(x).

We show next the solution of the above differential
equations. This is done in Fig. 4, where the asymptotic velocity
profiles inside both fluids are plotted as a function of the
spatial coordinates. The incident shock has Mi = 15.3. The
gases have γa = 1.45 and γb = 1.8. The preshock density
ratio is R0 = 0.0706. The solution to the asymptotic equations
for both components of the velocity field gives rise to
the continuous curves shown in Fig. 4. The values of the
dimensionless normal and tangential velocities at the contact
surface are, for this case,

ui = ua(x = 0) = ub(x = 0) = −0.284 575, (142a)

via = va(x = 0) = 0.536 345, (142b)

vib = vb(x = 0) = ui = −0.284 575. (142c)

If we assume that the velocity field is irrotational on both
sides of the contact surface, we would obtain the dotted lines

shown. On the side of fluid b, this is correct because the
rarefaction does not generate any vorticity inside the expanded
fluid. However, inside fluid a, the situation is the opposite.
The high Mach number of the incident shock makes such an
approximation an unrealistic assumption. In fact, as we can
see from Fig. 4(a), the normal velocity changes phase at the
position x ∼ −λ/10, to change phase again at x ∼ −λ/3, etc.,
due to the vorticity field inside that fluid. Besides, it is noted
that an irrotational assumption inside fluid a would predict a
tangential velocity as indicated with the dotted line in Fig. 4(b)
which is quite different from the correct solution shown as the
continuous green curve. In Fig. 4(c), we show the density map
of the vorticity profile. It is interesting to see that the first
vortex to the left of the material surface has been generated
inside a distance ∼λ/3. The proportionality factor between the
longitudinal size of the vortex and λ is a function of the four
preshock parameters. This factor decreases below unity in the
high compression limit and increases in the limit of very weak
shocks. In [24] the size of the first vortices near the interface
has been analytically studied for the shock reflected case and
analytical estimates have been given in the weak shock limit
for different boundary conditions downstream the shock. For
the rarefaction reflected situation, this will be done in a future
work. The size observed for the vortices generated by the
transmitted front sets another characteristic length, aside from
λ, that could be important for more exact nonlinear models of
the RMI.

M. Kinetic energy

Once we have the asymptotic velocity profiles, we are
able to calculate the perturbed kinetic energy stored in
the bulk. The kinetic energy, per unit length in the ẑ

direction, is

δem
kin(x,y) = ρmf

1

2

∫ y

0

∫ x

0

[
δv2

xm(x ′) cos2 ky ′

+ δv2
ym(x ′) sin2 ky ′]dx ′ dy ′, (143)

where x and y are lengths of the integration domain. Due to
the symmetry in the ŷ axis, it is reasonable to consider the
energy stored inside a vorticity strip inside fluid a of Fig. 3 of
dimensions (0,x) × (0,y). If we take y = λ/2, we obtain

δem
kin

(
x,

λ

2

)
= ρmf D2

i ψ
2
0
π

4
Ikin(x̃). (144)

For a rotational field like (ua,va), Ikin(x̃) must be carefully
evaluated using Eqs. (137) and (112):

Ikin(x̃) =
∫ x̃

0

[
u2

m(x̃ ′) + v2
m(x̃ ′)

]
dx̃ ′. (145)

However, for an irrotational velocity field, it is simply given
by

I irr
kin (x̃) = u2

i (1 − e−2|x̃|). (146)

It is noted that Mikaelian had also calculated the kinetic energy
content in a RM environment like the one considered here
[29] using the impulsive prescription for the ripple’s normal
velocity, which amounts to using the irrotational estimation.
We plot Ikin(x̃) as a function of x/λ in Fig. 5. We remind here
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FIG. 4. Asymptotic velocity fields at both sides of the contact surface together with the vorticity generated in the bulk of fluid a by the
transmitted shock. The preshock parameters are shown inside the figure and correspond to one of the experiments described in [13]. (a) Normal
velocity perturbations in both fluids. The solid curves are the exact solution to Eqs. (111) and (112). Dotted lines show, instead, a hypothetical
irrotational approximation for the same velocity fields. The differences between the continuous and the dotted curves are discussed in the text.
(b) Tangential velocity perturbations in both fluids. (c) Vorticity density maps and streamlines in both fluids.

that x̃ = kx. This graph shows how the kinetic energy is stored
inside fluid a. At first, we realize that the energy predicted by
Eq. (145) is greater than the irrotational approximation given

�x� �

kin

irrotational

� � � �

FIG. 5. Ikin as a function of x/λ for the preshock parameters
indicated inside the figure. The purple solid line is given by Eq. (145)
and the irrotational approximation represented by the orange dashed
line is the result of Eq. (146).

by Eq. (146). Besides, most of the energy is concentrated
very near the contact surface. Indeed, we see that almost
80% of the total energy is concentrated within a layer of
width ∼0.3λ. Most of the bulk kinetic energy falls inside
the first vortex strip for this set of preshock parameters. This
fact is in qualitative agreement whit recent simulations [30].
In Fig. 6(a), we show the kinetic energy stored in fluid a

up to a distance x/λ = −1.5 as a function of the incident
Mach number. The energy scale has been chosen independent
of Mi . We realize that a rotational field stores more energy
than a completely irrotational flow, due to the non-negligible
motion trapped inside the vortices. In the plot we see that the
irrotational prescription is only valid for weak shocks, usually
for incident Mach numbers less than 1.4. This is consistent
with the results shown in the next section. Despite the fact that
irrotational estimations of the normal velocity are reasonable
in some cases, even for strong shocks, the same is not true
for the tangential velocity in the compressed fluid. Because
of vorticity, both velocities will increase their difference with
shock Mach number and, hence, rotational kinetic energy will
be larger. To conclude, it is interesting to compare δem

kin with
the background value. After simple algebra, we get the zero
order kinetic energy per unit length inside a rectangular strip of
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FIG. 6. (a) The kinetic energy per unit ẑ-length storage in any vorticity strip inside fluid a up to x/λ = −1.5 as a function of the incident
shock Mach number. The red dashed line is the irrotational approximation. (b) The ratio between perturbed and background kinetic energy
inside a strip of dimension (x̃ × λ/2) of the fluid a up to x/λ = −1.5. The red dashed line is the irrotational approximation. The preshock
parameters are the same in both plots and they are written inside each figure.

dimensions x × λ/2:

em
kin

(
x,

λ

2

)
= ρmf U 2λ2 |x̃|

8π
. (147)

The ratio between both quantities can be written as

δem
kin

em
kin

= 2π2

|x̃|
(

ψ0

λ

)2(
Di

U

)2

Ikin(x̃). (148)

In Fig. 6(b), we plot the above energy ratio inside fluid a up
to x/λ = −1.5 as a function of Mi . We observe that the ratio
starts at a value equal to 2π2

|x̃| A2
T (1 − e−2|x̃|) and decreases as

the shock becomes stronger, reaching an asymptotic value for
very strong shocks. As before, the irrotational approximation is
only valid in the weak shock limit. The distribution of kinetic
energy might be important for the problem of re-shock at
the material surface as well as an important theoretical tool
useful in the elaboration of more exact nonlinear models. A
careful and detailed study of the dependence of δem

kin(x,y) as
a function of the preshock parameters and the corresponding
scalings laws will be the subject of a future work.

N. Contact surface asymptotic normal velocity in the form
of a Taylor series in powers of a small parameter ε: ε = Mi − 1,

ε = 1/Mi , ε = Rtt
0 − R0, ε = R0 − Rcrit

0 , and ε = R0 − Rmin
0

In the previous subsections, we have learned how to solve
the perturbed fluid equations in both fluids when a rarefaction
is reflected. The velocity fields have been studied as a function
of time, and explicit analytical formulas for the asymptotic
velocities have been obtained valid in the whole parameter
space. It is very tempting to study the limiting expressions of
the asymptotic normal velocity in different physical limits.
This can be done by expanding in a Taylor series of the
corresponding small parameter in the limit considered. We
explain below the method we have used to calculate ui as
a Taylor series in powers of ε = Mi − 1. The calculations
described in this section are intended to help with the

calculations followed in the corresponding Mathematica file
attached in the Supplemental Material [37], as they are very
lengthy. Similar reasonings are straightforward if we want
Taylor expansions in any of the other physical limits. The only
difference is that for the other small parameters, the quantity
Fa is taken from the corresponding expansion of the quantity
F

[0]
a1 (−2χt ). The files are ready to use, after we provide the

necessary preshock parameters at the beginning.
All the perturbed quantities explicitly depend on zi and zt .

Therefore, obtaining an expansion of zt in powers of zi , in the
weak shock limit, is essential to get the Taylor polynomial for
ui . In Eq. (18), we propose an expansion of the form

zt =
∞∑

n=1

ctnz
n
i , (149)

valid for sufficiently small values of zi . The series for M1 is
obtained after substituting Eq. (149) inside Eq. (18). Every
perturbation quantity δφ is a given function of γa , γb, R0, zi ,
and zt : δφ(γa,γb,R0,zi,zt ). Therefore, we substitute Eq. (149)
inside zt in any quantity composing the analytic expression for
ui and expand in powers of zi . Let us give some insights about
the sequence we have followed. We rewrite Eq. (115) for the
case of a reflected rarefaction:

ui = δv∞
i

kψ0Di

= ṽ0
yb − Rṽ0

ya

R + 1
+ RFa

R + 1
. (150)

We expand each quantity inside the first term of Eq. (150) in
powers of zi . We write the definitions for the lateral velocity
at both sides of the contact surface at t = 0+, in fluid a,

ṽ0
ya = δv0

ya

kψ0Di

= U

Di

(
1 − Dt

Di

)
, (151)

and in fluid b,

ṽ0
yb = δv0

yb

kψ0Di

= cb1

Di

(
a + b ζrt + c ζ 2

rt

)
, (152)
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where the quantities a, b, and c are defined in Eqs. (153):

a = ζ 2
rh

γb + 1

ψ̃0
rt − ψ̃0

rh

ζrh − ζrt

− 2ζrh

γb + 1

[(
ψ̃0

rt − ψ̃0
rh

)
ζrt

ζrh − ζrt

+ ψ̃0
rt

]
,

(153a)

b = 2

γb + 1

[(
ψ̃0

rt − ψ̃0
rh

)
ζrt

ζrh − ζrt

+ ψ̃0
rt

]
, (153b)

c = − 1

γb + 1

ψ̃0
rt − ψ̃0

rh

ζrh − ζrt

. (153c)

The velocities Di , Dt , U , and cb1 can be found, respectively,
in Eqs. (1), (11), (14), and (5) of Secs. I and II. ψ̃0

rh, ψ̃0
rt , ζrh,

and ζrt can be found in Eqs. (51) and (9) of Sec. III A. To
expand R, we realize that

R = R0
ρaf

ρa0

ρb0

ρb1

ρb1

ρbf

, (154)

therefore we expand each factor ρb0/ρb1, etc., following the
exact formulas shown in Eqs. (5), (10), and (13) of Sec. II.

