
PHYSICAL REVIEW E 96, 013005 (2017)

Crack-tip process zone as a bifurcation problem
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Stress concentration at a crack tip generates a solid structural transformation in its vicinity, the process zone.
We argue that its formation represents a local phase transition described by a multicomponent order parameter.
We derive a system of equations describing the dynamics of the order parameter driven by an inhomogeneous,
time-dependent stress field in the solid and show that it exhibits a bifurcation. The latter corresponds to the
emergence of a process zone characterized by the distribution of the order parameter localized in the vicinity
of the crack tip. The emergence temperature T∗ considerably differs from the temperature of the bulk phase
transformation Tc. We demonstrate that T∗ exhibits a universal behavior T∗ − Tc ∼ K

4/3
I , in terms of the stress

intensity factor KI , and that the zone universally vanishes upon achieving a critical velocity. These facts together
give rise to a universal dynamic phase diagram.
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I. INTRODUCTION

It is common knowledge that high stresses ∼109 to 1011 Pa
concentrate at the tips of brittle cracks. The stress slowly
decreases with distance according to the r−1/2 law, where r is
the distance measured from the tip. Such a stress level is great
enough to alter some physical or chemical properties of the
material. This results in the crack tip’s being surrounded by a
small, nanometer to micrometer sized process zone, the region
where at least some material properties differ from those in
the bulk. This is not surprising since a glance at the phase
diagrams [1] shows that even a moderate hydrostatic pressure
in most solids gives rise to crystal structure reconstructions.
One should expect, therefore, that such a level of tensile
and shear stress at the crack tip also gives rise to phase
transformations in its vicinity, although eventually different
from those generated by hydrostatic pressure [1]. In this case,
the process zone represents a small region of a daughter phase
embedded in the bulk mother phase (as is schematically shown
in Fig. 1). The latter is stable in the bulk of the solid, while the
former is only stabilized by the stress in the close vicinity of
the crack tip. The variation of the physical properties within
the process zone is a direct consequence of such a local phase
transformation. In this paper, such a zone will be referred to
as the transformational process zone.

It is commonly believed that the process zone is responsible
for the formation of both the threshold of the crack stability
KIC as well as the dynamic resistance to its growth. This
opinion has spurred an interest in the mechanisms underlying
these phenomena. For a long time, however, transformational
process zones have only been experimentally analyzed in a
“post mortem” way: a thin layer of a daughter phase has been
discovered in some materials on the fracture surfaces of broken
samples [2,3]. Such post mortem observations are only possi-
ble, provided that (i) the mother to daughter phase transition
is of the first order, and (ii) the solid is deeply in the hysteresis
region of its phase diagram. In the latter case, the daughter

*Corresponding author: alexei.boulbitch@t-online.de

phase is metastable and may survive a certain time before
decaying. In most solids, the width of the hysteresis region
is, however, small (∼1 K) [1,4] compared to the overall phase
diagram width of the domain of the solid phase existence,
between a few hundred and a few thousand degrees [1]. For
this reason, in most cases the material appears to be outside
of the hysteresis region of the nearest bulk phase transitions
during measurements. This explains the rarity of reports of the
post-mortem detection of a transformational process zone.

This situation has changed during the last decade with
the implementation of new experimental techniques. This has
enabled the study of transformational process zones in detail,
often down to the fine structure, sometimes even allowing
doing this in situ. The direct imaging of the atomic locations by
high-angle annular dark-field scanning transmission electron
microscopy (TEM) [5], electron nanodiffraction [6], a mi-
cromechanical loading combined with in situ high-resolution
x-ray microdiffraction [7], an in situ scanning electron mi-
croscopy (SEM) combined with electron backscatter diffrac-
tion [8], an in situ digital image correlation technique [9],
Raman mapping [10], and atomic force microscopy [11,12];
this is an incomplete list of the experimental approaches
enabling one to study the process zones.

The above methods, together with the more traditional
ones [3], have revealed that the solid structure in the close
vicinity of the tip indeed undergoes chemical and/or structural
reconstructions. They have, as well, enabled one to resolve the
structure of the process zone.

The observation of the transformational process zone at
the tip of a crack has been reported in a number of metals
and alloys [6,8,13–16] as well as in dielectrics [2,3,10,17],
superconductors [18], and polymers [19–21]. These obser-
vations reveal a great variety of crystal structures of the
transformational process zones in materials of different sorts,
suggesting that formation of such a process zone is a typical
phenomenon exhibiting universal features. Observations of the
temperature dependence of the size of the process zone [22] as
well as its emergence at �T∗ = T∗ − Tc ≈ 300 K away from
the line of the bulk phase transition Tc [23] suggests that, at
least in some materials, the emergence of a process zone has the

2470-0045/2017/96(1)/013005(19) 013005-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.013005


BOULBITCH, GUFAN, AND KORZHENEVSKII PHYSICAL REVIEW E 96, 013005 (2017)

FIG. 1. Schematic view of the process zone (a) with the size
RZ located at the crack tip (b) and embedded in the mother phase
matrix (c).

character of a bifurcation: it emerges at some temperature T∗
away from the temperature of the bulk phase transformation Tc,
and, further, its size gradually increases when the temperature
approaches Tc.

In theoretical descriptions of the process zone, one can
distinguish three approaches. On the one hand, atomistic
mechanisms of the formation of the zone have been studied by
computer simulations [6,24–33].

On the other hand, an analytical, continuum mechanical
approach has been developed. It is based on the assumption
that the transformational process zone only differs from the rest
of the solid by its (i) elastic moduli and (ii) the spontaneous
strain caused by the phase transformation. This approach
describes the zone solely by the configuration (and, eventually,
dynamics) of its interface as well as the stress or strain
distribution, while all other degrees of freedom are ignored.
The reviews describing this approach can be found in [2,3,34].
We develop a third approach. We take a new view of the process
zone, as a small domain at the crack tip whose properties
differ qualitatively from those in the bulk. This difference is
closely related to the behavior of a set of internal degrees of
freedom of the solid responsible for the phase transformation.
By analogy with the Landau theory of phase transitions [35],
this set is referred to as the order parameter. The numerical
description of the process zone within such an approach has
been addressed in [36–39].

The possibility of applying this approach analytically has
been indicated in [40] and described in detail in [39] within a
model with a one-component order parameter. The paper [41]
employed this model to describe a self-oscillation of the crack
propagation generated by the energy dissipation within the
process zone. In [38,42], we predicted crack velocity jumps
engendered by a process zone described by a one-component
order parameter.

However, most phase transitions cannot be adequately
described by a simple one-component order parameter,
and a multicomponent order parameter is absolutely re-
quired [43,44].

To give the reader an idea of the occurrence in nature of
order parameters with different dimensionalities n, we provide
here a few examples. There are a number of materials ex-
hibiting phase transformations described by a one-component
order parameter. It is, for example, the case for the strongly
anisotropic magnetics, such as K2CoF4, Rb2CoF4, and oth-
ers [45]. A one-component order parameter also describes the
paraelectric to ferroelectric transitions in uniaxial dielectric
ferroelectrics, such as LiTiO3, LiNbO3, K2PO4, Pb5GeO11,
triglycine sulfate (NH2CH2COOH)3H2SO4, and some oth-
ers [46]. It also controls the transitions in ferroelectrics-
semiconductors, such as SbSJ [46], in binary bcc alloys, such
as Fe-Be [47] and CuZn [35], and describes the α-β transition
in quartz [48].

The transition between the normal and superconductive
phases taking place at low temperatures in conventional
superconductors, such as is described by a wave function
of the superconducting condensate which represents a two-
component complex scalar. It can be reduced, however, to
a one-component order parameter after elimination of the
Goldstone mode [49]. Such properties exhibit Sn, Pb, Fe,
etc. [1], Nb and Ta [50], superconductive compounds, such
as C6Ca [51] and C60K3 [52], and many others.

The transitions in layered magnetics K2MnF4, BaMnF4 [45]
as well as in ferroelectrics K2SeO4 [53], gadolinium molyb-
date (Gd2Mo3O12) [54], calomel (Hg2Cl2) [55], perovskite
CsPbCl3 [56], and in PrMn2O5 [57] are described by an order
parameter with its number of components n = 2.

The magnetic phase transitions in classical ferromagnetics
Fe, Ni, Co, in ferromagnetics Tb1−xHoxFe2 and Tb1−xDyx

Fe2 [58], the antiferromagnetic RbMnF3, in the ferroelectric
transitions in BaTiO3, PbTiO3, the structural phase transitions
in SrTiO3, KMnF3, LaAlO3 [46], PZT [Pb(ZrxTi1−x)O3] [59],
in binary fcc alloys such as Al-Li [60], in a number of Ni-
based ones [47], and in many other materials, are described by
three-component order parameters.

The magnetic phase transitions in CeAl2 [61], in MnO [62],
in the rare-earth metals Ho, Dy, Tb [63], type II antiferromag-
nets TbAs, TbP, TbSb, TbAu2, and NbO2 [64], structural tran-
sitions in VO2 [43,65], in langbeinites, such as RbCd2(SO4)3

as well as the transitions into a superconductive phase in the
unconventional superconductors, such as Sr2RuO4 [66], are
described by four-component order parameters.

Type I antiferromagnet UO2, type III antiferromagnet
K2IrCl6 as well as transitions in DyC2 and Nd [64] and
structural transitions in boracites, e.g., Ni3B7O13J [67] are
described by n = 6. Transitions in MnSe, NiO, and ErSb [64]
as well as in some other materials [68] are described by
n = 8. Phase transitions in solids described by n = 12 order
parameters are also known [68].

This list is far from being exhaustive. It enumerates order
parameters describing the bulk phase transitions. An analogous
picture should be expected in the case of the crack-tip
transformational process zones. It should be further expected
that a zone controlled by a multicomponent order parameter
may exhibit different phases under different dynamic and/or
external thermodynamic conditions, contain several phases at
once, and as a result demonstrate a complex dynamic behavior.

In this paper, we address the general case of a process
zone parametrized by an n-component order parameter. We
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describe a concerted propagation of the crack-tip–process zone
complex. It is described by a system of generalized time-
dependent Ginzburg-Landau–type equations supplemented
by mechanical ones. We explicitly eliminate the variable
describing the transformation-generated strain, and reduce the
problem to a system of integrodifferential equations solely
in terms of the order parameter. We, further, argue that this
system exhibits a bifurcation corresponding to the emergence
of a process zone.

