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Thermodynamic dislocation theory of high-temperature deformation in aluminum and steel
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The statistical-thermodynamic dislocation theory developed in previous papers is used here in an analysis of
high-temperature deformation of aluminum and steel. Using physics-based parameters that we expect theoretically
to be independent of strain rate and temperature, we are able to fit experimental stress-strain curves for three
different strain rates and three different temperatures for each of these two materials. Our theoretical curves
include yielding transitions at zero strain in agreement with experiment. We find that thermal softening effects
are important even at the lowest temperatures and smallest strain rates.
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I. INTRODUCTION

Our purpose here is to explore use of the thermodynamic
dislocation theory [1–5] in modeling deformations of materials
undergoing thermomechanical processing. We look at two sets
of high-temperature compression tests, one by Shi et al. for
aluminum [6] and another by Abbod et al. for a steel alloy
[7]. By making stress-strain measurements over a range of
substantially different temperatures and strain rates and fitting
their results to conventional phenomenological formulas, these
investigators provided guidance for practical applications in
materials processing. Our question is whether we can do better
by using a realistic physics-based theory. We believe that we
can do so and that, in addition, we can obtain basic information
about these materials in this way.

Our ability to interpret data of the kind published in [6,7]
is a result of the fact that, in its latest versions [4,5], the
thermodynamic dislocation theory includes a description of
yielding transitions. Earlier versions of the theory were based
on data for copper as shown, for example, in Ref. [8] or [9].
There, the onset of hardening occurs at a negligibly small stress
corresponding to a negligibly small density of dislocations, so
one of the central parameters in the theory can be obtained
directly from experiment. Most stress-strain curves in the
literature such as the ones to be studied here exhibit nonzero
yield stresses near effectively zero strain. With the present
theory and with experimental data of the kind to be used here,
these situations now can be studied systematically. As will
be seen, however, the fact that these experiments were not
carried out with a physics-based theory in mind makes their
interpretation problematic in some places.

The thermodynamic dislocation theory is based on two
unconventional ideas. The first of these is that, under nonequi-
librium conditions, the atomically slow configurational de-
grees of freedom of deforming solids are characterized
by an effective disorder temperature that differs from the
ordinary thermal temperature. Both of these temperatures are
thermodynamically well defined variables whose equations of
motion determine the irreversible behaviors of these systems.
The second principal idea is that entanglement of disloca-
tions is the overwhelmingly dominant cause of resistance
to deformation in polycrystalline materials. These two ideas

have led to successfully predictive theories of strain hardening
[1,2], steady-state stresses over exceedingly wide ranges of
strain rates [1], adiabatic shear banding [3,4], and Hall-Petch
effects [5].

We start in Sec. II with a brief annotated summary of the
equations of motion to be used here. Our focus is on the
physical significance of the various parameters that occur in
them. We discuss which of these parameters are expected to
be material-specific constants, independent of temperature and
strain rate, and thus to be key ingredients of the theory. Shi
et al. [6] and Abbod et al. [7] each provide nine different
stress-strain curves, for three temperatures and three strain
rates, for aluminum and steel, respectively. As will be seen,
this is enough data for us to use in constructing theories, but
these data sets are not immune to experimental uncertainties.

In Sec. III A we show the data for pure aluminum [6],
describe our methods for using that data to determine the
material-specific parameters, and describe our theoretical
interpretation of those measurements. These analyses are
extended to the steel data [7] in Sec. III B. We conclude in
Sec. IV with some remarks about the significance of these
calculations.

II. EQUATIONS OF MOTION

Strictly speaking, the thermodynamic dislocation theory
should be written in three-dimensional tensorial notation in
order to use it in analyses of plane-strain compression tests.
There is no fundamental reason why this cannot be done.
For example, Rycroft and co-workers [10,11] used a simple
tensorial version of the shear-transformation-zone theory [12]
in their moving-boundary analysis of fracture toughness in
metallic glasses. Moreover, Fig. 1 in [13] shows a diagram
of a plane-strain sample like those used in [6]. Here a
thin rectangular block under uniaxial compression is shown
bulging at its sides and thinning at its center in addition
to undergoing pure shear. These deformations if actually as
large as shown would slightly affect our interpretation of the
reported stress-strain data. However, a detailed analysis of
those deformations would be well beyond the scope and needs
of this project.
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FIG. 1. Stress-strain curves for aluminum at the small strain rate
ε̇ = 0.25 s−1, for temperatures 300 ◦C, 400 ◦C, and 500 ◦C shown
from top to bottom. The experimental points are taken from Shi
et al. [6].