When expanding the vorticity parameter Fa in powers of
Mi − 1, it is convenient to use Eq. (113):

Fa = −�a sinh χt P̃t (sa = − sinh χt ). (155)

According to Eq. (96), we have

P̃t (sa = − sinh χt ) =
∞∑

n=0

p
(2n+1)
t0

(sinh χt )2n+2 , (156)

where p
(2n+1)
t0 is the (2n + 1)th derivative of the pressure

perturbation at the transmitted shock front at t = 0+. If we
substitute Eq. (156) in Eq. (155), we obtain

Fa = −�a

∞∑
n=0

p
(2n+1)
t0

(sinh χt )2n+1
. (157)

There is a remarkable property for the initial derivatives:
p

(1)
t0 ∝ zi + O(z2

i ), p
(3)
t0 ∝ z2

i + O(z3
i ), etc. Besides, �a ∝

z2
i + O(z3

i ). It follows that Fa ∝ z3
i + O(z4

i ). This makes that
the Taylor coefficients in the weak shock limit are exact as
they are written. The expansions of the terms that compose
the truncated expression for Fa can be expanded in powers
of zi . The final result for ui can then be expanded in powers
of Mi − 1 after using the relationship given by Eq. (1). The
explicit and lengthly details of the intermediate calculations
are inside the corresponding Mathematica file attached to the
Supplemental Material [37].

If we want to develop the expansions in powers of the other
small parameters (ε = 1/Mi , ε = Rtt

0 − R0, ε = R0 − Rcrit
0 ,

and ε = R0 − Rmin
0 ), the only difference with the weak shock

limit is that the bulk parameter Fa is now taken from the
expansion of the function F

[0]
a1 (−2χt ). More exact expansions

of Fa could be obtained by expanding higher iteration orders
of the quantity Fa1(−2χt ). We have preferred to work with
the starting value F

[0]
a1 (−2χt ) because it is clearly simpler

and it gives enough accuracy for the ranges explored. The
comparison between the different expansions and the exact
asymptotic velocity is presented in the next section.

III. APPROXIMATE FORMULAS
FOR THE ASYMPTOTIC VELOCITIES

A. Irrotational approximation

The asymptotic normal velocity is given by the first
of Eqs. (115) which we repeat here for convenience (the
normalization with Di is reminded):

ui = δv∞
i

kψ0Di

= ṽ0
yb − Rṽ0

ya

R + 1
+ RFa

R + 1
. (158)

The main difficulty associated with the calculation of ui lies
in the bulk vorticity parameter Fa . If we neglected the second
term of the above equation, it would be equivalent to say that
the vorticity generated by the transmitted shock is negligible.
We call “weak shock approximation” to such an assumption,
and indicate it by

uws
i = ṽ0

yb − Rṽ0
ya

R + 1
. (159)

We compare here the differences between Eqs. (158) and
(159) in different domains of the space of the four preshock
parameters. At the end of this section, we show another
approximate formula for ui that considers the lowest possible
approximation to Fa . The accuracy with which ui is calculated
will be dictated by the number of iterations used in the
calculation of Fa . In general, we ensure at least three significant
digits for ui , increasing when necessary the number of the
iteration steps. In Fig. 7(a), we compare uws

i with ui as a
function of Mi for the other parameters shown in the figure. In
Fig. 7(a), two sets of γ values are chosen: γa = 1.45,γb = 1.1
and γa = 1.45,γb = 1.8. In each case, three different values of
the preshock density ratio are considered, as indicated in the
figure. The relative difference |(uws

i − ui)/ui | is plotted against
the incident shock Mach number. The solid blue curve with
the blue circle as a marker corresponds to the parameters used
in the experiments of [12,13]. For low values of the shock
strength (Mi � 2), the difference between the irrotational
approximation and the complete formula stays below 20%
for the cases shown, except for specific choices of R0. In
general, the difference between the weak shock approximation
and the exact result increases when the incident shock becomes
stronger. In Fig. 7(b), we explicitly compare the exact and
approximate curves for two particular cases. In the orange
curves, the weak shock approximation always overestimates
the exact result in an amount given by the value of the vorticity
parameter Fa < 0 in the whole range studied. However, the
blue curve shows that Fa changes sign at Mi

∼= 6.5, contrary to
our intuition. At larger Mach numbers, the weak shock formula
underestimates the asymptotic velocity. The intersection of the
solid and dashed blue curves in Fig. 7(b) corresponds with the
zero of the solid green curve in Fig. 7(a).

In Fig. 8(a), we show the relative difference |(uws
i − ui)/ui |,

as a function of the preshock density ratio R0 for the same set
of gases as before, for different choices of Mi . For very weak
shocks (Mi = 1.1), the blue curves indicate that the relative
difference stays in general below 1% in the whole range. Every
curve starts at the right, at the value Rtt

0 , because a shock will
be reflected for R0 > Rtt

0 . The solid blue curve shows two
interesting points: one at which Fa = 0 for R0 � 0.8 and a
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FIG. 7. (a) Relative difference between ui and uws
i as a function of M1 for different choices of the other parameters. (b) The quantities ui

and uws
i as a function of Mi for different pairs of gases.

freeze-out point at R0 � 1. For a stronger shock (Mi = 5),
a similar behavior is observed with the difference that the
characteristic values of R0 at which Fa = 0 and ui = 0 are
shifted to the left. For even stronger shock (Mi = 15), the
freeze-out point is observed at very low values of R0 [14,27].
It is worth to note that compressibility of fluid b is important for
moderate to strong incident shocks, as can be seen in Fig. 8(a),
where a relative difference between the weak shock formula
and the exact result of around 50% is observed. In Fig. 8(b), we
explicitly compare, as in Fig. 7(b), ui with uws

i for the two sets
of gases with Mi = 5. The point at which Fa = 0 is evidenced
by the intersection of the solid and dashed blue curves. The
freeze-out point is located at the point where the solid blue
curve crosses the zero value.

In Fig. 9(a), a similar analysis is shown as a function of
γa , the compressibility parameter of the gas compressed by
the transmitted shock. For very weak shocks, the relative
difference is negligible. For stronger shocks and values
of γa → 1, the relative difference increases significantly.
Situations for which Fa = 0 are observed for low values of

γa . In Fig. 9(b), the explicit comparison between ui and uws
i is

shown for the parameters shown. For the case indicated with
the blue line we observe that for low values of γa , Fa changes
sign and uws

i underestimates the normal velocity. Besides, it
can become positive for highly compressible fluids.

In Fig. 10(a), the analysis is done as function of the
compressibility parameter of the expanding fluid b. A similar
behavior is observed as a function of γa . However, we notice
that for relatively low values of γb, it is Fa < 0. For some
ranges it is uws

i > 0, contrary to the correct value ui < 0.
For very weak shocks, the difference is negligible, except

for shocks of moderate to high strength. It is easy to see a
characteristic value of γb for which it is Fa = 0. In Fig. 10(b),
we show ui and uws

i as a function of γb. It is clear that uws
i is

not a good approximation for any value of γb in the interval
1 � γb � 3. This difference is also seen in the logarithmic plot
of Fig. 10(a). At most, ui and uws

i coincide at a single value of
γb for which it is Fa = 0.

The difference between |ui | and |via| tells us about the rel-
ative importance of the vorticity spread inside fluid a. Hence,

FIG. 8. (a) Relative difference between ui and uws
i as a function of R0 for different choices of the other parameters. (b) The quantities ui

and uws
i as a function of R0 for different pairs of gases.
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FIG. 9. (a) Relative difference between ui and uws
i as a function of γa for different choices of the other parameters. (b) The quantities ui

and uws
i as a function of γa for different pairs of gases.

how much does the ratio |ui/via| depart from unity, is inform-
ing us about the goodness of an irrotational approximation for
that specific choice of preshock parameters. As discussed in the
previous section, values of |ui/via| very different from unity
might warn us of a possible underestimation of the perturbation
kinetic energy stored inside the bulk of the compressed fluid a.
In Fig. 11, we show the ratio |ui/via| as a function of the four
preshock parameters. In Fig. 11(a), we show the velocities
ratio as a function of the incident shock Mach number for
the same pair of gases with different preshock density ratio.
As expected, both velocities have the same absolute value
for very weak shocks, as bulk vorticity is negligible. As the
shock becomes stronger, the tangential velocity on the side
of the compressed fluid increases and we can obtain values
of |ui/via| as low as 0.2 or lower, for R0 = 0.01, or other
combinations of the preshock quantities. In Fig. 11(b), we plot
the same ratio as a function of the preshock density ratio. Now
again, for very strong shocks we can get a vary large difference
for very low values of R0. There is a maximum value of the

preshock density ratio (Rtt
0 ), above which a shock is reflected

and the curve can not be continued with the results of this work.
For R0 > Rtt

0 , the model of [15] has to be used. For curve (i)
it is Rtt

0
∼= 0.884, and for curve (ii) it is Rtt

0
∼= 0.899. It is

clear that the curves terminate to the right at the corresponding
value of Rtt

0 . To the left, the curves start at the minimum value
Rmin

0 defined in Eq. (24). It is Rmin
0

∼= 0.0267 for curve (i)
and Rmin

0
∼= 0.00131 for (ii). In Fig. 11(c), the velocity ratio is

shown as a function of the isentropic exponent of fluid a. As
γa → 1, we see markedly different behaviors, depending on
the values of R0. In any case, |ui/via| is always quite different
from unity, except at singular points. For both cases, there is
a maximum possible value of γa: γ tt

a = 3.624 for curve (i)
and γ tt

a
∼= 221.53 above which a shock will be reflected. In

Fig. 11(d), we plot the velocity ratio as a function of γb. As
happened in the shock reflected case [15], we recognize here
two characteristic regimes. For the cases shown in Fig. 11(d),
at lower values of γb we see that via reaches a zero value, which
is the reason of the peak to the left in curve (i), centered at

FIG. 10. (a) Relative difference between ui and uws
i as a function of γb for different choices of the other parameters. (b) The quantities ui

and uws
i as a function of γb for different pairs of gases.
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FIG. 11. Ratio |ui/via| as a function of the different preshock parameters: (a) as a function of Mi , (b) as a function of R0, (c) as a function
of γa , and (d) as a function of γb.

γb
∼= 2.218. We also see that there is normal velocity freeze-out

also in curve (i) at γb
∼= 3.670, where it is ui = 0. We notice

that for the curve that corresponds to R0 = 0.8, we can not
continue the to the left, for γb < γ tt

b = 1.171, because a shock

will be reflected. Curve (ii) has its boundary at γ tt
b < 1, which

is the reason why the curve starts from γb = 1. Both γ tt
a and

γ tt
b can be obtained from Eq. (18) by imposing the condition

zt = zi , which defines the total transmission situation.

FIG. 12. (a) Comparison between Eqs. (158) and (160) for different pairs of gases. (b) Same as in (a) but with more compressible fluids.
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B. Approximate formula valid at any compression level

Given that the weak shock approximation formula may
not give a sufficiently accurate result at high compression,
it is worth to examine the possibility of using an analytic
expression that takes into account the generation of vorticity
inside the compressed fluid a. This is possible by considering
the lowest order approximation to the parameter Fa , given by
F [0]

a in Eq. (117). We formally get

u
[0]
i = ṽ0

yb − Rṽ0
ya

R + 1
+ RF [0]

a

R + 1
. (160)

In Figs. 12(a) and 12(b), we compare Eq. (160) with the
exact value, for the preshock parameters shown in the legends.
We see that the approximate Eq. (160) gives an excellent result
in the whole range and does not show the shortcomings of the
weak shock estimate.