Applying the techniques of bifurcation theory, we show
that the difference �T∗ = T∗ − Tc between the temperature of
the emergence of the zone T∗ and the transition temperature
Tc universally scales with the stress intensity factor KI ,
as �T∗ ∼ K

4/3
I , and that at a high speed V of the crack-

process zone complex, the zone universally vanishes upon
achieving a critical velocity V∗ ∼ K

2/3
I . We further reduce

the integrodifferential system to an algebraic system of
ramification equations, enabling one to analyze its solutions
and build a dynamic phase diagram in the stress intensity
factor-temperature plane (KI ,T ) in which the region of the
zone’s existence is determined. We, finally, make numerical
estimates showing that the region of the zone’s existence
occupies a considerable part of the dynamic phase diagram.

II. BULK PHASE TRANSITIONS AS THE BASIS OF THE
PROCESS ZONE DESCRIPTION

A. Order parameter

The very notion of “process zone” implies that a small
domain in the immediate vicinity of the tip of a brittle crack
has specific properties, different from those in the bulk. Only
in such a case can the process zone be distinguished from the
rest of the solid. This may be an abrupt quantitative variation
of physical properties, such as a steep growth of the elastic
nonlinearity [69] or a hyperelasticity [70] at the tip.

Alternatively, the process zone may exhibit a qualitative
difference from the bulk, such as a difference in chemical
composition, in crystal structure (e.g., cubic, tetragonal, or
monoclinic lattice structures), in electronic structure (e.g.,
metal or isolator, exciton condensate or exciton gas, normal or
superconductive, etc.), or in magnetic structure (paramagnetic,
ferromagnetic, antiferromagnetic, or helicoid, etc.). All the
above structures are related to certain internal degrees of
freedom activated locally in the vicinity of the crack tip due to
a high tensile and/or shear stress.

All such internal degrees of freedom can be divided into
two classes: (i) the ones characterized by a potential, such as
the Landau potential, playing the role of a Lyapunov function
for their dynamics and (ii) those whose dynamics cannot be
related to any potential. The structural degrees of freedom,
such as optical and acoustic phonons, magnons, degrees of
freedom related to an electronic subsystem, belong to the
first class, while the degrees of freedom describing chemical
reactions belong to the second one. The analysis of equations
describing systems belonging to these two classes requires
different approaches. In this paper, we only focus on the first
class.

A set of degrees of freedom of the solid responsible for
the qualitative difference between the zone and the bulk

of the solid can always be extracted from the microscopic
degrees of freedom, such as the normal coordinates of optical
phonons, etc. They are referred to as the order parameter η.
We parametrize the differences in the solid properties inside
the zone from those outside by a field η = η(r,t). Without loss
of generality, one may assume η �= 0 inside the zone, while
vanishing outside. In this respect, our approach is akin to the
theory of phase transitions [35] as well as to the popular phase
field approach [71]. In contrast to the latter, however, our order
parameter explicitly describes the degrees of freedom within
the process zone responsible for the variation of its crystal,
magnetic, or electronic structure.

With respect to the formation of the process zone, all
order parameters of the first class can be divided into two
subclasses. The order parameters belonging to the first subclass
transform according to the same irreducible representation as
the strain tensor ε = ε(r) or some of its component(s) under
the action of elements of the symmetry group of the solid
crystal lattice. These are referred to as the proper ferroelastic
phase transitions. The equation for the order parameter admits
in this case an absolute term ∼ε, and the process zone exists at
all values of the temperature and stress intensity. Far from the
tip, such an order parameter has the asymptotics η ∼ ε(r).
The crystal structure of such a zone can be obtained by
superimposing the strain corresponding to the order parameter
onto the crystal lattice of the bulk phase.

The number of materials belonging to the second subclass
by far exceeds that of the first one. In this subclass, the order
parameter and the strain tensor components transform accord-
ing to different irreducible representations of the symmetry
group. Therefore, the strain has an indirect effect on the onset
of the order parameter. For this reason, the process zone only
emerges as soon as a certain thermodynamic condition is met:
a critical temperature, or a critical value of the stress intensity
factor, should be exceeded. In contrast to the first subclass, in
this second subclass the process zone exhibits the features of
a bifurcation.

The above classification can be applied if a group-subgroup
relation exists between the symmetry of the phases taking place
in the process zone. An additional possibility for applying
this classification is the case that the process zone and the
matrix symmetries are subgroups of a common symmetry
group. Transitions referred to as “reconstructive” (including
an important family of martensitic transformations) exhibit no
such relations, and require a special modification of the Landau
theory [65,72].

We focus here on the zones of the second subclass of the first
class, while the ferroelastic, reconstructive, and martensitic
transitions are outside the scope of this paper.

B. Invariants

The basis η = (η1,η2, . . . ,ηn) of the irreducible represen-
tations R

n is normalized such that the symmetry operations
of the group G transform any n-dimensional sphere in the
Euclidean space En into itself. Accordingly, one finds that the
expression

J2 =
n∑

i=1

(ηi)2 (1)
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always represents an invariant with respect to G. In this paper
the Latin superscripts are reserved to indicate components of
the order parameter. To avoid confusion between superscripts
and powers, we wrap the superscripted variables by round
brackets, if necessary. Thus, η2 means the second η component,
while (η2)

2
means this component squared.

There can be a few other rational invariants that are
algebraically independent from one another. Together they
form the so-called integer rational basis of invariants [43].
The existence of an invariant of the basis, different from J2, as
well as its possible structure, is not universal, but depends on
the group G. We here build our further argumentation assuming
the most general form of these invariants. This general form is
formulated below.

In some (rather rare) cases, the symmetry group G admits a
cubic invariant. Its most general form can be written as follows:

J3 =
n∑

i,j,k=1

γ
ijk

3 ηiηjηk, (2)

where the factors γ
ijk

3 take integer values, such as 0, 1, 2, etc.,
providing the necessary structure of the invariant.

To give an example, let us consider the two-dimensional
(2D) vector representation of the group G = C3V = 3m. The
first group name, C3V , is given according to the Schoenflies,
and the second, 3m, to the International notation. The
corresponding irreducible representation is indicated by E

(see, e.g., [73]). One finds γ 111
3 = 1, γ 112

3 = −3, while all
other components of the tensor γ 3 are equal to zero. This
yields J3 = (η1)3 − 3(η1)2η2. As another example, for the 3D
representation T2 of the group G = Td = 43m [73], one finds
all components γ

ijk

3 equal to zero except γ 123
3 = 1, yielding

J3 = η1η2η3.
The general forms of the invariants of the fourth, fifth,

and sixth orders belonging to the integer rational basis can be
written analogously:

J4(s) =
n∑

i,j,k,l=1

γ
ijkl

4 (s)ηiηjηkηl, (3)

J5(s) =
n∑

i,j,k,l,u=1

γ
ijkl

5 (s)ηiηjηkηlηu, (4)

and

J6(s) =
n∑

i,j,k,l,u,v=1

γ
ijkluv

6 (s)ηiηjηkηlηuηv, (5)

where the tensors γ 4, γ 5, and γ 6 play the same roles as
that of the tensor γ 3 and s = 1,2, . . . ,mp, where p = 4, 5,
or 6 enumerate the independent fourth, fifth, and sixth order
invariants, if any of them are allowed by the group G. In fact,
their number mp can only in some rare cases be greater than
1. They are completely determined by the representation R

n.
As in the previous case, if there are no invariants of order 4,
5, or 6, all the components of the corresponding tensor γ 4,
γ 5, or γ 6 are equal to zero. For example, in the case of the
group G = Td one finds a single independent invariant of the
fourth order m4 = 1 and all γ

ijkl

4 (1) = 0 except γ 1111
4 (1) =

γ 2222
4 (1) = γ 3333

4 (1) = 1, giving J4 = (η1)4 + (η2)4 + (η3)4.

One should keep in mind that the relations (2)–(5) only
describe independent invariants. These are the invariants that
cannot be obtained from the ones of the lower order by apply-
ing algebraic operations: addition, subtraction, multiplication,
and raising to any integer power. Not to account for them twice,
the factors γ

ijkl
n (s) with n = 3, 4, 5, and 6 corresponding to

the dependent invariants in (3), (4), and (5) are assumed to be
equal to zero.

Further, the group G only allows a few independent
invariants. Thus, some (or all) of the invariants (2)–(5) may
appear to be forbidden by the symmetry. For example, in the
case of the group G = C3V , the only independent invariants are
of the second and the third order, while for G =Td , there are
only second-, third-, and fourth-order independent invariants.
Correspondingly, in the G = C3V case, one has to choose all
components γ 4 = γ 5 = γ 6 = 0, while in the case of the group
G = Td one finds γ 5 = γ 6 = 0.

C. Landau potential

The invariants discussed in the previous section enable one
to build the nonequilibrium Landau potential (also referred
to as the Landau potential) describing the phase transition in
the bulk of the crystal. Since the Landau potential must be
invariant with respect to all transformations of the group G,
it represents the expansion in terms of the above invariants as
well as of the strain tensor components:

�bulk(η,ε) = �pt(η) + �el(ε) + �int(η,ε), (6)

where ε ≡ εαβ is the strain tensor

εαβ = 1

2

(
∂uα

∂xβ

+ ∂uβ

∂xα

)
,

uα being the displacement vector. The Greek subscripts α,
β, . . . = 1,2,3 enumerate the tensor indices in the three-
dimensional (3D) Euclidean space E3, and the Einstein
summation convention over the Greek indices is adopted.

Further, the function �pt(η) denotes a part responsible for
the phase transition:

�pt(η) = a

2
J2 + b3

3
J3 + �4 + �5 + �6 + · · · , (7)

where for the sake of brevity, we denote by �4, �5, and �6

the contributions of the fourth, fifth, and sixth orders in terms
of the order parameter:

�4 = b
(0)
4

4
J 2

2 + 1

4

m4∑
s=1

b4(s)J4(s), (8)

�5 = b
(0)
5

5
J2J3 + 1

5

m5∑
s=1

b5(s)J5(s), (9)

�6 = b
(0)
6

6
J 3

2 + b
(1)
6

6
J 2

3 + b
(2)
6

6
J2J4 + 1

6

m6∑
s=1

b6(s)J6(s). (10)

The former terms in (8)–(10) represent combinations of the
invariants belonging to the integer rational basis.