IV. APPROXIMATE ANALYTICAL FORMULAS
OF THE ASYMPTOTIC VELOCITY IN DIFFERENT

PHYSICAL LIMITS

A. Taylor expansion in the weak shock limit (Mi − 1 � 1)

For very weak shocks, the weak shock formula discussed
previously is a good estimate of the asymptotic velocity.
However, as the shock Mach number increases, the vorticity
generated by the rippled transmitted front becomes important
and Eq. (159) ceases to be strictly valid. Similarly as has been
done in [15], we can make a Taylor expansion in powers of
Mi − 1 in the weak shock limit and compare it with the exact
value. To this scope, we expand uws

i and RFa/(Fa + 1) and use
the same strategy as in [15]. According to Eq. (113), the value
of Fa is proportional to the Laplace transform of P̃t evaluated
at sa = − sinh χt . We know that we can always write [15]

P̃t (sa) =
∞∑

n=0

p̃2n+1
t0

s2n+2
a

, (161)

where p̃2n+1
t0 is the (2n + 1)th derivative of the pressure

perturbation at the transmitted shock front at t = 0+. A series
expansion like the above one will only be valid within its
circle of convergence. The Taylor expansions of the first few
derivatives can be retrieved in the Supplemental Material [37].
After collecting equal powers of Mi − 1 in Eq. (158) we arrive
to an expansion of the form

δv∞
i

kψ0U
∼= R0 − 1

R0 + 1
+

nmax∑
n=1

an(Mi − 1)n + O[(Mi − 1)nmax+1],

(162)

vi
k 0 U

Mi �1
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FIG. 13. Comparison between the exact normal velocity and
different Taylor polynomials in powers of Mi − 1 for the gases and
shock parameters indicated in the legend. Different curves correspond
to different Taylor polynomials. For details, see the text.

where nmax is a given superior limit for the sum indicated
above. In Fig. 11, we have calculated the Taylor polynomials
up to nmax = 9.

It is remarkable to see that the lowest order term is exactly
the preshock Atwood number, confirming the validity of the
impulsive prescription for very low values of the incident
shock Mach number. An expansion like the above includes the
contribution of the weak shock term uws

i and the bulk parameter
RFa/(R + 1). For weak shocks, as it is Fa ∝ (Mi − 1)3 (see
Fig. 2), bulk vorticity effects are included in Eq. (162) since the
Taylor coefficient a2 onwards. In Fig. 13, we compare the exact
solution with the different Taylor polynomials of Eq. (162) up
to (Mi − 1)9 for a specific choice of the preshock parameters.
We see that adding additional terms is not useful because the
convergence radius of the corresponding series is quite small
(Mi − 1 � 0.5). Unfortunately, the additional terms beyond
the third order have very lengthy analytical expressions making
their use impractical. We only show here the coefficients a1 and
a2 as a2 is the first Taylor coefficient to have information on the
bulk vorticity profile near the contact surface. The other Taylor
coefficients, from a3 up to a9, can be found in the Mathematica
files inside Supplemental Material [37]. The first coefficients
are

a1 = 4

γa(γb + 1)(1 + R0)2(γb − γaR0)

{
γaγb + γa(γa − γb)R0 + γa(5γa − 6γb)R2

0

− [
γaγb + (

γ 2
a + 3γaγb − 4γ 2

b

)
R0 + γa(γa − 2γb)R2

0

]√γaR0

γb

}
, (163)

a2 = − 4

3γa(γb + 1)2(1 + R0)3(γb − γaR0)3

[
Z1(γa,γb,R0) + Z2(γa,γb,R0)

√
γaR0

γb

]
, (164)
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where

Z1(γa,γb,R0) = 4γaγ
3
b (γb + 1) − γaγ

2
b

[
γa(3γb + 9) + γ 2

b − 5γb

]
R0

− [
γ 3

a (7γb + 31) + γ 2
a γb(−3γb − 81) + γaγ

2
b (−5γb + 16) + 33γ 3

b

]
2γbR

2
0

+ [
γ 4

a (13γb + 19) + γ 3
a γb(−61γb − 283) + γ 2

a γ 2
b (51γb + 549) + γaγ

3
b (21γb − 297) + 36γ 4

b

]
R3

0

+ [
γ 4

a (28γb + 10) + γ 3
a γb(−52γb − 115) + γ 2

a γ 2
b (21γb + 138) + γaγ

3
b (3γb − 36) + 3γ 4

b

]
2R4

0

+ [
γ 2

a (43γb − 95) + γaγb(−63γb + 183) − 108γ 2
b

]
γ 2

a R5
0 − (γa + 1)6γ 2

a γ 2
b R6

0,

Z2(γa,γb,R0) = −5γaγ
3
b (γb + 1) + [

γ 2
a (10γb + 40) + γaγb(−13γb − 109) + γ 2

b (6γb + 72)
]
γ 2

b R0

+ [
γ 3

a (3γb + 27) + γ 2
a γb(62γb + 110) + γaγ

2
b (−77γb − 365) + γ 3

b (6γb + 222)
]
γbR

2
0

+ [
γ 4

a (−8γb − 14) + γ 3
a γb(−33γb + 99) + γ 2

a γ 2
b (100γb − 152) + γaγ

3
b (−81γb + 99) − 54γ 4

b

]
R3

0

+ [
γ 4

a (−16γb − 4) + γ 3
a γb(−21γb + 243) + γ 2

a γ 2
b (60γb − 396) + γaγ

3
b (−12γb + 180) − 12γ 4

b

]
R4

0

− [
γ 3

a (8γb − 10) + γ 2
a γb(−15γb + 21) + γaγ

2
b (−12γb − 18) − 12γ 3

b

]
γaR

5
0, (165)

B. Strong shock limit Mi � 1

For very strong incident shocks, the following ex-
pansion is possible, similarly as for the shock reflected
situation [15]:

ui
∼= b∞ + b2

M2
i

+ b4

M4
i

+ O
(
M−6

i

)
. (166)

The analytical general expressions of the above coefficients
can be retrieved in the corresponding Mathematica file
attached in the Supplemental Material [37]. As happened with
the shock reflected case [15], the analytical expressions are
rather long to be written. To obtain bn we have used F [0]

a ,
which makes a good job even for low values of Mi , as can be
seen in Fig. 14, where the preshock parameters are indicated
in the legend.

b

b �
b1

Mi2

b �
b1

Mi2
�
b2

Mi4

a � 1.45 , b � 1.8 , R0 �0.0706

Mi

exact

ui

�

�

�

�

�

�

�

�

FIG. 14. Comparison between ui and different Taylor poly-
nomials in 1/M2

i for the preshock conditions indicated in the
legend.

C. Taylor expansion in powers of (Rtt
0 − R0),

valid for Rmin
0 � R0 � Rtt

0

Near the boundary of total transmission, the asymptotic
velocity can be expanded in powers of Rtt

0 − R0. As done in
the previous paragraph, the expansion is done on the analytical
formula for u0

i and we obtain a formula of the type

ui
∼= c0 + c1

(
Rtt

0 − R0
)+ c2

(
Rtt

0 − R0
)2 + c3

(
Rtt

0 − R0
)3

+ c4
(
Rtt

0 − R0
)4 + O

[(
Rtt

0 − R0
)5]

. (167)

We can see in Fig. 15 that the fourth order polynomial agrees
quite well with the exact formula over a wide interval of the
parameter R0. We notice that for this choice of preshock
quantities, the asymptotic velocity is positive for R0 > 1,
indicating the possibility of freeze-out near R0

∼= 1.1433.
The coefficients c0,c2, . . . can be found in the corresponding
Mathematica file attached in the Supplemental Material [37].

a � 1.45 , b � 1.8 , Mi �15.3
R0
tt �1.1433

R0

c0 �c1 R0
tt �R0

c0 �c1 R0
tt �R0 �c2 R0

tt �R0 2

c0 �c1 R0
tt �R0 �c2 R0

tt �R0 2 �c3 R0
tt �R0 3

c0 �c1 R0
tt �R0 �c2 R0

tt �R0 2 �c3 R0
tt �R0 3 �c4 R0

tt �R0 4

exact

ui

�

�

FIG. 15. Comparison between ui and different Taylor polynomi-
als in Rtt

0 − R0 for the preshock conditions indicated in the legend.

013102-25



F. COBOS-CAMPOS AND J. G. WOUCHUK PHYSICAL REVIEW E 96, 013102 (2017)

ui

R0
min �0.03203

R0
crit �0.44943

R0
tt �0.88059

a � 5 �3 , b � 7 �5 , Mi �1.8

R0

d0�d1 x

d0�d1 x �d2 x2

exact

d0�d1 x �d2 x2�d3 x3

d0�d1 x �d2 x2�d3 x3�d4 x4

�

�

�

�

�

FIG. 16. Comparison of the Taylor polynomials centered at R0 =
Rcrit

0 with the exact value of ui . For R0 > Rcrit
0 , the expansion param-

eter is x = R0/R
crit
0 − 1. For R0 < Rcrit

0 , the expansion parameter is
x = 1 − R0/R

crit
0 . For details of the expansion, see the text.

It is noted that the expansion discussed in Eq. (167) is not
limited to the weak shock limit, as there is no restriction on the
incident shock Mach number, analogously as has been shown
for the similar expansion in [15].

D. Taylor expansion in powers of (R0 − Rcrit
0 )

At the value R0 = Rcrit
0 , given by Eq. (25), the rarefaction

tail remains steady in the laboratory frame of reference.
Mikaelian studied a similar configuration for the case of a
shock reflected, in which the reflected shock was at rest.
A similar situation is possible here, and having at our
disposal the model equations, it is worth to expand ui in a
neighborhood of Rcrit

0 :

ui
∼= d0 + d1

(
Rtt

0 − R0
)+ d2

(
Rtt

0 − R0
)2 + d3

(
Rtt

0 − R0
)3

+ d4
(
Rtt

0 − R0
)4 + O

[(
Rtt

0 − R0
)5]

. (168)

The comparison is shown in Fig. 16 for the preshock
parameters indicated in the legend. This expansion shows
the largest circle of convergence when compared to the other
Taylor expansions obtained in this work.

E. Normal velocity in the limit R0 → 0

1. R0 → 0, zi ≡ ∞
When we approach the limit of very low density gases to

the left of the contact surface, we arrive to the limits shown
in Eqs. (20) and (22) and we must be careful inside which
interval we want to perform the Taylor expansion. For exactly
R0 = 0, the only possible incident shock strength is zi = ∞
or, equivalently, Mi = ∞. For small but finite values of R0

we must distinguish whether we make zi � 1 or work with
a large enough but finite value of the shock strength. This
fact enables us to establish the boundary R0 = R0(zi), which
is a function of the incident shock Mach number. For not
necessarily negligibly small values of the preshock density

ratio, the rarefaction tail starts to move to the left, following
the transmitted shock. As R0 decreases still further, the velocity
of the rarefaction tail is nearer to the velocity of the material
boundary. In those conditions, it is clear that the pressure,
density, and sound speed at the contact surface become also
infinitely small. In the strict limit of R0 = 0, both surfaces
coincide and we are not working any longer with an RM
environment in two fluids, as there is only the expanding
fluid against vacuum. In this case, it is known that the normal
ripple velocity is exactly zero [6]. In the limit R0 very near
zero, the bulk vorticity term rapidly tends to zero, but the
weak shock term uws tends to δv0

yb �= 0, even in the expansion
against vacuum situation, as discussed in [28]. We must admit
that our model does not give a continuous limit for ui in
the limit R0 = 0. This discontinuous behavior is related to
the fact that this limit is singular. On one hand, the shock
strength must be taken equal to zi ≡ ∞, and on the other
side, only one fluid is present. In fact, even for negligibly
small and nonzero values of R0, two fluids are present and the
one-dimensional (1D) background velocities of the contact
surface and of the rarefaction tail are different. Therefore, a
region of uniform density and pressure will always be created
between the contact surface and the rarefaction tail, where
pressure perturbations exist and a velocity field is generated.
Inside this strip of fluid, lateral mass flow exists up to the
contact surface itself, giving rise to the velocity contribution
δv0

yb. Our two fluids model does not handle the limiting case
R0 = 0. Such a case must be studied with a traveling alone
rarefaction wave in the strict limit M1 = 0, using the results
of Sec. III A, as discussed in [28]. Under such conditions, the
normal velocity at the rarefaction tail can be seen to be exactly
zero at all times since t = 0+.

2. Taylor expansion in powers of (R0 − Rmin
0 ),

valid for Rmin
0 � R0 � Rtt

0

The preshock density ratio defined in Eq. (24) defines two
regimes of the expansion. For R0 > Rmin

0 , we keep the incident
shock strength at a finite value. In the same way as before,
we can make a Taylor expansion of the normal perturbation
velocity in powers of (R0 − Rmin

0 ) of the form

ui
∼= e0 + e1

(
R0 − Rmin

0

)+ e2
(
R0 − Rmin

0

)2

+ e3
(
R0 − Rmin

0

)3 + e4
(
R0 − Rmin

0

)4

+O
[(

R0 − Rmin
0

)5]
. (169)

We compare the above formula with the exact solution in
Fig. 17. It is seen, as happens with the Taylor expansions
studied in the other physical limits, that the convergence radius
of the whole series is also finite, amounting for this case to
R0 − Rmin

0 � 0.0005, where Rmin
0 = 0.001 168. The analytical

results for the coefficients en are rather lengthy to be written
and are shown inside the Mathematica files attached in the
Supplemental Material [37].

V. COMPARISON WITH SIMULATIONS
AND EXPERIMENTS

In this section we compare experiments and simulations
with our linear theory. In particular, we follow the linear time
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FIG. 17. Comparison of the Taylor polynomials centered at R0 =
Rmin

0 with the exact value of ui for the parameters indicated in the
legend.

evolution of the contact surface ripple and how it depends
on the preshock parameters (initial ripple amplitude and
perturbation wavelength and fluids parameters). Besides, it
is worth to compare the growth rate of the experiments and
simulations, with the different analytic approximations, where
adequate, as obtained in the previous sections.

A. Experiments of Refs. [12,13]

In the experiments described in [12,13], strong shocks
have generated to drive the RMI for the rarefaction reflected
situation. The target is formed with a beryllium (Be) ablator
and a tamper formed by a low density foam or plastic.
Two-dimensional (2D) corrugation is imposed at the contact
surface an its evolution is diagnosed with face-on and side-on
radiography. The 1D background flow had been studied with
LASNEX simulations and the details are shown in [12]. Two
incident shock strengths had been used: Mi = 15.3 (which
is called high drive) and Mi = 10.8 (called low drive). The
isentropic exponents used are γb = 1.8 for the beryllium
ablator, γa = 1.45 for the foam tamper, and γa = 1.8 for
the plastic tamper. An initial density jump R0 = 0.0706
is considered for the Be-foam target and R0 = 0.647 for
Be-plastic. A wide range of initial amplitude and wave-
length ratios have been studied in [12] (0.04 � ψ0/λ � 0.28).
In order to distinguish the different experiments, we re-
spect the identification scheme used in [12]: the first letter
means the driving type (L for low pressure and H for high
pressure), the second letter identifies the tamper material
(F foam and P for plastic), the first written number is
the perturbation wavelength and the second number is the
preshock ripple amplitude (both in microns). For example,
LF100/4 represents low drive, foam tamper, a wavelength
equal to 100 μm and an initial interface corrugation amplitude
equal to 4 μm. However, in the simulations reported in [13],
more cases with other driving pressures have been also studied.
For those cases, we simply indicate the incident shock Mach
number in front of the tamper material letter.

FIG. 18. Comparison between the temporal evolution of the
interface ripple and its velocity for HF100/10 case of [13] and our
theoretical model. Curves are indicated inside the figure and explained
in the text.

1. Numerical simulations

Simulations based on different codes are compared with
experimental data in the two works cited before. In [12],
they simulated face-on and side-on radiographs with CALE,
a hydrodynamic Langragian-Eulerian code. In [13], they
evaluate three different codes: FRONTIER is a front tracking
code, PROMETHEUSwhich solves Euler’s equations on a uni-
form rectangular grid, and RAGE (Radiation Adaptive Grid
Eulerian) which is a multidimensional Eulerian radiation-
hydrodynamics code. All of them had been validated against
a variety of both analytic test problems and experiments. For
details and extended bibliography, see [12,13].

2. Detailed comparison for a single case: HF100/10

In this section we make an analysis of the experiment
HF100/10, for which the experimental data and simulation
results have been taken from [13]. We show the temporal
evolution of the contact surface ripple in Fig. 18. The incident
shock comes from the beryllium ablator and a shock is
transmitted inside the foam tamper. The preshock parameters
are Mi = 15.3, γa = 1.8, γb = 1.45, and R0 = 0.0706.
The preshock initial surface corrugation is 10 μm and the
perturbation wavelength is 100 μm. In Fig. 18, we show the
temporal evolution only up to t = 4 ns. Besides, we do only
show the face-on data (black circles) because the side-on mea-
surements cannot resolve small amplitudes (see [12]), which
are relevant for the comparison within the temporal window in
which linear growth is important. The origin of time coincides
with the instant when the incident shock has completely
disappeared, as discussed in [13], which is uncertain by
∼= 0.25 ns. Using Eq. (129) is a good test for our linear theory
results because it depends explicitly on the value of δv∞

i ,
which is given by Eq. (115). Choosing a wrong value would
result in disagreement between curve (a) and the experiments,
which is not the case here. Besides, as is evident from Fig. 18,
for these experimental conditions we can not discern between
u

[5]
i and u

[0]
i , and the curves predicted using both values are
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TABLE I. Growth rate comparison of the cases discussed [12,13]. The experimental and simulation data for HF cases are taken from Fig. 7
of [13] and for LF and plastic tamper (P) cases from Fig. 26 of [12]. The last three columns are linear asymptotic velocity predictions: the
first of them are calculated using five iterations in the functional equation [Eq. (79)], the second is the approximate formula without iteration
[Eq. (160)], and the third are Taylor’s series estimations. The key is (ws) weak shock limit [Eq. (162)], (ss) strong shock limit [Eq. (166)],
and (hdj) high initial density jump [Eq. (167)]. The first two columns are the values of initial post-shock amplitude Eq. (128) and asymptotic
ordinate Eq. (134) for the contact surface ripple. Lengths are given in μm and velocities in μm ns−1.

Case ψ0/λ ψ∗
0 ψ∞ δv∞

i (Expt.) δv∞
i (Simul.) δv

∞[5]
i δv

∞[0]
i δv∞

i (Limits)

HF 100/4 0.04 −0.775 0.731 −3.135 −3.568 −3.562 −3.557 −3.557 (ss)

HF 150/10 0.067 −1.938 1.828 −7.411 −6.033 −5.936 −5.929 −5.928 (ss)

HF 100/10 0.1 −1.938 1.828 −9.174 −8.356 −8.904 −8.893 −8.892 (ss)

HF 100/14 0.14 −2.713 2.559 −10.721 −10.742 −12.466 −12.450 −12.449 (ss)

HF 50/7 0.14 −1.357 1.279 −13.012 −10.742 −12.466 −12.450 −12.449 (ss)

HF 60/10 0.167 −1.938 1.828 −9.009 −11.670 −14.841 −14.822 −14.821 (ss)

HF 30/7 0.233 −1.357 1.279 −10.153 −13.308 −20.777 −20.750 −20.749 (ss)

HF 38/10 0.263 −1.936 1.828 −11.906 −13.793 −23.433 −23.403 −23.401 (ss)

HF 50/14 0.28 −2.713 2.559 −14.630 −14.546 −24.932 −24.900 −24.899 (ss)

LF 100/4 0.04 −0.746 0.754 −2 −2.5 −2.557 −2.554 −2.554 (ss)

LF 150/10 0.067 −1.865 1.884 −3.5 −4.5 −4.261 −4.257 −4.257 (ss)

LF 100/10 0.1 −1.865 1.884 −5 −5.5 −6.391 −6.386 −6.386 (ss)

LF 100/14 0.14 −2.611 2.638 −5 −7 −8.948 −8.940 −8.941 (ss)

LF 50/7 0.14 −1.306 1.319 −6 −6 −8.948 −8.940 −8.941 (ss)

LF 30/7 0.233 −1.306 1.319 −8 −7 −14.913 −14.900 −14.901 (ss)

LF 50/14 0.28 −2.611 2.638 −10.5 −9 −17.896 −17.880 −17.881 (ss)

1.33F 100/4 0.04 1.995 3.190 −0.347 −0.347 −0.382 (ws)

5.6F 100/4 0.04 −0.597 0.929 −1.429 −1.428 −1.429 (ss)

HF 100/25 0.25 −4.845 4.569 −22.261 −22.232 −22.231 (ss)

HF 100/50 0.5 −9,691 9.138 −44.522 −44.465 −44.462 (ss)

HP 100/14 0.14 2.979 4.459 −2 −3.5 −2.750 −2.749 −2.749 (ss)

−2.743 (hdj)

LP 100/14 0.14 3.026 4.506 −0.8 −2.42 −1.954 −1.953 −1.953 (ss)

−1.951 (hdj)

therefore indistinguishable. In Table I, we give δv∞
i using u

[5]
i

and u
[0]
i , as well as a comparison with different physical limits,

where appropriate. The post-shock amplitude [Eq. (128)] is
ψ∗

0 = −1.94 μm indicating that during the shock refraction,

the interface changes its phase. This is due to the difference
between the shocked contact surface velocity and the incident
shock speed (U = 59.4 μm/ns > Di = 49.8 μm/ns), known
as direct phase inversion [5]. The dotted line (b) is the

FIG. 19. (a) Time evolution of the contact surface ripple and the transmitted shock pressure perturbations for the experiment HF100/10.
(b) Time evolution of the contact surface ripple and the contact surface acceleration for the experiment HF100/10.
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FIG. 20. (a) Time evolution of the transmitted shock ripple for the experiment HF100/10. (b) Time evolution of the rarefaction tail ripple
for the experiment HF100/10.

asymptotic evolution predicted by Eq. (133). It intersects the
vertical axis at a value equal to ψ∞ = 1.83 μm, which can be
calculated with Eq. (134). We notice that ψ∞ is quite different
from the post-shock corrugation ψ∗

0 . The orange triangles
have been numerically calculated using the linear simulations
of Ref. [5]. We also show the prediction of some formulations
of the impulsive model: dotted line (c) is calculated using
the Richtmyer’s prescription [1], dotted line (d) is calculated
with the value uws given by Eq. (159), and dotted line (e) is
obtained with the impulsive Meyer-Blewett formula [4]. The
2D simulations are given by the solid curves: (f) FRONTIER,
(g) PROMETHEUS, and (h) RAGE. The impulsive formula
used to draw curve (c) is given by the original Richtmyer’s
prescription [1]