We adopt the classical assumption of the Landau the-
ory [35,43,44], that a = a0(T − Tc), where T is the temper-
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ature, Tc is the Curie temperature, and a0 > 0 and b
(l)
k (with

k = 3, 4, 5, and 6 and l = 0,1,2 . . .) are constants.
It should be noted that the expression (7) represents the

Taylor expansion of the Landau potential density in terms
of the components of the order parameter. The minimum
requirement for the truncation of this series is that the higher
order terms must be positive defined at η → ∞. Thus, if �4

is positive defined, the expansion can be limited to the fourth
order terms, while �5, if any, and �6 can be disregarded. In
this case, the bulk phase transition appears to be of the second
order if b3 ≡ 0, or of the first order everywhere except an
isolated Curie point otherwise [35].

If �4 is not positive definite, one needs to retain the higher
order terms, and if �6 is positive definite, the series can be
truncated here. The bulk phase transition in this case is of the
first order everywhere. Further, a complete description of the
phase diagram may require expanding the Landau potential
density up to still higher order terms. We do not go here into a
discussion of these details, but refer the reader to the book [43].
The extension of the theory to account for higher order terms
is straightforward, but in a general form it is cumbersome.
�el(εαβ) is the elastic part of the Landau potential density:

�el(ε) = 1
2Cαβγ δεαβεγ δ, (11)

where C ≡Cαβγ δ is the tensor of elastic moduli.
Finally, �int(η,ε) is the term describing the interaction

between the strain and the order parameter. Within the Landau
approach, one usually assumes the interaction energy is linear
in the strain and quadratic in the order parameter [74]. In the
most general form, it can be written as follows:

�int(η,ε) =
n∑

i,j=1

A
ij

αβεαβηiηj , (12)

where A
ij

αβ is the tensor of striction constants in the space
E3 ⊗ En. Any solid symmetry group G allows the existence of
the dilatant interaction term (12) εαα

∑n
i=1(ηi)2 corresponding

to the diagonal tensor of the striction constants A
ij

αβ ∼ δij δαβ ,
where δαβ and δij are the Kronecker deltas. However, some
crystal symmetries admit nondeviatoric contributions as well.
In this case, the tensor of striction constants A

ij

αβ possesses
off-diagonal terms.

D. Elimination of the elastic variables in the homogeneous case

The stress tensor is expressed as σαβ = ∂�/∂εαβ , yielding

σαβ = Cαβγ δεγ δ +
n∑

i,j=1

A
ij

αβηiηj . (13)

The last term in (13) describes the spontaneous stress generated
by the phase transition. In the homogeneous, stress-free state
(σαβ = 0), one finds

εαβ = −
n∑

i,j=1

Q
ij

abη
iηj , (14)

where Q
ij

αβ can also be referred to as the striction tensor, and

the tensors A
ij

γ δ and Q
ij

αβ are related to one another as follows:

Q
ij

αβ = Sαβγ δA
ij

γ δ; A
ij

αβ = Cαβγ δQ
ij

γ δ. (15)

Here, S is the compliance tensor: S = C−1. The tensor
Q

ij

αβ may be convenient to use since in many cases the
striction constants are available in this form (see, e.g., [59]).
Substituting (14) into �el(ε) + �int(η,ε) [Eqs. (11) and (12)],
one finds the fourth-order term in the form

�′
4 = 1

4
b

(0)
4 J 2

2 + 1

4

m4∑
s=1

R
ijkl

0 (s)ηiηjηkηl, (16)

where

R
ijkl

0 (s) = b4(s)γ ijkl

4 (s) − 1

2
Sαβγ δA

ij

αβAkl
γ δ. (17)

The nonequilibrium Landau potential of the bulk phase
transition takes the form

�bulk(η,ε) = a

2
J2 + b3

3
J3 + �′

4 + �5 + �6 + · · · . (18)

The Landau potential �bulk(η,ε) [Eq. (18)] describes a solid
with the same symmetry G as that described by (6). This
forces it to have the same structure as that exhibited by (8).
Thus, the effect of the elimination of the elastic variables only
renormalizes the coefficients b

(0)
4 and b4(s).

E. Classification of the phases

A solid is characterized by its crystallographic space group
G acting in physical 3D space E3. The order parameter
represents a set of degrees of freedom or their linear com-
binations η = (η1,η2, . . . ,ηn) (such as the displacements of
the atoms, magnetic moments, etc.) transforming according
to the irreducible representations R

n of the group G. The
degrees of freedom belonging to the irreducible representation
are transformed into one another by the group operations, but
those belonging to different irreducible representations are
independent of one another.

Each irreducible representation forms a point group G

of n × n matrices in the n-dimensional Euclidean space En

spanned by η, where n is a natural number n = 1,2, . . . .
The order parameter η = (η1,η2, . . . ,ηn) represents a vector
in En. The state in which η = 0 is invariant with respect to all
transformations of the group G. It, thus, describes the mother
phase.

The η vectors with at least some components different from
zero (such as η1 �= 0; η2 = η3 = · · · = 0, or η1 = η2 �= 0;
η3 = · · · = 0, etc.) describe possible “daughter” phases with
different symmetry groups G1,G2, ...equal to the subgroups
of the mother phase (G1 ⊂ G, G2 ⊂ G, . . .) leaving the
corresponding vector η invariant. They correspond to the space
subgroups of the group G: Gi → Gi ⊂ G. These relations
classify the symmetries of all possible daughter phases.

The η vectors differing from one another only by the sign
of some of the components, such as the pair (η,0,0 . . .) and
(−η,0,0 . . .) or the pair (η,η,0, . . .) and (η, − η,0, . . .), exhibit
the same symmetry group and correspond to the structures
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referred to as “domains,” “twins,” or “variants” by different
communities [75].

Up to this point a standard theory of phase transitions
in a homogeneous solid has been briefly reviewed and
reformulated in the form necessary to communicate our results.
The description of the results will start in the next section.

III. EQUATIONS OF MOTION FOR THE ORDER
PARAMETER

From now on, let us consider a solid with an inhomogeneity.
It is introduced by a spatially inhomogeneous (and, eventually,
time-dependent) strain field ε(0)(r,t) in the bulk of the solid.
It can have various origins, such as solid defects (cracks,
dislocations, disclinations, grain walls, etc.) or either sound
or shock waves. We do not specify its origin at the moment.

A. Density of the nonequilibrium Landau potential

In the inhomogeneous case, the order parameter depends
on the coordinates and, eventually, on the time: η = η(r,t).
One finds

�(η,ε) = �g(η) + �pt(η) + �el(ε) + �int(η,ε). (19)

The term �g in (7) has the form

�g = g

2

n∑
i=1

(∇ηi)2. (20)

It accounts for the energy penalty for the order parameter’s
inhomogeneity. Here, ∇ηi is the gradient of the order pa-
rameter and g > 0 is a constant. It should be mentioned that
the constants g, a0, bn(s), Tc, and A

ij

αβ (or Q
ij

αβ) describing the
phase transformation together with the tensor of elastic moduli
C represent material constants of the solid.

B. Lagrangian and the dissipation function

Making use of the density of the Landau potential (19), one
can write a Lagrangian L and a dissipation function D of the
solid:

L =
∫ {

1

2
ρ

(
∂uα

∂t

)2

− �(η,ε)

}
d, (21)

D = κ

2

∫ n∑
i=1

(
∂ηi

∂t

)2

d, (22)

where ρ is the mass density of the solid, � is the density of
the Landau potential, t is the time, κ is the kinetic constant of
the order parameter, and  denotes the spatial domain. Since
here we only consider the case of a thin plate,  represents the
infinite plane and d ≡ dx dy. We, thus, assign both L and D

to the unit solid thickness in the z direction.
It should be stressed that we only consider a brittle solid.

Therefore, the dissipation function contains no plasticity-
generated terms and only describes the dissipation due to the
dynamics of the order parameter.

C. Equations of motion

The equations of motion (the dynamic Ginzburg-Landau
equations) for the order parameter together with the mechan-
ical equations can be derived by the variation of the action
S = ∫ L dt using the Lagrangian (21) and the dissipation
function (22), the variation of the action with respect to
each generalized coordinate being equated to the variation
of the dissipation function with respect to the corresponding
generalized velocity:

δD

δ(∂ηi/∂t)
= δL

δηi
(23)

as is described in [76], where δ indicates the variational
derivative. Equation (23) represents the Onsager equations for
the order parameters. One finds

κ
∂ηi

∂t
= g�ηi − aηi −

n∑
j=1

A
ij

αβεαβηj − Ni(η), (24)

where � is the Laplace operator and Ni(η) is the nonlinear
term of the ith equation. Namely, it consists of the terms of
the third, fourth, fifth, and sixth orders in η:

N(η) = N3(η) + N4(η) + N5(η) + N6(η),

where

Ni
3(η) =

n∑
j,k=1

b3γ
ijk

3 ηjηk, (25)

Ni
4(η) = b

(0)
4 ηi

n∑
j=1

(ηj )2 +
m4∑
s=1

n∑
j,k,l=1

b4(s)γ ijkl

4 (s)ηjηkηl,

(26)

Ni
5(η) = b

(0)
5

5

⎛⎝2ηiJ3 + 3J2

n∑
j,k=1

γ
ijk

3 ηjηk

⎞⎠
+

m5∑
s=1

n∑
j,k,l,u=1

b5(s)γ ijklu

5 (s)ηjηkηlηu, (27)

and Ni
6(η), which for the sake of readability we divided into

three items: Ni
6(η) = Ni

6A + Ni
6B + Ni

6C , where

Ni
6A = b

(0)
6 ηiJ 2

2 + b
(1)
6

2
J3

n∑
j,k=1

γ
ijk

3 ηjηk, (28)

Ni
6B = b

(2)
6

6

⎡⎣2ηiJ4 + 4J2

m4∑
s=1

n∑
j,k,l=1

γ
ijkl

4 (s)ηjηkηl

⎤⎦, (29)

and

Ni
6c =

m6∑
s=1

n∑
j,k,l,u,v=1

b6(s)γ ijkluv

6 (s)ηjηkηlηuηv. (30)

We would like to stress that this highly complex form of the
nonlinear part of the order parameter equations originates from
keeping the approach general. In specific cases, most of the
invariants are forbidden by the symmetry. This never removes
a nonlinear part completely, but makes it more concise.
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The mechanical equations of motion can be obtained by
setting equal to zero the variation of the action functional with
respect to the components of the displacement vector uα as
follows: δL/δuα = 0. They have the standard form

ρ
∂2uα

∂t2
= ∂σαβ

∂xβ

, (31)

where, however, the stress tensor accounts for the phase
transformation according to the relation (13). Equations (24)
and (31) represent a system of n + 3 equations completely
describing the concerted dynamics of the order parameter and
acoustics caused by the inhomogeneous, time-dependent strain
field.