δvimp = kψ0U
R0 − 1

R0 + 1
, (170)

and the Meyer-Blewett formula used to draw curve (e) is
given by [4]

δvMB = k

2
(ψ0 + ψ∗

0 )U
R − 1

R + 1
. (171)

Several features concerning Fig. 18 merit discussion. First,
as observed before, the approximate formula proposed in
this work, with no iteration [Eq. (160)], shows very good
agreement with the exact solution (115) [11]. Both expressions
exactly agree with the calculations of [5], as shown in [11].
The adequacy of the compressible linear theory developed here
to describe the experimental data and the simulations, before
nonlinearities appear, is very good for this case. In fact, there
is a reasonable description of the initial transient phase and the
later linear asymptotic growth for 0 < t � 2.5 ns. However,
some weak shock approximate formulas give inaccurate
results and scalings. Since impulsive prescriptions ignore the
perturbation dynamics of the shock fronts for t > 0+, they
cannot take into account the compression effects and the bulk
vorticity generation. Consequently, in the situations where
the shock is not weak, they provide imprecise values for
the growth rate [5,6,11]. However, the empirical Meyer and

Blewett formula [4], proposed to fit their numerical data, gives
a reasonable velocity estimation for this case. For these high
values of the incident shock Mach number, compressibility
effects are manifested not only in the growth rate value, but
also in the asymptotic ordinate ψ∞ and the tangential velocities
δv∞

ya and δv∞
yb, which are different. In fact, as discussed in [4],

they had to admit the existence of an asymptotic ordinate,
quite different from ψ∗

0 , of which they were unable to give
a scaling law, derived either analytically or numerically. In
Fig. 18, we see that the linear asymptotic formula [Eq. (129)]
is valid inside the interval 0.8 � t � 2.5 ns. The temporal
window of linear saturation would be a function of the values
of ψ0 and λ, probably through the ratio ψ0/λ. In Fig. 19(a),
we show the temporal evolution of ψi and δpt . We see that
the interface ripple enters its asymptotic stage much earlier
than the transmitted shock pressure perturbations. By the time
t ∼= 2 ns, the interface ripple is growing with approximately
constant velocity and the shock has just generated its first peak
of vorticity inside fluid a. In Fig. 19(b), a similar comparison
is done with the interface acceleration. Finally, in Fig. 20,
we show the temporal evolution of the rippled transmitted

FIG. 21. Time evolution of the normal and tangential velocities
(lighter fluid) at the contact surface for the experiment HF100/10.
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FIG. 22. Temporal evolution of the contact surface ripple for HF
cases of [12]. Experimental data: black points are measured from
face-on radiographs. Simulations: (f) FRONTIER, (g) PROMETHEUS,
(h) RAGE, (k) face-on CALE, and (m) side-on CALE. Linear theory:
(a) temporal evolution using u

[0]
i [Eqs. (129) with (160)] and (b)

asymptotic evolution predicted by Eq. (133).

shock and rarefaction tail corrugation. The rarefaction tail
corrugation has been calculated with Eq. (58) of Ref. [20]. The
shock corrugation amplitude is obtained using the calculations
shown in the Appendix. There is a distinguishing characteristic

FIG. 23. Temporal evolution of the contact surface ripple for LF
cases of [12]. Experimental data: black points are measured from
face-on radiographs. Simulations: (f) FRONTIER, (g) PROMETHEUS,
(h) RAGE, (k) face-on CALE, and (m) side-on CALE. Linear theory:
(a) temporal evolution using u

[0]
i [Eqs. (129) with (160)] and (b)

asymptotic evolution predicted by Eq. (133).

when comparing the shock and interface ripple growths. The
time taken by contact surface and rarefaction trailing edge
corrugation amplitudes to reach their asymptotic is different
from the characteristic time to reach the asymptotic for the
transmitted shock ripple. This fact had also been qualitatively
observed in [4], who had written the following: “The (helium)
shock, in particular, was seen to undergo oscillations that are
independent of the interface behavior.” The characteristic time
to reach the asymptotic for ψrt is on the order of �4 ns and ψi

is typically on the order of 1 ns. However, at the shock ripple, as
discussed in [24], the asymptotic stage is usually reached after
the third-fourth zero crossing, which for this case, amounts to
a characteristic time between 4–5 ns. By the time the contact
surface ripple reached its asymptotic, the transmitted shock
has almost entirely generated the first peak of the vorticity
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FIG. 24. Asymptotic normal velocity as a function of ψ0/λ for the previous experiments: (a) HF, (b) LF.

distribution in the bulk as shown in Fig. 19(a). This seems to
be a general trend behind corrugated shock fronts [15].

As commented along the work, an important consequence
of the high compression with corrugated shocks in RM
environments is the generation of bulk vorticity which is
manifested in different values for the normal and tangential
velocities at the contact surface. In fact, in Fig. 21, we show
the temporal evolution of both quantities within the temporal
window of the experiment. The transverse final velocity via

is quite different from ui , a fact that a priori precludes the
use of a potential flow model inside the compressed fluid.
Up to date, there is no rigorous theory with which to study
the weakly nonlinear phase that consistently joins the fully
compressible linear growth phase and the following weakly
nonlinear transition taking into account the vorticity spread in
the compressed fluids.

3. Rest of experiments and simulations of [12,13]

In [12], the authors provided experimental data covering an
extensive range of perturbation amplitudes and wavelengths

(0.04 � ψ0/λ � 0.28), for two different shock strengths. In
Fig. 18, we compare those results with our [Eqs. (129) and
(160)] for high drive, and the same is done in Fig. 19 for
the low drive cases. Additionally, they presented a pair of
configurations where the initial density ratio is changed with
a plastic tamper (Fig. 20). In [13], the authors presented an
exhaustive study of three experiments HF100/10, HF100/4,
and LF100/4, adding to each experimental data the error
bars together with 2D simulations. In Fig. 21, we compare
with another four cases, only studied with simulations in
[13]. As already commented before, in the curves drawn
in [13], time is referenced to the instant when the incident
shock has crossed the contact surface. The origin of time
has an uncertainty around 0.25 ns. However, in the figures
shown in [12], time is referenced to the moment when
the experiments start. Therefore, knowing that the beryllium
ablator has a depth of 100 μm, we estimate the instant when
the shock has completely crossed the interface ripple as t0+ =
(100 + ψ0)/Di . We obtain the range 2.09 � t0+ � 2.29 ns for
HF and 2.96 � t0+ � 3.24 ns for LF cases. Let us concentrate
in Fig. 18. As commented in [12], when the rarefaction wave

FIG. 25. Temporal evolution of HP (a) and LP (b) cases. The labeling used for the different curves follows the same indications as in Fig. 22.
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FIG. 26. Temporal evolution of the contact surface ripple for simulated cases of [13]. Simulations: (f) FRONTIER, (g) PROMETHEUS, and
(h) RAGE. Linear theory: (a) temporal evolution using u

[0]
i [Eqs. (129) with (160)] and (b) asymptotic evolution predicted by Eq. (133).

travels back to the ablation surface, a weak shock is generated
inside the expanded fluid that hits the interface at t ∼ 4 ns
after the incident shock disappears. This means that for t � 4
a second shock is transmitted inside the lighter fluid. It is
clear that our theory is only valid before reshock occurs.
In Fig. 19, the low drive cases are plotted as a function of
time. Similar conclusions can be inferred as with the high
drive case. The cases with a higher value of ψ0/λ show
different initial slopes as compared to the experiments and
simulations due to nonlinearity. In Table I we show, for
each case, the ratio ψ0/λ, the post-shock interface ripple
amplitude ψ∗

0 , the asymptotic ordinate ψ∞, the asymptotic
normal velocity given in [12,13], the asymptotic velocity as
given by the simulations shown in [12,13], the exact theoretical
asymptotic velocity given by Eq. (158) [Eq. (160)], and
the last column is the inferred value from the correspond-
ing approximation (strong shock, weak shock, high density
jump).

Different initial conditions (some of them with large values
of the pre-shock ripple) are studied in Figs. 22 and 23. The dots
are taken from the experimental results, the orange curves are
different numerical simulation results and we have superposed

to them our time evolution curves (complete and asymptotic).
In Fig. 24, the dependence of the ripple normal velocity with
the ratio ψ0/λ is shown. Dots are experimental results, the
continuous curves are taken from simulations and the dotted
lines are calculated with Eq. (160). In Fig. 25, the experi-
mental ripple time evolution is compared with our results for
experiments done with plastic targets and two shock strengths.
In Fig. 26, a similar analysis is done for the cases studied in
Ref. [13] only with simulations. In Fig. 27 we show several
plots showing the dependence of the ratio between the normal
velocity ui and the tangential velocity via as a function of the
four pre-shock parameters: Mi,Ro, γa , and γb, as discussed
in Fig. 11. We have used here the pre-shock conditions of
the experiments of Ref. [13]. The markers refer to the experi-
ments. We see that normal and tangential velocities are quite
different, as the markers stay well below the horizontal line
ui/via = 1.

It is interesting to compare the dependence of ui , via , and vib

as a function of the Mach number for the preshock parameters
corresponding to the foam and plastic targets. This is shown
in Fig. 28. The tangential velocity vib agrees exactly with ui ,
as expected. The more interesting behavior is shown by via
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FIG. 27. Ratio of the normal velocity to the tangential velocity (in the lighter fluid) as a function of the four preshock parameters. In each
plot, the experiments previously discussed are marked.

where we see that via and vib start to deviate significantly at
Mi � 1.4, due to the vorticity in fluid a.

B. Experiments of Ref. [22]

The authors of [22] have conducted a series of experiments
in a shock tube at low Mach numbers in which the rarefaction

FIG. 28. Parametric curves showing the tangential and normal velocities in the HF (a) and LF (b) cases. The Mach number increases along
each curve.

013102-33



F. COBOS-CAMPOS AND J. G. WOUCHUK PHYSICAL REVIEW E 96, 013102 (2017)

FIG. 29. Contact surface ripple amplitude as a function of time
for the experiment 121 of [22]. Triangles refer to the experimental
measurements. The continuous red curve is the result of Eq. (129)
where u

[0]
i , given by Eq. (160), has been used. The dashed line is the

asymptotic formula given by Eq. (133).

reflected configuration was studied. They have used a novel
technique to accurately characterize the initial conditions at
the shocked material surface. Perturbations are sinusoidal and
laser sheet diagnostics were used to measure the interface
displacement. Unfortunately, it is quite difficult to extract
useful information for comparison from their experimental
data. We have been able to compare with their results plotted in
Figs. 4 and 5, for the case they called Run 121, in which a shock
coming from air impinges a contact surface separating it from
helium. The Mach number used for this case is Mi = 1.15. We
plot the contact surface ripple as a function of time ψi(t) using
our Eqs. (129) and (133) in Fig. 29. The blue markers represent
the measured temporal evolution of the fundamental mode (as
seen from their Fig. 4) and the green markers represent the
ripple amplitude as inferred from the positions of the bubble
and spike. Our theoretical prediction goes in the middle of the
experimental points. It is interesting to make a short analysis

of the dynamics of the surface ripple, shock, and rarefaction
tail, and tangential velocities in the interval of time during
which linear theory is a reasonable assumption, in the same
way we did in Figs. 18 to 27 in the previous subsection. In
Fig. 30(a), we superpose the surface ripple complete and
asymptotic evolution [Eqs. (129) and (133)] with the shock
pressure perturbations calculated with Eq. (36) at χa = χt . We
see that the surface ripple enters its asymptotic stage when the
transmitted shock has almost passed its first peak, that is, at
the time the transmitted shock has almost generated the first
maximum of the vorticity distribution in the bulk. At that time,
the interface acceleration is oscillating near zero [Fig. 30(b)].
A similar trend was observed in the experiments of [12,13]
for a much stronger incident shock. In Fig. 31(a), we show
the transmitted shock ripple amplitude given by the solution
(40). We have superposed the approximate solution obtained
by simply retaining up to π5 and ω5 in the expression for p̃t . In
fact, for weak shocks, the coefficients πm

2n+1 and ωm
2n+1 become

negligible after n ∼ 2. In Fig. 31(b), the rarefaction tail ripple
growth is compared to the interface ripple. Behavior is similar
as in the strong shock experiments.

In Fig. 31, we show the time evolution of the ripple at the
rarefaction trailing edge. We compare the exact and asymptotic
evolution. We see that during the interval of time in which
linear theory is an acceptable approximation, the surface ripple
enters its asymptotic stage much before than the rarefaction
tail ripple, as in the experiments at large Mach.

In Fig. 32, we show the temporal evolution of the tangential
velocity on fluid a at the contact surface va(x = 0,t) and
vb(x = 0,t) = u(x = 0.t). We see that both velocities start
from quite different values and tend to an almost common
asymptotic which is also very near the asymptotic value of
the normal velocity. There is a very small difference between
them due to the small amount of vorticity spread in the bulk
of fluid a. We can notice the difference of this weak incident
shock situation with Fig. 21 for the experiments of [12,13].

VI. SUMMARY

We have presented an analytical study of the Richtmyer-
Meshkov instability when a rarefaction is reflected. This work

FIG. 30. (a) Contact surface ripple (exact and asymptotic) superposed to the transmitted shock pressure perturbations temporal evolution
for the experiment 121 of [22]. (b) Contact surface ripple (exact and asymptotic) superposed to the contact surface ripple acceleration.
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FIG. 31. (a) Transmitted shock ripple amplitude as a function of time. The continuous curve represents the exact solution of Eq. (40) and
the dots represent the asymptotic solution. (b) Rarefaction tail ripple as a function of time: continuous curve is the exact solution and the dashed
line is the asymptotic solution taken from [20].

is a natural continuation of previous works on the subject.
The background profiles of pressure, density, and velocity
have been obtained and the scaling laws in different regimes
have been studied (weak and strong rarefactions, refraction
near the boundary of total transmission). The equations of
motion have been linearized and their solution has been
briefly reviewed in order to be used later in the subsequent
sections. The asymptotic velocity profiles inside each fluid
have been solved taking into account the generation of vorticity
inside the compressed fluid. The exact rotational solution is
compared with the irrotational approximation and an important
difference is observed in the values of the tangential velocity
profiles. Besides, the rotational velocities change sign due
to the spatial variations of the vorticity generated by the
transmitted shock. The kinetic energy content of the perturbed
fluids is analyzed by integrating the analytical profiles and
we see that the asymptotic kinetic energy is concentrated in
a narrow layer near the contact surface, essentially inside the

FIG. 32. Comparison of the time evolution of the normal and
tangential velocity inside fluid a.

first peak of the vorticity distribution in the bulk. This effect is
stronger as the shock strength increases. A careful study of the
dependence of the kinetic energy on the preshock parameters
is obviously left for a future work. These scaling laws might
result important to understand how energy is distributed in the
bulk, becoming a useful tool in the design of theoretical models
that aim to describe, for example, reshock. Besides, future
nonlinear model may benefit from that knowledge. The exact
and asymptotic time evolution of the contact surface ripple has
been exhaustively studied with the help of the Bessel functions
series and the model presented here. We have found that in
order to describe the asymptotic behavior of ψi(t), we must
incorporate an asymptotic ordinate ψ∞. This behavior was
already observed by Meyer and Blewett in their simulations,
but they could not give any scaling law to describe it. The
goodness of an irrotational approximation to characterize the
behavior of the normal contact velocity has been studied in
different ranges of the preshock parameter space. The influence
of the incident shock strength as well as the values of R0, γa ,
and γb have been carefully analyzed. In general, an irrotational
approximation is justified for Mi � 1.5. As with the behavior
with respect to R0, there is no simple rule to be given. Even
for very weak shocks, there could be ranges of R0 in which
an irrotational approximation would be very bad because
we could be approaching a freeze-out situation. At higher
strengths, the comparison would be also strongly dependent
on the values of the isentropic exponents. We have found
that for strong shocks, the relative error might be well above
10%, except in exceptional cases in which Fa = 0. As for the
relative error between the exact solution and the irrotational
approximation as a function of γa and γb, conclusions are
more or less similar. This complicated behavior is certainly
related to the complex mathematical structure of the solutions
of this apparently simple linear problem, which is manifest
because of the nonzero value of Fa in most of the parameter
space. A good indicator of irrotationality would be the equality
between the normal and tangential velocities in the compressed
fluid. To this scope, the ratio between both quantities has also
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been studied as a function of the four preshock parameters
and conclusions are consistent with the behavior observed
before. As a good rule of thumb, in order to decide whether
an irrotational approximation could be a good choice or not,
is to roughly compare the bulk parameter Fa �= 0 with any of
the initial tangential velocities. If these quantities are similar,
this might indicate us that significant vorticity is generated
behind the transmitted shock. An approximate and quite
simple formula for the normal velocity has been proposed
that work very well in situations where Fa is not negligible,
and irrotational estimations fail. Having at hand an exact
description of the velocity field, it is worth to present exact
Taylor expansions of the normal velocity as a function of some
small parameter in different physical limits. This has been
done expanding ui in the weak shock limit, strong shock limit,
near the total transmission boundary, near the critical preshock
density ratio where the rarefaction is steady in the laboratory
frame, near the limit of negligible ambient density for very
strong rarefactions. All these expansions suffer from the same
illness: they have limited convergence circles. The expansion
coefficients can be easily calculated with the files attached
inside the Supplemental Material [37]. The calculations shown
here have been contrasted with experiments and simulations
done in two different environments: a very strong incident
shock and a weak incident shock situation. The contact surface
ripple evolution followed with our model equations agree quite
well with experiments and numerical calculations within the
time interval in which a linear theory is acceptable. We have
found that, in both limits, the contact surface ripple enters its
asymptotic stage much earlier than does the transmitted shock
to enter its asymptotic regime. This fact had been also observed
by Meyer and Blewett in their 1974 work. We have also found
that the rarefaction tail ripple also enters its asymptotic stage
at a much later time than the interface. Besides, the contact
surface enters its linear asymptotic when the transmitted has
almost generated its first vorticity peak. We hope that the
results shown here might be useful in the design and analysis of
future more complex experiments and more elaborate models
of nonlinear evolution, and to help with the development of
reshock theoretical models.
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APPENDIX A: CALCULATION OF ψ∞

The value of the origin ordinate ψ∞ depends on the
accuracy with which we evaluate the derivatives of the pressure
functions Fa1,2 at qa = 0. In fact, we must calculate

ψ∞ = ψ∗
0 − Di

caf

[F ′
a1(0) − F ′

a2(0)]ψ0. (A1)

We rewrite here Eq. (47) for convenience:

Fa2(qa) = εa1(qa) + εa2(qa)Fa1(qa − 2χt ), (A2)

where

εa1(qa) = v0
ya

sinh(qa − χt )η+(qa − χt )
, (A3a)

εa2(qa) = −η−(qa − χt )

η+(qa − χt )
. (A3b)

On the other hand, Fa1(qa) satisfies the functional equation
(79), which we also rewrite here for convenience:

Fa1(qa) = φa1(qa) + φa2(qa)Fa1(qa − 2χt ). (A4)

We make an expansion of Fa1(qa − 2χt ) near qa = 0 and retain
linear terms in qa . After substituting in both Eqs. (A2) and
(A4), we easily arrive to the desired result:

F ′
a1(0) − F ′

a2(0)

= φ′
a1(0) − ε′

a1(0) + [φ′
a2(0) − ε′

a2(0)]Fa1(−2χt )

+φ′
a2(0)F ′

a1(−2χt ). (A5)

We see, as happened in the shock reflected case [15], that
the accuracy with which we can calculate ψ∞ is governed by
the accuracy with which we obtain Fa1(−2χt ) and F ′

a1(−2χt ).
These last two quantities can be calculated with the desired
accuracy, by increasing the number of iteration steps inside
Eq. (83).

APPENDIX B: DETAILED CALCULATIONS
FOR PARTICULAR CASE HF100/10 OF [12,13]

In this Appendix, we show, step by step, the algebraic
calculations to obtain the results presented in the main text
for the case HF100/10 of [12,13] where a shock comes
from beryllium and transmits inside a foam. The preshock
parameters for this particular case are [13]: incident shock
strength Mi = 15.3, initial density ratio across the contact
surface R0 = 0.0706 which gives a preshock Atwood number
AT

∼= −0.8681. The shocked (foam) and rarefacted (beryl-
lium) fluids are correspondingly characterized by γa = 1.45
and γb = 1.8. The preshock ripple amplitude is ψ0 = 10 μm
and the corrugation wavelength is λ = 100 μm. As Rtt

0
∼=

1.1432 > 0.0706, it is clear from Eq. (2) that we are in a
rarefaction reflected case.

1. Zero order quantities

From Eq. (1), the incident shock strength is zi = (p1 −
p0)/p0

∼= 300 and the downstream incident Mach number, is,
according to Eq. (7), βi

∼= 0.474 14. The incident shock speed
is Di = −49.79 μm/ns [13]. The initial sound speeds are
ca0

∼= 10.992 μm/ns for foam, and cb0
∼= 3.254 μm/ns for

beryllium. Therefore, the ratio of preshock sound speeds is
N0 = ca0/cb0

∼= 3.377 89. To calculate the transmitted shock
strength (zt ) and the expansion strength M1 = cbf /cb1, as
proposed in [19], we need to solve the nonlinear equations
system (18). We obtain zt = (p2 − p0)/p0

∼= 53.094 09 and
M1

∼= 0.683 05. The upstream and downstream transmitted
Mach numbers are, respectively, according to Eqs. (11) and
(12): Mt

∼= 6.771 66, and βt
∼= 0.413 27. We display below

the different ratios of post-shock quantities. We show at first
the ratios behind the incident front, according to Eqs. (5)
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and (6):

ρb1

ρb0

∼= 3.463 02,
cb1

cb0

∼= 9.318 16,
U1

cb0

∼= 10.881 89.

(B1)

For this experiment, we thus have cb1
∼= 30.324 μm/ns and

U1
∼= 35.412 μm/ns. The fluid particles with speed U1 move

from right to left (see Fig. 1). The self-similar coordinates
of the rarefaction head and tail in the system fixed to the
contact surface are, respectively, according to Eq. (9): ζrh

∼=
1.792 38 and ζrt = M1

∼= 0.683 05. The density and pressure
jumps across the rarefaction fan are given by Eq. (10). We
remind that A = M1 at the rarefaction tail. Then,

ρbf

ρb1

∼= 0.385 59,
pb1

pb0

∼= 0.179 90. (B2)

The transmitted shock dimensionless coordinate is χt =
− arctan βt

∼= −0.413 27. We also calculate the ratios across
the transmitted shock, using the expressions inside Eqs. (13)
and (14):

ρaf

ρa0

∼= 4.963 38,
caf

ca0

∼= 3.301 31,
U

ca0

∼= 5.407 33.