D. Elimination of the elastic variables

Making use of Eqs. (24), (31), and (13), one can express
the displacement vector uα as

uα(r,t) = u(0)
α (r,t) −

n∑
i,j=1

A
ij

δγ

∫
Gαδ(r − r′,t − t ′)

× ∂[ηi(r′,t ′)ηj (r′,t ′)]
∂x ′

γ

d2r ′dt ′, (32)

where u(0)
α (r,t) (α = 1,2,3) are the displacements in the

solid in the absence of the order parameter field. These
displacements represent solutions for u(0)

α (r,t) obtained within
the approach of the classical mechanics. These solutions are
assumed to be known. Further, Gαβ(r,t) is the elastic Green’s
function of the solid with a cut and no zone. This means that it
is taken at η ≡ 0. This enables one to find the Fourier transform
of the displacement field uα(k,ω):

uα(k,ω) = u(0)
α (k,ω) − iGαγ (k,ω)kβ

n∑
i,j=1

A
ij

γβ�ij (k,ω),

(33)
where u(0)

α (k,ω) is the Fourier transform of u(0)
α (r,t), while

�ij (k,ω) is expressed as follows:

�ij (k,ω) =
∫

ηi(r,t)ηj (r,t) exp [i(ωt − k · r)]ddt (34)

and Gαβ(k,ω) = ∫ Gαβ(r,t) exp [i(ωt − k · r)]ddt is the
Fourier transform of the elastic Green’s function. One should
not confuse here the imaginary unit in the Fourier transform
with the index i of the order parameter ηi . To the best of our
knowledge, the elastic Green’s function of a plane with a cut
is unknown. We approximate it by the elastic Green’s function
of the intact elastic plane

Gαγ (k,ω) = ‖Cαβγ δkβkδ − ρω2δαγ ‖−1 (35)

expressed in terms of the tensor of the elastic moduli. This
enables one to express the strain εαβ(k) in the form

εαβ(k,ω) = ε
(0)
αβ (k,ω) − 1

2
kγ [kβGαδ(k,ω) + kαGβδ(k,ω)]

×
n∑

i,j=1

A
ij

δγ �ij (k,ω), (36)

where ε
(0)
αβ (k,ω) is the Fourier transform of the strain,

ε
(0)
αβ (r,t) = [∂u(0)

α (r,t)/∂xβ + ∂u
(0)
β (r,t)/∂xα]/2, generated at

η ≡ 0. The second term (36) represents the contribution of the
order parameter to the strain field in the solid.

Passing from k to x space and substituting the strain
expression (36) into (24), one explicitly eliminates the strain
generated by the phase transformation, and obtains a system
of n nonlinear, integrodifferential equations of motion for the
order parameter:

κ
∂ηi

∂t
= g�ηi − aηi −

n∑
j=1

A
ij

αβε
(0)
αβ (r,t)ηj −Ni(η)−�Ni(η).

(37)
Here,

�Ni(η) = −
n∑

j,l,m=1

ηj (r,t)
∫

Kijlm(k,ω)�lm(k,ω)

× exp [i(k · r − ωt)]
d2k dω

(2π )3
, (38)

where the kernel Kijlm(k) takes the form

Kijlm(k,ω) = A
ij

αβAlm
γ δkγ kβGαδ(k,ω). (39)

Let us observe that since �lm(k,ω) ∼ η2 [Eq. (34)], the
contribution �Ni(η) is cubic in terms of the order parameter
η.

The integrodifferential system (37) consists of n equations.
It describes the dynamics of the inhomogeneous distribution
of the n-component order parameter η engendered by the dy-
namics of an elastic inhomogeneity. The latter is implemented
by ε

(0)
αβ (r,t), describing the strain of the solid with no order

parameter field.
Since the strain of the bare system ε

(0)
αβ (r,t) is known, at least

in principle, one finds that the bare solid stress σ
(0)
αβ (r,t) =

Cαβγ δε
(0)
αβ (r,t) is also known. The use of the striction tensor

Q
ij

αβ instead of A
ij

αβ enables one to rewrite (37) in a more
concise form:

κ
∂ηi

∂t
= g�ηi − aηi −

n∑
j=1

Q
ij

αβσ
(0)
αβ (r,t)ηj −Ni(η)−�Ni(η).

(40)
Up to this point of the paper, the origin of the field ε

(0)
αβ (r,t) has

not been specified. It may be caused by any stress concentrator:
the crack tip, a dislocation, or their array, a twin or grain
boundary, inclusion, etc. Alternatively, it may be caused by a
sound or a propagating shock wave.

Equations (37) valid for the second subclass of the first class
of materials have been derived without any limitations. They
describe, therefore, the formation of transformational zones in
the vicinity of elastic inhomogeneities of any origin, both in
statics and dynamics. Moreover, (37) is capable of describing
a soft (second-order-like) zone emergence as well as the hard
(first-order-like) one.
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E. Specifying the crack-tip process zone

From now on, we narrow our considerations to a process
zone at a crack tip by specifying a tip-generated elastic stress

σ
(0)
αβ (r,t) = KI

(2πr)1/2
ϕαβ(θ ), (41)

where KI is the stress intensity factor, and r and θ are polar
coordinates with origin at the crack tip.

F. Automodel regime

In the following, we analyze a steady, rectilinear crack
propagation with velocity V. It is described by the automodel
solution of the system of dynamic equations (37). Assuming
η = η(r − Vt), and passing to the comoving frame r′ = r −
Vt , the system of equations of motion for η = η(r′) [Eq. (37)]
takes the form

L̂(a)ηi = Ni(η) + �Ni(η), (42)

where �Ni(η) has the form

�Ni(η) = −
n∑

j,l,m=1

ηj (r′)
∫

Kijlm(k,k · V)�lm(k)

× exp(ik · r′)
d2k

(2π )3
(43)

and in contrast to (38), depends on t only through r′. In
addition, the scalar product k · V is substituted instead of ω

into Kijlm(k,ω), while �lm(k) is now defined as follows:

�lm(k) =
∫

ηl(r′)ηm(r′) exp(−ik · r′)d2r ′. (44)

We, further, direct the x ′ axis along the direction of the
crack propagation. The linear operator L̂(a) in the left-hand
part of Eq. (42) has the form

L̂(a)ηi = g�′ηi + κV
∂ηi

∂x ′ − aηi − KIQ

(2πr ′)1/2

n∑
j=1

Bij (θ )ηj

(45)
and we used the (40) form of the dynamic system. Here, Q

is the norm and Bij (θ ) is the tensor of dimensionless striction
constants:

Q =
√∑n

i,j=1
(Qij

αβ)2, (46)

Bij (θ ) = Q
ij

αβϕαβ(θ )

Q
. (47)

The Laplace operator �′ in (45) is defined by �′ = ∂2/x ′2 +
∂2/y ′2 and r ′ = (x ′2 + y ′2)

1/2
. Since in the following we only

use the comoving frame, from here on the primes on x, y, r ,
and � are omitted.

To complete the statement of the mathematical problem
one needs in addition to specify boundary conditions. If one
describes a process zone ηi(r) �= 0 localized at the crack tip
(x,y) = 0, and embedded in the matrix of the bulk phase (α >

0, ηi = 0 for any i), the boundary condition takes the form

ηi(∞) = 0 (i = 1,2, . . . ,n). (48)

Because the variation of atomic displacements must be limited,
the order parameter is everywhere finite: |η| < ∞. The same
holds in the case of a magnetic, superconductive, and other
order parameters unrelated to the atomic displacements.

Equation (42) describes the crack propagating steadily and
rectilinearly, carrying the transformational process zone at
its tip. It is highly nonlinear. Its complete study cannot be
performed analytically, but it is numerically tractable. Let us
observe, however, that Eq. (42) admits the exact trivial solution
η ≡ 0 describing the crack tip with no zone. For this reason,
the problem of the emergence of the process zone can be
formulated as that of a bifurcation of the trivial solution of
Eq. (42). This results in the emergence of nontrivial solutions
η(r) �= 0, the problem admitting an analytical approach. This
analytical solution is presented in the next section.

IV. BIFURCATION OF THE PROPAGATION EQUATION
OF THE PROCESS ZONE

A. Bifurcation point

To analyze the emergence of a process zone at the tip of a
crack propagating along the x axis with velocity V = (V,0), we
apply bifurcation theory [77] to the system of equations (42).
This theory is, however, only valid for soft (supercritical)
bifurcations. This case takes place if the fourth-order terms in
the nonequilibrium free energy density (8) are positive definite.
This is assumed hereafter in this paper. Further, in general, the
system may exhibit a whole cascade of bifurcations, but here
we only focus on the first one. To find this one, it is enough
to keep the Landau potential expansion up to the fourth order,
while omitting the higher order terms.

The trivial solution η ≡ 0 of (42) is stable at large values
of a. It becomes, however, unstable below a certain a∗, and a
solution with η(r) �= 0 branches off from the trivial one. The
bifurcation point a∗ is the first discrete eigenvalue a∗ ≡ a1 of
the linear operator L̂:{

L̂(ap)�i
p(r) = 0,

�i
p(∞) = 0,

(49)

where ap are the eigenvalues and the vector-valued function
�p(r) = (�1

p,�2
p, . . . ,�n

p) represents the set of the eigen-
functions of the operator L̂(a) with p enumerating the
discrete spectrum states: p = 1,2,3 . . ., while i specifies the
component projection in the space En [77].

Our approach is essentially based on the following state-
ment of bifurcation theory: the main term of the solution
branching off from the trivial one always has the form

ηi(r) = ξ i�i
∗(r) + O(ξ 3), (50)

where the amplitudes ξ = (ξ 1,ξ 2, . . . ,ξn) are to be determined
later on [77]. Rescaling Eq. (49), ρ = r/R, where

R =
[

g

QKI

√
2π

]2/3

(51)

is the characteristic process zone size, and looking for the
eigenfunction �i

∗(r) in the following form:

�i
p(ρ) = exp

(
−κV R

2g
ρ cos θ

)
× ψi

p(ρ) (52)
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one passes to the eigenvalue equation on ψi
p:⎧⎪⎪⎪⎨⎪⎪⎪⎩

�̃ψi
p −

n∑
j=1

Uij (ρ,θ )ψj
p(ρ) = λpψi

p,

ψi
p(∞) = 0,

(53)

where the Laplace operator �̃ = ∂2/∂ρ2 + ρ−1∂/∂ρ +
ρ−2∂2/∂θ2 is written in terms of the dimensionless coordinates
ρ and θ .

It should be noted that (53) represents an n-component
Schrödinger equation, the last terms in the left-hand part (53)
playing the role of its potential:

Uij (ρ,θ ) = 1√
ρ

Bij (θ ). (54)

The discrete eigenvalue ap of Eq. (49) is related to the di-
mensionless eigenvalue λp (p = 1,2, . . .) of the dimensionless
Eq. (53) as follows:

a∗ = λ∗
g1/3(2π )2/3

(QKI )4/3 − κ2V 2

4g
. (55)

One concludes that if (53) possesses a discrete spectrum with
the ground state level λ1 = λ∗, the a value corresponding to
its ground state is a1 = a∗, as described by (55).

From now on, let us assume that the discrete spectrum ex-
ists, and the ground state eigenvalue λ∗ and the corresponding
eigenfunctions ψ∗(ρ), along with �∗(ρ), are known.

B. Ramification equations

To find the amplitude ξ , one can substitute the solution (50)
into the equation of the propagation of the zone (42) and rewrite
the latter as follows:

ξ i exp

(
−κV

2g
x

)
L̂(λ∗)ψi

∗ = (a − a∗)ξ i�i
∗(r) + Ni(ξ�∗).

(56)
Here, �i

∗ ≡ �i
1 are the ground state eigenfunctions of Eq. (49).

The linear operator L̂ [Eq. (53)] in the left-hand part of Eq. (56)
is taken at the point λ = λ1 ≡ λ∗ of the spectrum: L̂ = L̂(λ∗).
In such a case, the condition allowing Eq. (56) to have a
nontrivial solution represents a requirement that its right-hand
part is orthogonal to the eigenfunction �∗ [77]. This yields the
equation

(a − a∗)ξ iI i
2 + b3

n∑
j,k=1

γ
ijk

3 I
ijk

3 ξ j ξ k + b
(0)
4

n∑
j=1

I
iijj

4 ξ i(ξ j )2

+
n∑

j,k,l=1

Rijklξ j ξ kξ l = 0, (57)

where

Rijkl = −�ijkl +
m4∑
s=1

b4(s)γ ijkl(s)I ijkl

4

while I i
2 , I

ijkl

3 , etc., are the integrals:

I i
2 =

∫
(�i

∗)2d; I
ijk

3 =
∫

�i
∗�

j
∗�k

∗d;

I
ijkl

4 =
∫

�i
∗�

j
∗�k

∗�
l
∗d (58)

while

�ijlm =
∫

Kijlm(k,k · V)qij (k)qlm(−k)
d2k

(2π )2
,

where qij (k) is the Fourier transform of the product
�i

∗(r)�j
∗ (r):

qij (k) =
∫

�i
∗(r)�j

∗ (r) exp (−ik · r)d2r. (59)

The equations (57) are referred to as the ramification
equations. They constitute a system of algebraic equations
of the third order on the set of the amplitudes ξ and its solution
enables one to find the values of the amplitudes and to build the
bifurcation diagram. The latter defines the regions of existence
of the zones of different kinds in the space of parameters a and
bs .

It should be mentioned that the ramification equations
depend on the constants a, a∗, and bs as well as on the
integrals J i

2 , J
ijkl

4 , and �ijkl . The latter in turn depend on
the eigenfunctions, which are assumed to be known, as well
as on the elastic Green’s function. One concludes that (57)
represents a closed system of algebraic equations with
explicitly specified coefficients.

One observes that Eq. (57) can be obtained as a condition
of a minimum of a generating function Feff:

Feff = (a − a∗)

2

n∑
i=1

I i
2 (ξ i)2 + b3

3

n∑
i,j,k=1

γ
ijk

3 I
ijk

3 ξ iξ j ξ k

+ 1

4

n∑
i,j,k,l=1

(
b

(0)
4 I

ijkl

4 δij δkl + Rijkl
)
ξ iξ j ξ kξ l (60)

with respect to ξ i . To avoid misunderstanding, we stress that
the propagating zone is not in the equilibrium state and cannot
be described by the minimization of the Landau potential.
However, technically, the ramification equations can be de-
rived from the generating function (60) in exactly the same way
as the state equation is derived from the conventional Landau
potential in the Landau theory [35]. We, therefore, refer to (60)
as the effective Landau potential of the process zone.

C. Classification of the types of zones

Equations (57) constitute a system of n algebraic equations.
These admit the trivial solution ξ i = 0 for all i = 1, . . . ,n,
describing no zone. In addition, it may have nontrivial
solutions of various types. The classification of the possible
zone types can be done as follows.

First, one can find one-parametric zones, such as (A) ξ =
(ξ,0,0, . . . ,0), (B) ξ = (ξ,ξ,0, . . . ,0), (C) ξ = (ξ,ξ,ξ, . . . ,0),
and so on, and, finally, (D) ξ = (ξ,ξ,ξ, . . . ,ξ ). Here, ξ �= 0 is a
solution of (57). From experience, one can expect that the one-
parametric zone structures, such as (A), (B), (C), ...(D), often
(though not always) show up first, while the multiparametric
structures [such as ξ = (ξ1,ξ2,ξ3, . . . ,0), where ξ1 �= ξ2 �= ξ3

etc.] are often absent in the phase diagram.
It should be noted that if the group G admits the cubic

invariant (2), the bifurcation is only soft under the condition
b3 = 0. Since the coefficient b3 is generally a function of
the thermodynamic variables, the above condition together
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with T = T∗ yields a point on the phase diagram where the
bifurcation is soft, while in its vicinity the bifurcation is close
to a soft one. In contrast, if the cubic invariant (2) is forbidden
by the symmetry, one only finds the second- and fourth-order
terms in the effective Landau potential. It is this case that will
be analyzed here.

As an example, let us analyze the one-parametric structures.
In this case, the effective Landau potential (60) and ramifica-
tion equations (57) take the forms

Feff = (a − a∗)

2
ξ 2

n∑
i=1

I i
2 + b

4
ξ 4, (61)

(a − a∗)ξ
n∑

i=1

I i
2 + bξ 3 = 0, (62)

where in case (A) one finds b = bA,

bA = b0I
1111
4 + R1111, (63)

while in case (D),

bD = b0

n∑
i,j=1

I
iijj

4 +
n∑

i,j,k,l=1

Rijkl . (64)

The cases of the other one-component combinations (B), (C),
and so on can be described by Eq. (62) with the only difference
being in the expression for b.

One finds the order parameter amplitude:

ξ =
⎧⎨⎩ 0, a > a∗

±
√[

(a∗ − a)
∑n

i=1 I i
2

]
/b, a � a∗.

(65)

As expected, one concludes that the zone emerges at a = a∗
[Eq. (55)] and the dependence ξ = ξ (a) is continuous, though
not smooth. The question of which zone emerges first can
be solved by substituting the solution (65) into the effective
Landau potential (61), yielding

Feff = − (a∗ − a)2
(∑n

i=1 I i
2

)2
4b

< 0 (66)

representing, at least in the case of a motionless crack, the
energy gain due to the bifurcation. One concludes that Feff is
smaller in the case of the zone with the smallest b. Therefore,
it is the one-parametric zone with the smallest b that emerges
earlier than the other one-parametric zones. However, since
b0 and Rijkl may depend on the thermodynamic parameters,
the solutions with the smallest b may be different in different
parts of the phase diagram. This question should be solved
separately for specific cases. Further, the question is still not
solved completely since we did not analyze the multiparamet-
ric zones.

Other zone types can be analyzed in an analogous way.
One should take into account that Eq. (57) minimizes the
effective Landau potential (60). This enables one to make
use of the necessary and sufficient conditions of its minimum
in terms of the second derivatives, as well as taking into
account possible transformations of the different zones into
one another. However, the analysis of the other zones in a
general form includes much too lengthy expressions. It can be
reasonably easily done, however, in specific cases.

V. DISCUSSION

A. Eigenfunction and eigenvalues

We have shown that provided the generalized Schrödinger
equation (53) has at least one point a∗ in the discrete
spectrum, Eqs. (40) have a bifurcation at a = a∗ [Eq. (55)].
The arguments of this paper are based on the expectation that
such a discrete spectrum exists, and its first eigenvalue λ∗ and
eigenfunction ψ∗(ρ,θ ) are known. In such a situation, it is
important to give examples of solutions (53) exhibiting such a
discrete spectrum. A few such examples are briefly described
below.

1. Dilatation-dominated spontaneous strain

Spontaneous dilatation Q
ij

αβ = Q0δαβδij is always present

in the potential �int [Eq. (12)] since the term σαα

∑n
i=1 (ηi)

2

is invariant with respect to all crystallographic groups. If
the symmetry group forbids other mixed terms, only the
spontaneous dilatation is present in the process zone. Further,
in some materials the off-diagonal spontaneous strain terms
are allowed by symmetry, but they are much smaller than
the dilatation. Both cases correspond to a spontaneous strain
dominated by the dilatation.

As our first example, let us consider an elastically isotropic
solid with a dilatation-dominated process zone. The elastically
isotropic approximation is a good one for, e.g., most cubic
metals [78]. Using well-known results of the fracture theory
for the stress distribution at the crack tip [79], one finds the
tensor ϕαβ(θ ) (41) in the form

ϕ11,22 = cos(θ/2)[1 − 2σ ∓ sin(θ/2) sin(3θ/2)];
(67)

ϕ12 = ϕ21 = cos(θ/2) sin(θ/2) cos(3θ/2),

where the sign “+” corresponds to ϕ11, while “−” corresponds
to ϕ22. This yields Uij (ρ,θ ) = δijU0(ρ,θ ), with U0(ρ,θ ) =
cos(θ/2)/

√
ρ, and the spectral equations (53) take the form

�ψi
p ∓ cos(θ/2)√

ρ
ψi

p = λpψi
p (68)

equal for all i = 1, . . . ,n. The sign “−” corresponds to
Q0 > 0, while the sign “+ “is taken in the opposite case.
Figure 2(a) shows the potential −U0(ρ,θ ), that is, in the case
of the sign “+” representing a potential well. In the opposite
case, it represents a “hill.” Therefore, a discrete spectrum
only exists if the sign Q0 < 0. In this case, it consists of a
single spectral point p = 1. The corresponding eigenfunctions
are equal to one another for all values of i (i = 1, . . . ,n):
ψi

∗ ≡ ψ∗ and �i
∗ ≡ �∗. The exact solution of the eigenproblem

has been presented elsewhere [39]. The eigenfunction ψ∗ is
shown in Fig. 2(b). The exact solution yields the eigenvalue
λ∗ = 2−1 × 2−1/3, which is approximately equal to 0.4.