(B3)
The ratio of final densities and final sound velocities, at the
contact surface, are

R = ρaf

ρbf

∼= 0.262 42, N = caf

cbf

∼= 1.752 06. (B4)

We have caf = 36.290 μm/ns, cbf = 20.713 μm/ns. In
the laboratory frame, we have U ∼= 59.440 μm/ns, cbf

∼=
20.713 μm/ns, and Dt = 74.437 μm/ns. Besides, Rcrit

0
∼=

1.7552 > 0.0706, which means that the rarefaction tail moves
opposite to the contact surface in the laboratory frame.

2. First order quantities in the shocked fluid

The initial amplitude of the rippled transmitted front is, as
it was defined after Eq. (34), ψt0

∼= −0.495 03 ψ0. Besides,
the initial tangential velocity behind the transmitted shock
is [Eq. (151)] δv0

ya
∼= 0.590 97 kψ0Di = 18.488 μm/ ns. The

dimensionless slope of the Hugoniot curve at the final state
behind the transmitted front is [see Eq. (46)] 1/κt

∼= 7.831 64.
In order to solve for the pressure field inside fluid a, we need
the parameters αa10, αa11, and αa20 [Eq. (44)]:

αa10
∼= 1.236 25, αa11

∼= 1.209 87, αa20
∼= 0.268 20.

(B5)

3. Initial conditions at the corrugated rarefaction tail

The initial amplitudes of the corrugated rarefaction head
and tail are, respectively, according to Eq. (51): ψrh

∼=
0.897 80 ψ0 and ψrt

∼= 0.222 18 ψ0. The initial tangential
velocity profile inside the rarefaction fan is shown in Eq. (52),
and can be rewritten in the form

δvy(ζ, t = 0+)

cb1kψ0
= a + b ζ + c ζ 2, (B6)

where [see Eq. (153)]

a ∼= −0.450 64, b ∼= −0.138 44, c ∼= 0.217 51. (B7)

It is clear that the initial tangential velocity at the rarefaction
head is zero. However, the initial tangential velocity at the
tail is given by Eq. (152), where we have substituted the self-
similar variable of the rarefaction trailing edge ζ = ζrt . We
get δv0

yb
∼= −0.270 24 kψ0Di = −8.454 μm/ns. The negative

sign indicates that δv0
yb points along the negative direction of

the ŷ axis.

4. Calculation of Fb1(−N sinh 2χt )

In this section we calculate the pressure amplitude Fb1,
evaluated at the rarefaction tail, which is needed to later on cal-
culate the asymptotic velocities at the contact surface. At first,
we calculate the integral numerically using Eqs. (53)–(60). At
t = 0+, the characteristic coordinates of the rarefaction tail are
ξrt = 1.771 421 and η = 0. On the other hand, Eq. (72) gives
us an exact finite analytical expression of Eq. (71). Below, we
show the values obtained, with the numerical integration or
the analytical expression. We use Mathematica software. The
quantity tc is used to indicate the calculation time used in each
evaluation:

Eq. (53) : Fb1[qb = arcsin(N sin −2χt )]
∼= 0.048 110 033; tc = 0.30 s,

Eq. (72) : Fb1[qb = arcsin(N sin −2χt )]
∼= 0.048 110 033; tc = 0.03 s. (B8)

We see that the calculation time for Fb1 is one order of
magnitude lower with the analytical formula.

5. Calculation of the asymptotic velocities at the contact surface

We remind here the sonic parameter Fa [Eq. (116)]:

Fa =
[

1 + M2
t

M2
t − 1

4(Dt − U )

U

]−1[
ṽ0

ya − 2Fa1(−2χt )
]
.

(B9)

From which we see that the pressure amplitude Fa1 must be
evaluated at qa = −2χt . To get Fa1, we need to solve the
functional equation (79) [11]. The starting function is Eq. (82).
The auxiliary quantities necessary to build the recurrence are
φa1(qa), φa2(qa), �(qa), and η±

t (qa) [Eqs. (80) and (81)].
The function Fb1(qb) is inside the expression of φa1(qa). The
variable qb has to be put as a function of the variable qa through
the conversion relation at the interface caf sin qa = cbf sin qb.
We have
φa1(qa = −2χt ) ∼= 0.0409, φa2(qa = −2χt ) ∼= −0.0789,

(B10)

and the functional equation becomes

F
[n+1]
a1 (qa = −2χt ) = 0.0409 − 0.0789

×F
[n]
a1 (qa = −2χt ), n � 0. (B11)

Therefore, the starting and the first five iterated values of
Fa1(−2χt ) are

F
[0]
a1 (−2χt ) ∼= 0.037 929 826 kψ0Di [Eq. (82)],

F
[1]
a1 (−2χt ) ∼= 0.039 750 764 kψ0Di,

F
[2]
a1 (−2χt ) ∼= 0.039 719 406 kψ0Di,
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F
[3]
a1 (−2χt ) ∼= 0.039 719 922 kψ0Di,

F
[4]
a1 (−2χt ) ∼= 0.039 719 913 kψ0Di,

F
[5]
a1 (−2χt ) ∼= 0.039 719 913 kψ0Di. (B12)

The sonic parameter Fa is obtained from Eq. (B9), and we
substitute the different iterations of Fa1, we have

F [0]
a

∼= 0.253 531 913 kψ0Di [Eq. (117)],

F [1]
a

∼= 0.251 739 422 kψ0Di,

F [2]
a

∼= 0.251 770 290 kψ0Di,

F [3]
a

∼= 0.251 769 783 kψ0Di,

F [4]
a

∼= 0.251 769 790 kψ0Di,

F [5]
a

∼= 0.251 769 790 kψ0Di. (B13)

Finally, we go to Eq. (115) to calculate the asymptotic
velocities. If we substitute F [0]

a in the asymptotic normal
velocity formula, we will get the approximate formula without
iteration u

[0]
i [Eq. (160)]. If we put successive iterations we

obtain different accuracies, this process can be continued until
we get the desired number of exact decimal digits. Usually,
five iterations are enough to get six exact significant digits,
even in very compressible cases. So, the asymptotic velocities
are (remember that δv∞

yb = δv∞
i )

(
δv∞

i

)[0] ∼= −0.284 208 640 kψ0Di

∼= −8.891 μm/ns [Eq. (160)],(
δv∞

i

)[1] ∼= −0.284 581 247 kψ0Di,(
δv∞

i

)[2] ∼= −0.284 574 830 kψ0Di,

(
δv∞

i

)[3] ∼= −0.284 574 936 kψ0Di,(
δv∞

i

)[4] ∼= −0.284 574 934 kψ0Di,(
δv∞

i

)[5] ∼= −0.284 574 934 kψ0Di
∼= −8.903 μm/ns,

(B14)(
δv∞

ya

)[0] ∼= 0.537 740 554 kψ0Di
∼= 16.823 μm/ns,(

δv∞
ya

)[1] ∼= 0.536 320 669 kψ0Di,(
δv∞

ya

)[2] ∼= 0.536 345 120 kψ0Di,(
δv∞

ya

)[3] ∼= 0.536 344 718 kψ0Di,(
δv∞

ya

)[4] ∼= 0.536 344 725 kψ0Di,(
δv∞

ya

)[5] ∼= 0.536 344 725 kψ0Di
∼= 16.779 μm/ns.

(B15)

Notice the great difference between the normal and tangential
velocities at the material surface. This difference is due to the
non-negligible vorticity field inside fluid a. The weak shock
approximation presented in Eq. (159) for the normal velocity,
where we neglected the bulk vorticity parameter Fa , gives(

δv∞
i

)ws ∼= −0.3369 kψ0Di

= −10.542 μm/ns. (B16)

It is easy to realize from Eq. (115) that (δv∞
i )ws = (δv∞

yb)ws =
−(δv∞

ya)ws . This weak shock approximation overestimates the
asymptotic normal velocity by 18% and underestimates the
asymptotic tangential velocity in fluid a by 37%. But, the more
important effect due to the difference between the tangential
and normal velocities is in the kinetic energy stored inside
fluid a, as will be calculated below.

6. Calculation of the coefficients of the perturbed pressure solution π a
2n+1 and ωa

2n+1, and the initial derivatives p(2n+1)
t0

In order to obtain the pressure field and the rest of the perturbed quantities, it is necessary to calculate the coefficients πa
2n+1

and ωa
2n+1 inside the perturbed pressure solution [Eq. (36)] in the form of a Bessel function series. The procedure to obtain them

is explained in Sec. II. The first step is to expand each side of the functional equation for Fa1 [Eq. (79)] in powers of 1/sa (where
sa = sinh qa). We have

Fa1(qa) =
∞∑

n=0

f a1
2n+1

s2n+1
a

= 0.043 59

sa

− 0.005 53

s3
a

+ 0.002 98

s5
a

− 0.002 90

s7
a

+ 0.002 93

s9
a

+ O

(
1

s11
a

)
. (B17)

The coefficients f 1
a1 and f 3

a1 are explicitly written in Eqs. (86) and (87). We use the linearized boundary conditions at the shock
front to relate Fa2 and Fa1, and we reach to Eq. (47). We are able to write Fa2 as a function of the previous coefficients f 2n+1

a1 .
The relation between Fa1,2 with the Laplace transform of the pressure perturbation P̃a and its auxiliary function H̃a is detailed
in the main text, reaching to Eq. (38). If we particularize the relationships inside Eq. (38) at the contact surface (χa = 0), we
will arrive at Eq. (84). We have chosen this particular coordinate at the interface in order to get a single linear system for each
coefficient, instead a coupled system to calculate πa

2n+1 and ωa
2n+1. In Eq. (84), we see that there is a side which depends on Fa1

and another on a single pressure coefficient. Thus, we expand each side in powers of 1/sa and equalize terms with the same
power, we have a linear relation between f 2n+1

a1 and πa
2n+1:

Pai(sa) = −0.0773 + 0.9561f 1
a1

s2
a

+ 0.0584 − 0.5098f 1
a1 + 0.9924f 3

a1

s4
a

+ −0.0488 + 0.3992f 1
a1 − 0.4986f 3

a1 + 0.9987f 5
a1

s6
a

+ 0.0428 − 0.3415f 1
a1 + 0.3781f 3

a1 − 0.4992f 5
a1 + 0.9998f 7

a1

s8
a

+ O

(
1

s10
a

)
, (B18a)
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Pai(sa) = πa
1

2s2
a

+ πa
3 − 3πa

1

8s4
a

+ πa
5 − 5πa

3 + 10πa
3

32s6
a

+ πa
5 − 7πa

5 + 21πa
3 − 35πa

3

128s8
a

+ O

(
1

s10
a

)
. (B18b)

Equating equal powers of 1/sa between the last two equations, we have the first π2n+1 coefficients. We repeat the procedure with
Hai(sa):