The case Q
ij

αβ = Q0δαβδij takes place, e.g., in super-
conductors such as Sn, Pb, Fe [1], Nb, and Ta [50], and
superconductive compounds C6Ca [51], C60K3 [52].

2. Shear-dominated spontaneous strain

Some materials exhibit a shear spontaneous strain consid-
erably exceeding the spontaneous dilatation. For example,
ε(0)
xy is fourfold greater than ε(0)

αα in ZrO2 [80]. In order to
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FIG. 2. (a) Example of the potential Uij (ρx,ρy) = U (ρx,ρy)δij in
the elastically isotropic and purely dilatant case. (b) The eigenfunction
ψ∗(ρx,ρy) as the functions of the Cartesian coordinates ρx = ρ cos(θ )
and ρy = ρ sin(θ ). (i) indicates the crack-tip position.

educe its consequences, let us consider a shear-dominated
spontaneous strain in an elastically isotropic solid as our
next example. The potential Uij (ρ,θ ) [Eq. (54)] is de-
termined by Q

ij

αβ = (Q0δαβ + Q1δα1δβ2)δij and we assume
|Q1| � |Q0|, neglecting the spontaneous dilatation. Us-
ing (67), one finds Uij (ρ,θ ) = δijU1(ρ,θ ), where U1(ρ,θ ) =
sin(θ/2) cos(θ/2) cos(3θ/2)/

√
ρ [Fig. 3(a)]. The spectral

equation takes the form

�ψi
p ∓ sin(θ/2) cos(θ/2) cos(3θ/2)√

ρ
ψi

p = λpψi
p, (69)

the same for all i = 1,2, . . . ,n. Here again the signs “+”
and “−” correspond to Q1 > 0 and Q1 < 0. The solutions
for the eigenvalue, λ∗ ≈ 0.084, and the eigenfunction [shown
in Fig. 3(b)] have been obtained numerically. Details of the
numerical solution are given in Appendix A.

It should be noted that the eigenfunction ψ∗(ρx,ρy) is
asymmetric. It is located at one side of the crack tip and
is shifted a bit backwards [Fig. 3(b)]. The solution in
the case Q < 0 can be obtained from the one shown in

FIG. 3. Potential U1(ρx,ρy) (a) and the eigenfunction ψ∗(ρx,ρy)
(b) at the tip of the crack with the shear spontaneous strain at Q1 > 0.
(i) indicates the crack-tip position.

Fig. 3(b) by reflecting it in the plane y = 0. The striction
term Q

ij

αβ = (Q0δαβ + Q1δα1δβ2)δij takes place, for example,
during the structural phase transition in VO2 describing by
the four-component order parameter from the D14

4h phase into
the C5

2h and C3
2h ones. In the first case, the mixed invariant

[(η1)2 + (η2)2]εxy , while in the second one (η1)2εxy takes
place [43,65]. It also takes place in some langbeinites, such as
during the transition T4 → C2

2 in TlCd2(SO4)3 [81], boracites,
such as during the transition T5

d → C5
2v in Ni3B7O13J [67],

in some perovskites, such as CsPbCl3, and in many other
materials.

3. Concerted effect of elastic anisotropy, dilatation, and shear
spontaneous strain

In the two examples above, we only analyzed an elastically
isotropic solid. This has been done for the obvious reason of
its mathematical simplicity. The question, however, arises, as
to what effects might be introduced by an elastic anisotropy
combined with both diagonal and off-diagonal spontaneous
stresses? This case can only be addressed numerically, and it is,
therefore, reasonable to take some specific solid as an example,
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FIG. 4. The eigenfunctions for the case of the BaTiO3. (a) Shows
the function ψ1

∗ (ρx,ρy), while (b) represents ψ2
∗ (ρx,ρy). (i) indicates

the position of the crack tip.

and to use the numeric values of its elastic and striction
constants. For this purpose we have chosen BaTiO3. At
atmospheric pressure, BaTiO3 exhibits five phases: hexagonal,
cubic, tetragonal, orthorhombic, and rhombohedral [1]. At
atmospheric pressure, the transition from the mother cubic
phase to the tetragonal phase takes place at 394 K, to the
orthorhombic at 284 K, and to the rhombohedral at 200 K. The
phase diagram of BaTiO3 can be found in [82]. The phase
transitions between the cubic, tetragonal, orthorhombic, and
rhombohedral phases are described by a three-component or-
der parameter η = (η1,η2,η3) associated with the polarization
vector Px = η1, Py = η2, and Pz = η3.

We assume BaTiO3 to be in the cubic mother phase and
choose a (0,0,1) crystallographic plane as the (x,y) plane, with
the crack in the plane y = 0 along the positive Ox direction
with its tip at the point (0,0). The plane stress problem is
considered. Details of the numerical calculations are given
in Appendix B. They yield λ∗ ≈ 0.626 and the eigenfunction
ψ∗, only exhibiting the first two nonzero components: ψ∗ =
(ψ1

∗ ,ψ2
∗ ,0). They are shown in Fig. 4.

It should be noted that although we used here the numerical
data for BaTiO3 qualitatively, the same results should be
expected in the other cubic materials with the three-component
order parameter and the same structure of the striction terms,
such as PbTiO3, Pb(ZrxTi1−x)O3 [59], in ferromagnetics
Tb1−xHoxFe2 and Tb1−xDyxFe2 [58], and some others.

4. Eigenvalue problem: Concluding remarks

Above we presented a few cases in which the eigenproblem
indeed has a solution in the discrete spectrum. For the existence
of such a part of the spectrum, it is necessary that at least
one of the potentials Uij (ρ,θ ) [Eq. (54)] represent a potential
well rather than a hill. Apart from this necessary condition,
however, there is no approach to predict whether a discrete
spectrum exists or not. According to Eq. (50), the form factor
�(r,t) defines the order parameter distribution in the vicinity
of the tip of a propagating crack, while ψ(r), related to the
latter by Eq. (52), yields that for the vicinity of a motionless
crack tip.

One finds that in the elastically isotropic, dilatant case,
the eigenfunction is distributed in front of the crack tip,
and it is symmetric with respect to the crack plane y = 0
[Fig. 2(b)]. We would like to note that it is this case that has
been analyzed in detail within the “mechanical” approach,
pioneered by Budiansky and coauthors [83]. In particular,
their approach differs from ours by assuming the phase
boundary to be atomically sharp. They have discovered that
the dilatation-dominated zone imposes no direct screening
effect on the fracture toughness. The fracture toughness effect
has been later attributed to the metastable wake [84]. In our
approach, the phase boundary has a finite thickness and a direct
screening effect of the zone takes place. It is proportional to
the phase boundary thickness, however, and in the case of a
narrow interface its impact is small.

In contrast to this, in the shear-dominated, elastically
isotropic case, the eigenfunction ψ∗(ρx,ρy) is asymmetric. It is
located at one side of the crack tip and is shifted a bit backwards
[Fig. 3(b)], thus imposing a direct impact on one of the crack
surfaces. This gives rise to a secondary shear contribution in
the plane opening crack mode, and may cause a deflection of
the direction of the crack propagation.

The case of crystal BaTiO3 is the most complex one. It
should be kept in view that this material exhibits bulk phase
transitions of the first order, though they are rather close to
second-order ones. For this reason, Eq. (50) only roughly
describes the order parameter distribution. One should, there-
fore, consider this example as a qualitative rather than as a
quantitative prediction for BaTiO3.

With this in mind, let us note that in the configuration
considered, applying the plane stress, one finds that the
eigenfunction component ψ1

∗ is antisymmetric, while ψ2
∗ is

symmetric with respect to the crack plane (Fig. 4), while
ψ3

∗ = 0. One concludes that the Px polarization component
is antisymmetric, while Py is symmetric and Pz does not exist
in the zone of such a crack. It should be stressed that although
the Px distribution looks like two different domains, in fact
this is not the case. Division into domains occurs in order to
minimize the total free energy accounting for the contribution
of the electric field in addition to the elasticity. In contrast, in
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the present case, we did not account for the electric field at
all. The antisymmetricity is, therefore, a specific property of
the zone configuration caused by the peculiarities of the order
parameter and the stress distribution itself.

One can see that the distributions are shifted backwards
from the crack tip (Fig. 4). This means that the zone exerts
forces directly on the crack surfaces close to the tip, where
these forces have a strong impact on the stress intensity factor.
Again, the antisymmetricity of ψ1

∗ may cause these forces
to be applied with different magnitudes to the two different
surfaces, which can be controlled by the electric field applied
along Ox. As in the case of the shear-dominated process zone
discussed above, this can give rise to a number of nontrivial
effects. These are, however, outside the scope of this paper.

Let us note that the above results are only valid provided
the discrete spectrum of Eq. (53) does indeed exist. Here, only
the value of the dimensionless spectral number λ∗ depends on
the details of the system, such as the structure of the deviatoric
terms fixed by the dimensionless coefficients Bij (θ ) or the
elastic moduli C. One cannot predict the value of λ∗ without
explicitly solving Eq. (53).

If (i) all components Bij (θ ) < 0 and (ii) the solution corre-
sponding to the discrete spectrum exists, the zone emerges at
T∗ � T � Tc, that is above the line of the bulk phase transition
on the phase diagram. In the opposite case, Bij (θ ) > 0, the
zone emerges below rather than above the bulk transition
point Tc � T � T∗, as we have demonstrated elsewhere in
the one-component case [39]. Finally, if Bij (θ ) as a function
of the angle θ changes its sign, the zone may emerge both
above and below the bulk transition, at T∗1 � T � T∗2, where
T∗1 > Tc > T∗2. In this case, the spatial configurations of the
zones below and above the bulk transition line in general differ
from one another. Typically, values of λ∗ between 0.01 and 1
are to be expected.

B. Process zone emergence temperature

As is usually done in the Landau theory of phase tran-
sitions [35], assuming a = a0(T − Tc) and observing that
a∗ = a0�T∗, where �T∗ = T∗ − Tc, one finds

�T∗(KI ) = λ∗
a0g1/3(2π )2/3

(QKI )4/3 − κ2V 2

4ga0
. (70)

C. Critical velocity

The zone emerges at a � a∗, where the nontrivial solutions
branch off from the trivial one. Since at a < 0 the transition to
the bulk low-symmetry phase occurs, one concludes that the
process zone only exists within the interval 0 � a � a∗. Since
at a∗ = 0 the process zone vanishes, this condition, together
with Eq. (55), defines a critical velocity V∗:

V∗(KI ) =
(

4

π

)1/3
λ

1/2
∗ g1/3

κ
(QKI )2/3. (71)

The crack tip can only be dressed for V � V∗.

D. Dynamic phase diagram

Equation (71) by itself is incomplete since the velocity V

depends on the stress intensity factor KI according to the

equation of crack propagation put forward by Freund [85],
yielding

V = VR
(
1 − K2

IC/K2
I

)
, (72)

where VR is the Rayleigh velocity. Together with (70), this
enables one to find the condition that a bare crack tip becomes
unstable with respect to the zone emergence. Inserting (72)
into (70), one finds the zone emergence condition

�T

�T∗0
=
⎧⎨⎩

(
KI

KIC

)4/3
, KI � KIC(

KI

KIC

)4/3 − 1
ν2

(
1 − K2

IC

K2
I

)2
, KI > KIC

(73)

where �T = T − Tc, and the dimensionless parameter ν has
the form

ν = V∗(KIC)

VR
=
(

4

π

)1/3
λ

1/2
∗ g1/3

κVR
(QKIC)2/3. (74)

Equation (73) defines the dynamic phase diagram of the
process zone in terms of the stress intensity factor KI and
the temperature T . In the interval 0 � KI � 2KIC, it is shown
in Figs. 5(a)–5(c) in terms of the dimensionless coordinates
KI/KIC and �T/�T∗0. It includes a motionless crack at 0 �
KI � KIC and one at the beginning of its motion at KIC �
KI � 2KIC.

In the case of a propagating crack (KI > KIC), however,
it is more convenient to graph the ratio �T/�T∗0 against
1 − K2

IC/K2
I [Figs. 5(d)–5(f)]. The latter variable changes from

0 to 1 when KI varies from KIC to infinity. Figure 5 shows the
phase diagram both against KI/KIC [Figs. 5(a)–5(c)] and 1 −
K2

IC/K2
I [Figs. 5(d)–5(f)] for ν = 0.3, 0.5, and 0.9, exhibiting

different phase diagram configurations.
In region I there is no process zone at the crack tip, but

it exists in region II. The latter is shaded in Fig. 5. Let
us note that at any temperature there is a region II where
the process zone exists. However, in the case of small and
intermediate values of ν, the zone emergence line (73) exhibits
a maximum to the right of the point KI = KIC. It is indicated
by the letter “M” in Fig. 5 and the corresponding value of the
temperature is TM with a temperature shift �TM = TM − Tc.
If the temperature shift exceeds �TM, the zone can only show
up at crack speeds close to the Rayleigh velocity, as in the case
shown in Figs. 5(a) and 5(d). In the latter case, it takes place as
soon as the boundary of the region II b is reached. Achieving
such a velocity requires a high value of KI , which may appear
experimentally unattainable. In addition, in this case the zone
accompanies the crack moving with a high speed, which makes
its observation difficult. In such a situation, the zone can only
be observed for �T < �TM.

Note that in the case of small and intermediate values of ν,
Figs. 5(a) and 5(d) as well as 5(b) and 5(e) for �T < �TM,
there is the possibility, that with an increasing stress intensity
factor, the zone emerges and then vanishes. Finally, in the case
shown in Figs. 5(c) and 5(f), once the zone has formed, it never
vanishes with increasing KI .

Let us note that we only discussed the dressing condition
here. The undressing condition is more complex and will not
be discussed in this paper. We refer the reader to [38], where
it is studied in the case of a one-component order parameter.
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FIG. 5. Phase diagram of the process zone in the plane (KI ,T ) exhibits two regions: I with no zone at the tip and II where the crack is
dressed. (a)–(c) Show the phase diagram at 0 � KI � 2KIC with ν = 0.3, 0.5, and 0.9 correspondingly. The dotted-dashed line separates the
phase diagram part with the motionless crack (left) from that with the propagating one (right). (d)–(f) Show the phase diagram for a propagating
crack at KIC � KI < ∞, as a function of 1 − K2

IC/K2
I . M indicates the point of maximum of the zone emergence line (if any).

It should also be stressed that the above result is valid for
any zone at any crack, provided Eq. (53) has a solution in the
discrete spectrum. One concludes that the expressions for the
boundary of the zone emergence (73) and of the emergence
temperature (70) are universal.

E. Estimates

Let us estimate the zone emergence temperature �T∗ =
�T∗(KI ,V ) [Eq. (70)] at the tip of a motionless crack, V = 0.
The temperature �T∗0 = �T∗(KIC) describes the emergence
of a zone at the tip of a motionless crack at the threshold value
KI = KIC of the stress intensity factor. It only depends on the
material constants and, therefore, it itself can be regarded as a
material constant. One can represent �T∗0 as follows:

�T∗0 ∼ λ∗(kKIC)4/3r
−2/3
c0 . (75)

Here, we used the observation that up to a numerical factor the
striction tensor norm Q is related to the slope k = dTc(p)/dp
of the phase diagram line Tc = Tc(p) by Q ∼ a0k, where p is
the hydrostatic pressure. Further, rc0 = (g/a0)1/2 is the order
parameter correlation radius 1 K away from the bulk transition
line.

The form (75) is convenient for making estimates. The
lines of the phase transitions on the phase diagrams of
solids may possess any slope, typical values being in the
range k ∼ (0.1–10) × 10−8 cm3 K / erg [1]. Most inorganic
solids have a correlation radius rc0 ∼ 1 nm K1/2 [86] and
KIC ∼ 108 erg cm−5/2 [87]. Assuming λ∗ ∼ 0.1 to 1, one
finds the estimate |�T∗(KIC)| ∼ 10 to 102 K.

Observing that the entire phase diagram of an inorganic
solid lies between 0 and ∼1000 K, the above estimate leads
to our most striking conclusion: the transformational process
zone accompanies, with a high probability, a brittle fracture of

an inorganic solid, existing in a considerable part of the solid
phase diagram. As we have seen, the form of the dynamic
phase diagram (Fig. 5) critically depends on the value of the
dimensionless parameter ν. Let us give numerical estimates of
this parameter for a few materials.

For BaTiO3, the values of the fracture toughness, de-
pending on the porosity, vary from KIC ≈ 0.56 × 108 to
2.3 × 108 erg cm−5/2 [88], Q ≈ 1.47 × 10−12 cm3 / erg [59],
κ ∼ 10−14 s [89], g ∼ 10−16 cm2 [90], and the Rayleigh
velocity as VR ≈ 0.9(E/ρ)1/2 ≈ 3.7 × 105 cm / s, one finds
ν ≈ 0.5 to 1.2 depending on the value of KIC.

An analogous estimate for PbTiO3 with KIC ≈
1.38 × 108 erg cm−5/2[91], κ ∼ 10−14 s g ∼ 10−16 cm2 [90],
Q ≈ 1.27 × 10−12 cm3 / erg [59], and with VR =
0.9(E/ρ)1/2 ≈ 3.6 × 105 cm / s yields ν ≈ 0.8.

To estimate the zone size Rz, let us first note that it does
not coincide with the characteristic scale R [Eq. (51)]. Indeed,
R yields the thickness of the phase interface, while the zones
obtained above exhibit sizes 30 to 40 times greater. Let us,
therefore, take the estimate Rz ∼ 10R:

Rz ∼ 10

(
r2

c0

kKI

)2/3

. (76)

At the threshold point KI = KIC, one finds the size of the new-
born zone Rzc ∼ 1 to 10 nm. Figure 6 shows the dependence
of the zone size on the stress intensity factor 0 � KI � KIC,
assuming Rzc(KIC) = 1 nm.

F. On the difference between the “mechanical” and the
Ginzburg-Landau approaches

The approach developed here regards the order parameter
η as a primary characteristic of the process zone, while
the spontaneous strain field is considered as a secondary
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FIG. 6. Dependence of the process zone size on the stress
intensity factor. Parameters of the formula (76) correspond to the
estimates given above.

characteristic. The bifurcation is associated with a certain
energy gain, as we have seen in Eq. (66). It can only take
place if this gain is high enough to overcome the resistance
of the solid caused by the corresponding growth of its elastic
energy. This conclusion is borne out by the observation of
zones (e.g., [6]) exhibiting lattice structures different from
that of the strained mother phase, but requiring a complex
rearrangement of the elementary cell [92].

At a point lying far away from the crack tip, the order
parameter is zero. As soon as the zone at the crack tip
approaches this point, the order parameter gradually grows
from zero to some value. Such an internal zone dynamics has
a considerable impact on the crack’s motion [38].

One should, however, note that some materials exhibit
pronounced first-order transitions. That is, at the transition
point, the order parameter makes a jump to a value close to
that of its saturation and does not significantly vary further.
Although zones in these materials still can be characterized
by the order parameter, the approach of this paper has to be
significantly modified for these cases. It is clear, however,
that such an almost saturated order parameter exhibits a weak
internal dynamics, while the zone is mainly described by the
configuration and dynamics of its boundary.

In contrast to our approach, the “mechanical” one ignores
any degrees of freedom except for the elastic ones and
characterizes the zone by the phase boundary configuration [3].
One concludes that it is “designed” to describe a zone
characterized by a pronounced first-order phase transition.

VI. SUMMARY

We addressed the emergence of a transformational process
zone at a crack tip. We have argued that the zone should be
described by an n-component order parameter η, responsible
for the differences in symmetry and structure between the
process zone and the bulk of the solid. It interacts with the
strain field and its dynamics obeys a system of generalized,
time-dependent Ginzburg-Landau equations, while the strain
is subjected to the mechanical equations of motion.

By eliminating the elastic variables, we derived a system
of n equations for the components of the order parameter,
describing its dynamics in response to a solid loading. This
derivation has been kept in the most general form and is

applicable to any solid whose process zone is described by an
n-component order parameter. We, further, reduced this system
to one describing a traveling inhomogeneity in the solid, such
as a propagating crack, dislocation, a sound or shock wave, etc.