Hai(sa) = 0.0773 + 1.0437f 1
a1

sa

+ −0.0198 + 0.0317f 1
a1 + 1.0076f 3

a1

s3
a

+ 0.0010 − 0.0247f 1
a1 + 0.0023f 3

a1 + 1.0013f 5
a1

s5
a

+ −0.0063 + 0.0184f 1
a1 − 0.0048f 3

a1 − 0.0001f 5
a1 + 1.0002f 7

a1

s7
a

+ O

(
1

s9
a

)
, (B19a)

Hai(sa) = ωa
1

2sa

+ ωa
3 − ωa

1

8s3
a

+ ωa
5 − 3ωa

3 + 4ωa
3

32s5
a

+ ωa
5 − 5ωa

5 + 9ωa
3 − 5ωa

3

128s7
a

+ O

(
1

s9
a

)
. (B19b)

We have finally

πa
1

∼= −0.0712, ωa
1

∼= 0.2456,

πa
3

∼= 0.0321, ωa
3

∼= 0.0537,

πa
5

∼= 0.0497, ωa
5

∼= 0.0498,

πa
7

∼= −0.0737, ωa
7

∼= −0.0726. (B20)

At this point, we are able to calculate the initial derivatives of the pressure at the transmitted shock. We use the equation system
that result to equalize Eqs. (96) and (98), and we obtain

p
(1)
t0

∼= −0.094 812 947, p
(3)
t0

∼= 0.067 499 167,

p
(5)
t0

∼= −0.054 579 150, p
(7)
t0

∼= 0.046 698 056. (B21)

7. Contact surface ripple growth as a function of time (Fig. 18)

In this section we show the time evolution of the ripple interface. Our linear theory provides us with Eq. (129) and asymptotic
formula (133). The post-shock ripple amplitude at t = 0+, according to Eq. (128), is ψ∗

0
∼= −0.193 815 267ψ0, which indicates

that it is a direct phase inversion case. Using u
[0]
i as the value for the dimensionless asymptotic normal velocity, we get

ψi(t)[μm] = −1.938 + 13.720 180 1

{
−0.284 208 640

(
τa

{
τaJ0(τa) + πτa

2
[J1(τa)H0(τa) − J0(τa)H1(τa)] − J1(τa)

}

− 1 + J0(τa)) +
∞∑

n=0

2ωa
2n+1

n∑
l=1

[
1 − 2

τa

l∑
k=1

(2k − 1)J2k−1(τa)

]}
, (B22)

where for this particular case τa = 2.280 143 51 ns−1 t . Equation (B22) is used to plot the exact linear time evolution curve (a) in
Fig. 18. In order to calculate the asymptotic linear regime, it is needed to obtain the asymptotic ordinate ψ∞ given by Eq. (134),
where we need to calculate the derivatives of F ′

a1 and F ′
a2 at the origin qa = 0. Then, the asymptotic ordinate [Eq. (134)] is

(ψ∞)[n] = −1.938 − 13.720 180 1
[(

F
[n]
a1

)′
(0) − (

F
[n]
a2

)′
(0)
]
. (B23)

To calculate (F [n]
a1 )′(0) − (F [n]

a2 )′(0) we follow the strategy developed in Eq. (A5). We show the first five iterations:

(ψ∞)[0] ∼= 0.370 315 726 ψ0,

(ψ∞)[1] ∼= 0.138 085 814 ψ0,

(ψ∞)[2] ∼= 0.184 543 403 ψ0,

(ψ∞)[3] ∼= 0.182 725 015 ψ0,

(ψ∞)[4] ∼= 0.182 761 012 ψ0,

(ψ∞)[5] ∼= 0.182 760 406 ψ0 = 1.828 μm. (B24)

Finally, the ripple asymptotic time evolution for this particular case is written as

ψi(t � t1) ∼= 1.828 μm − 8.893
μm

ns
t, (B25)

which is the formula used to plot curve (b) in Fig. 18.
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8. Velocity perturbations at the contact surface as a function of time (Fig. 21)

In this section we calculate the time evolution of the normal and tangential velocities at the interface. In this case, we use
Taylor series instead of Bessel functions series. Since both methods give similar results, Taylor series provide a little more
accurate description. If it is desired to calculate the time evolution through Bessel function series, we use Eq. (119) for normal
velocity and its equivalent to the tangential velocity at the a side:

δvai(τa) = ṽ0
ya + (

via − ṽ0
ya

)
[1 − J0(τa)] − 2

∞∑
n=0

ωa
2n+1

n∑
k=1

J2k(τa). (B26)

For the Taylor series coefficients, we need the auxiliary coefficients f 2n+1
a1 that for this particular case were calculated in Eq. (B17).

For f 2n+1
a2 , we get

Fa2(qa) =
∞∑

n=0

f 2n+1
a2

s2n+1
a

= −0.079 19

sa

+ 0.018 45

s3
a

− 0.008 89

s5
a

+ 0.005 42

s7
a

− 0.003 73

s9
a

+ O

(
1

s11
a

)
. (B27)

We get the series for H̃ai(sa), with the initial derivatives h
(2n+1)
i0 :

H̃ai(sa) =
∞∑

n=0

h
(2n+1)
i0

s2n+2
a

= 0.122 78

s2
a

− 0.071 93

s4
a

+ 0.059 32

s6
a

− 0.058 27

s8
a

+ 0.059 93

s10
a

+ O

(
1

s12
a

)
. (B28)

We write next the series for P̃ai(sa) withe the initial derivatives p
(2n+1)
i0 :

P̃ai(sa) =
∞∑

n=0

p
(2n+1)
i0

s2n+2
a

= −0.035 60

s2
a

+ 0.030 71

s4
a

− 0.025 72

s6
a

+ 0.021 44

s8
a

− 0.018 05

s10
a

+ O

(
1

s12
a

)
. (B29)

Combining the above results, we get the following Taylor series in time for the normal and tangential velocities:

uai(τa) = −0.122 783 515 τa + 0.003 996 278 τ 3
a − 0.000 098 873 τ 5

a + 0.000 000 165 τ 7
a − 0.000 000 018 τ 9

a + O
(
τ 11
a

)
,

(B30a)

vai(τa) = 0.590 970 559 − 0.017 797 562 τ 2
a + 0.001 279 777 τ 4

a − 0.000 035 717 τ 6
a + 0.000 000 532 τ 8

a

− 0.000 000 005 τ 10
a + O

(
τ 12
a

)
. (B30b)

We note that all the series used to calculate the different quantities and to plot the figures shown in this work have been
done with at least 50 coefficients in the Bessel and Taylor series. Besides, to avoid the accumulation of round-off errors, the
calculations have been done with at least 200 digits behind the decimal comma. For obvious reason of space, we only show here
a more limited number of coefficients and the numerical results are displayed with less than 10 digits.

9. Pressure perturbation and ripple evolution at the transmitted
shock; rarefaction tail corrugation as a function of time

(Figs. 19 and 20)

To obtain the pressure perturbation time evolution at the
transmitted shock, we can use Eq. (97) in which we use
the Bessel function series solution or Eq. (95) if we want to
represent it with the Taylor series. The auxiliary parameters we
need for both methods have been already calculated in previous
subsections. It is useful to remember that rt = τa/ cosh χt

∼=
2.076 321 ns−1 t . To plot Figs. 19 and 20(a), we have used
the Taylor series solution. The ripple time evolution of the
rarefaction tail [Fig. 20(b)] is calculated by Eq. (102), and
its asymptotic regime by Eq. (105). For this particular case,
u∞

rt
∼= 0.231 363 and τraref

∼= 1.301 406 ns−1 t .

10. Asymptotic velocity profiles and vorticity field (Fig. 3)

The general solution for the asymptotic velocity profiles
inside both fluids is written in Eq. (137):

ua(x̃) = ui ex̃ + uap(x̃), x � 0

ub(x̃) = ui e−x̃ , x � 0. (B31)

We must obtain the particular solution of fluid a. It can be
written in the form of a Taylor series, and its coefficients are
calculated using Eqs. (141) and (139). We get

uap(x̃) =
∞∑

n=0

θ2n+1
n

(2n + 1)!
x̃2n+1

= −0.251 77 x̃ + 0.121 36 x̃3 − 0.022 16 x̃5

+0.002 11 x̃7 − 0.000 12 x̃9 + O(x̃11). (B32)

In the previous formula, we have only shown the first five
coefficients, for lack of space. In Fig. 4, we have truncated
the series at a much higher power (up to x99). Because of the
asymptotic incompressibility of the perturbation field, we can
easily calculate the tangential velocities as v = −du/dx̃. The
bulk vorticity field in fluid a is given by Eq. (109), which in
the form of a Taylor series is

ga(x̃) = �a

∞∑
n=0

p
(2n+1)
t0 sinh2n+1 χt

(2n + 1)!
x̃2n+1, (B33)
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where sinh χt
∼= −0.453 836 and �a

∼= 4.690 599 according
Eq. (110). The initial derivatives p

(2n+1)
t0 have been obtained

before.

11. Kinetic energy

We calculate now the kinetic energy perturbation stored
in a vorticity strip inside the fluid a. The formula is given
by Eq. (144), where we need to evaluate an integral which
is a function of the normal coordinate x. The exact value
[Eq. (145)] involves the normal and tangential velocity profiles
obtained in the previous subsection, which strongly depend on
the amount of vorticity stored inside the fluid. For the sake
of comparison, an irrotational estimate [Eq. (146)] could also
be done (valid, however, only for very weak shocks). Both
estimates (rotational and irrotational) are shown in Fig. 4. We
give below the values obtained with both estimates, inside
different strips of fluid:

δea
kin

(
−0.2λ,

λ

2

)
∼= 16.747 J/m,

δea
kin

(
−1.4λ,

λ

2

)
∼= 20.301 J/m,

(
δea

kin

)irr(−0.2λ,
λ

2

)
∼= 8.631 J/m,

(
δea

kin

)irr(−1.4λ,
λ

2

)
∼= 9.391 J/m. (B34)

The irrotational calculation underestimates the real kinetic
energy by slightly more than 50%.

The ratio between the perturbed kinetic energy and the zero
order kinetic energy is given in Eq. (148). We get

δea
kin

e2
kin

(−0.2λ) ∼= 1.59%,

δea
kin

e2
kin

(−1.4λ) ∼= 0.28%,

(
δea

kin

e2
kin

)irr

(−0.2λ) ∼= 0.82%,

(
δea

kin

e2
kin

)irr

(−1.4λ) ∼= 0.12%. (B35)

12. Physical limits approximate analytical formulas

To conclude this particular case, we calculate the asymptotic normal and tangential velocities at the interface using the
Mathematica files attached in the Supplemental Material [37]. In this particular case, the only reasonable physical limit we may
take is the strong shock limit. We use the corresponding file and obtain the expansions

ui)Mi�1
∼= −0.278 923 − 1.264 283

M2
1

+ 7.140 142

M4
i

+ O

(
1

M6
i

)
,

Fa)Mi�1
∼= 0.250 735 + 0.950 479

M2
1

− 70.081 469

M4
i

+ O

(
1

M6
i

)
. (B36)

If we evaluate the above expressions at Mi = 15.3, we get

δv∞
i

)
Mi�1

∼= −0.284 193 kψ0Di
∼= −8.891 μm/ns,

δv∞
ya

)
Mi�1 = Fa)Mi�1 − δu∞

i

)
Mi�1

∼= 0.537 710 kψ0Di
∼= 16.8217 μm/ns. (B37)

The strong shock approximation underestimates the normal velocity in 0.13% and overestimates the tangential velocity in 0.25%.
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