We, finally, specialized to a steadily, rectilinearly prop-
agating crack. In this latter case, we analyzed a point of
bifurcation of the equations and derived the ramification
equations for the amplitudes of the emerging solutions,
enabling one to describe the structure of the process zone
below the bifurcation point. We, thus, demonstrated that the
formation of a transformational process zone at the tip of a
crack in a brittle solid takes place by way of a bifurcation.
We also demonstrated that it takes place, provided the spectral
equation (53) has a solution in the discrete spectrum. Assuming
that this condition holds, we described the bifurcation in the
most general case.

In particular, we have shown that the formation of a
transformation process zone exhibits universal features: the
temperature of the zone emergence �T∗ = T∗ − Tc universally
scales with KI as �T∗ ∼ K

4/3
I , and that the zone vanishes upon

achieving a critical velocity V∗ ∼ K
2/3
I . We, further, built a

universal dynamic phase diagram describing the emergence
and vanishing of the zone at the tip of a propagating crack.
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APPENDIX A: NUMERICAL SOLUTION OF THE
EIGENPROBLEM IN THE SHEAR-DOMINATED CASE

The spectral equation (69) can be solved numerically,
employing the following artificial approach. On the basis of
bifurcation theory, one concludes that a nonlinear equation

�ψ =
[
λ ± sin(θ/2) cos(θ/2) cos(3θ/2)√

ρ

]
ψ + ψ3 (A1)

of which the linear part coincides with (69) exhibits a bifurca-
tion at the point λ = λ∗. On the basis of the relation (50), one
further concludes that its normalized, nontrivial solution taken
close to the bifurcation point represents the eigenfunction ψ∗.

Technically, however, this problem is easy to solve consid-
ering a pseudodynamic equation

∂ψ

∂τ
= �ψ −

[
λ ± sin(θ/2) cos(θ/2) cos(3θ/2)√

ρ

]
ψ − ψ3

(A2)
instead of the stationary one (A1). Here, τ is a pseudotime,
the artificial time introduced for the purpose of the numerical
method. The dependent variable ψ = ψλ(τ,ρ,θ ) is now
considered as a function of ρ, θ , the pseudotime τ , and the
parameter λ. The calculation employs the fact that as τ → ∞,
Eq. (A2) converges to a fixed point. The latter represents
the solution of the stationary equation (A1). The advantage
of this approach is that the numerical method of solution
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FIG. 7. Seach for the bifurcation point λ∗ of the equation (A1).
Dots show the results of the numeric simulation, while the solid line
represents the fitting.

of (A2) is more stable than that of the linear equation (69)
and the nonlinear stationary equation (A1). There is, however,
a penalty, since to achieve an acceptable precision one must
pursue the numerical method up to high values of τ (see
below).

The problem can be solved using the standard NDSolve rou-
tine of Mathematica 11.0 [93] employing “MethodOfLines”
as the method. The problem was solved in Cartesian, rather
than in cylindrical coordinates, since it is convenient in
the “MethodOfLines” case, enabling one to apply periodic
boundary conditions. A square considerably exceeding the
characteristic size of the solution was chosen as the domain.
The value of ψ on the domain boundary was taken equal to
zero.

In order to look for the spectral point λ∗, the solution was
normalized with respect to the function obtained at some
arbitrarily chosen value of λ = 0.01 far enough below the
bifurcation point: j (λ) = (

∫
ψ2

λ d/
∫

ψ2
0.01 d)

1/2
, where

d = dρxdρy . The integrals were evaluated with the help of
the standard “NIntegrate” routine of Mathematica 11.0 with
a local adaptive method, employing an even-odd subdivision
strategy. The behavior of j (λ) is shown in Fig. 7.

The numerical results were fitted by the function

j (λ) =
{

0, λ > λ∗

k
√

λ∗ − λ, λ � λ∗
(A3)

where k and λ∗ are fitting parameters. The fitting yields the
spectral value λ∗ ≈ 0.0833.

Then, the eigenfunction was taken at λ0 ≈ 0.082,
which is 0.001 below the bifurcation point, and nor-
malized: ψ∗(ρx,ρy) ≈ ψλ0 (ρx,ρy)/(

∫
ψ2

λ0
d)

1/2
, such that∫

ψ2
∗ (ρx,ρy)d = 1. It is shown in Fig. 3(b). For the con-

vergence of the solution, the pseudotime value τmax = 10 000
was found to be satisfactory at λ0 = 0.082. We describe the
convergence control in more details at the end of Appendix B.

APPENDIX B: NUMERICAL SOLUTION OF THE
EIGENPROBLEM IN THE BaTiO3 CASE

In its mother phase, BaTiO3 is a cubic crystal. Its elastic
and striction constants in the mother phase are listed in Table I.

TABLE I. Material constants of BaTiO3 [59].

C1111 C1122, C2211 C1212

1012 erg cm−3 1.78 0.96 1.22

Q11
11 Q22

11, Q11
22 Q12

12

10−12 erg−1 cm3 1.22 −0.5 0.656

Let us take the (x,y) plane to coincide with the (0,0,1)
crystallographic plane and assume that the crack lies in
the plane y = 0. In the anisotropic case, the solution of
the elastic problem requires to find the roots s1 and s2 of
the characteristic Lekhnitskii equation [94]. Introducing k =
(C2

1111 − C2
1122)/2C1111C1212 and using the material constants

from Table I one finds k ≈ 0.517, and the Lekhnitskii equation
takes the form

s4 + 2(1 + k)s2 + 1 = 0, (B1)

yielding two nonconjugate imaginary solutions: s1 ≈ 0.6i and
s2 ≈ 1.6i. The solution for the stress tensor in terms of the
roots s1 and s2 of the Lekhnitskii equation is given in [95].
With its use, one finds the components of ϕαβ(θ ) [Eq. (41)]:

ϕ11 ≈ Re

[
2.72√

cos θ + 1.6i sin θ
− 1.02√

cos θ + 0.6i sin θ

]
,

(B2)

ϕ22 ≈ Re

[
2.84√

cos θ + 0.6i sin θ
− 1.06√

cos θ + 1.6i sin θ

]
,

ϕ12 ≈ Re

[
1.7i√

cos θ + 1.6i sin θ
− 1.7i√

cos θ + 0.6i sin θ

]
,

and from this one finds the potentials Uij (ρx,ρy):

U 11 ≈ Re

⎡⎣2.85
√

ρx − 0.6iρy√
ρ2

x + 0.36ρ2
y

− 3.97
√

ρx − 1.6iρy√
ρ2

x + 2.56ρ2
y

⎤⎦,

(B3)

U 12 ≈ Re

⎡⎣1.25i
√

ρx − 0.6iρy√
ρ2

x + 0.36ρ2
y

− 1.25i
√

ρx − 1.6iρy√
ρ2

x + 2.56ρ2
y

⎤⎦,

U 21 ≈ Re

⎡⎣1.25i
√

ρx − 0.6iρy√
ρ2

x + 0.36ρ2
y

− 1.25i
√

ρx − 1.6iρy√
ρ2

x + 2.56ρ2
y

⎤⎦,

U 22 ≈ Re

⎡⎣2.84
√

ρx − 1.6iρy√
ρ2

x + 2.56ρ2
y

− 4.09
√

ρx − 0.6iρy√
ρ2

x + 0.36ρ2
y

⎤⎦,

U 33 ≈ Re

⎡⎣0.927
√

ρx − 1.6iρy√
ρ2

x + 2.56ρ2
y

+ 1.01
√

ρx − 0.6iρy√
ρ2

x + 0.36ρ2
y

⎤⎦.

The potential U 33 represents a potential hill, which results in
the vanishing of the third component of the vector ψ .
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FIG. 8. Search for the bifurcation point λ∗ of Eq. (B4). Dots and
squares show the results of the numeric simulation of the integrals
j 1 and j 2 correspondingly, while the dashed and solid lines represent
their fitting.

Next, the same approach as the one described in Appendix A
was employed. The system of equations has the form

∂ψ1

∂τ
= �ψ1−[λ+U 11(ρx,ρy)]ψ1−U 12(ρx,ρy)ψ2−(ψ1)3,

∂ψ2

∂τ
= �ψ2−[λ+U 21(ρx,ρy)]ψ1−U 22(ρx,ρy)ψ2−(ψ2)3,

∂ψ3

∂τ
= �ψ3−[λ+U 33(ρx,ρy)]ψ3−(ψ3)3. (B4)

This was solved in the same fashion as described in
Appendix A. In this case, there are two functions ψi

λ(τ,ρ,θ )
(i = 1,2) depending on ρ, θ , τ , and λ, and we introduce
two integrals j 1(λ) and j 2(λ) defined as follows: j i(λ) =
[
∫

(ψi
λ)2d/

∫
(ψi

0.5)2d]
1/2

, where d = dρxdρy . Their be-
havior is shown in Fig. 8, yielding the eigenvalue λ∗ ≈ 0.6264.
The eigenfunctions have been calculated at λ0 = 0.6263 and
normalized: ψi

∗(ρx,ρy) ≈ ψi
λ0

(ρx,ρy)/[
∫

(ψi
λ0

)2d]
1/2

.

FIG. 9. Convergence control of the numerical process shows the
dependence of the integrals j i(λ0) on the dimensionless simulation
time τmax. Disks show the behavior of j 1(λ0) and squares that of
j 2(λ0). The inset demonstrates the behavior of j 1(λ0) in more fine
details within the interval 2500 � τmax � 7000.

The control of the convergence of the solution is
very important in an applied method. The reason is that
equations like (A2) or (B4) have a form analogous to
the Landau-Khalatnikov equation [96] with the relaxation
time τc ∼ 1/|λ − λ∗|, diverging as λ → λ∗. A reliable re-
sult can only be achieved if the pseudotime of the inte-
gration τmax is a considerable multiple of the relaxation
time τc.

The control of the convergence was accomplished by
observing the saturation of the integrals j i(λ0) regarded as
functions of the maximum time τmax. The latter is shown in
Fig. 9. The inset shows the finer details of the convergence
of j 1(λ0) within the interval 2500 � τmax � 7000, revealing
that the behavior of the system at τmax < 5000 still exhibits
noticeable deviations from the fixed point, and for safety we
have chosen τmax = 10 000.
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