Suppose, for simplicity, that the experimental sample is
a two-dimensional rectangular block in the xy plane, being
compressed between two rigid plates parallel to the x axis.
The compressive stress in the y direction is σyy ≡ −σ . If the
plates are well lubricated so that the friction between the block
and the plates is negligible, then σxx ≈ 0. For this uniaxial
geometry, the stress tensor is naturally expressed in the x ′y ′
frame of reference oriented at 45◦ to the xy axes. In that
frame, the shear stress is σx ′y ′ = σy ′x ′ = −σ/2. If the material
is incompressible, then the total elastic plus plastic strain rate is
ε̇yy = −ε̇xx ≡ −ε̇. In the rotated frame, the shear rate is ε̇x ′y ′ =
ε̇y ′x ′ = −ε̇. As usual, we assume that the elastic and plastic
strain rates are simply additive, e.g., ε̇x ′y ′ = ε̇el

x ′y ′ + ε̇
pl

x ′y ′ . Then,
by convention, we write σ̇x ′y ′ = 2με̇el

x ′y ′ , where μ is the shear
modulus and the factor 2 accounts for the distinction between
“true” and “engineering” strain. Putting these pieces together,
we write σ̇ = αμ(ε̇ − ε̇pl), where α � 4 is a geometric factor
and we have dropped the directional subscripts. In this way we
have recovered the one-dimensional notation used in earlier
papers in this series and in much of the literature in this field.

Now assume that this spatially uniform system is driven
at a constant shear rate ε̇ ≡ Q/τ0, where τ0 ≡ 10−12 s is a
characteristic microscopic time scale. This motion is driven
by the time-dependent shear stress σ . Because the system
is undergoing steady-state shear, we can replace the time t

by the total strain ε so that τ0∂/∂t → Q∂/∂ε. Then define
the dimensionless plastic strain rate as q(ε) ≡ τ0ε̇

pl(ε). The
equation of motion for the stress becomes

dσ

dε
= αμ

[
1 − q(ε)

Q

]
. (2.1)

The internal state variables that describe this system are
the areal density of dislocations ρ ≡ ρ̃/b2 (where b is the
length of the Burgers vector), the effective temperature χ̃ (in
units of a characteristic dislocation energy, say, eD), and the
ordinary temperature θ̃ (in units of the pinning temperature
TP = eP /kB , where eP is the pinning energy defined below).
Note that b/

√
ρ̃ is the average distance between dislocations.

All three of these dimensionless quantities, ρ̃, χ̃ , and θ̃ , are
functions of ε.

The central dislocation-specific ingredient of this analysis
is the thermally activated depinning formula for the dimen-
sionless plastic strain rate q as a function of a non-negative
stress σ :

q(ε) =
√

ρ̃ exp

[
− 1

θ̃
e−σ/σT (ρ̃)

]
. (2.2)

This is an Orowan relation of the form q = ρbvτ0 in which the
speed of the dislocations v is given by the distance between
them multiplied by the rate at which they are depinned from
each other. That rate is approximated here by the activation
term in Eq. (2.2), in which the energy barrier eP (implicit in the
scaling of θ̃ ) is reduced by the stress-dependent factor e−σ/σT ,
where σT (ρ̃) = μT

√
ρ̃ is the Taylor stress and μT = rμ. The

dimensionless number r is the ratio of a depinning length
to the length of the Burgers vector, for convenience divided
here by the geometrical factor α associated with the stress σ .
Thus, r should be approximately independent of temperature
and strain rate. Note that only the magnitude of σ appears in
this expression for a local time scale. Directional information
would be included in tensorial equations of motion for stress
fields and flow patterns, but not in this expression for a scalar
time scale.

The pinning energy eP is large, of the order of electron volts,
so θ̃ is very small. As a result, q(ε) is an extremely rapidly
varying function of σ and θ̃ . This strongly nonlinear behavior is
the key to understanding yielding transitions and shear banding
as well as many other important features of polycrystalline
plasticity. For example, the extremely slow variation of the
steady-state stress as a function of strain rate discussed in
[1] is the converse of the extremely rapid variation of q as
a function of σ in Eq. (2.2). In what follows, we will see
that this temperature sensitivity of the strain rate is the key
to understanding important aspects of the thermomechanical
behavior.

The equation of motion for the scaled dislocation density ρ̃

describes energy flow. It says that some fraction of the power
delivered to the system by external driving is converted into
the energy of dislocations and that that energy is dissipated
according to a detailed-balance analysis involving the effective
temperature χ̃ . This equation is

dρ̃

dε
= κ1

σq

ν(θ̃ ,ρ̃,Q)2μT Q

[
1 − ρ̃

ρ̃ss(χ̃)

]
, (2.3)

where ρ̃ss(χ̃) = e−1/χ̃ is the steady-state value of ρ̃ at
given χ̃ . The coefficient κ1 is an energy conversion factor
that, according to arguments presented in [1,4], should be
independent of both strain rate and temperature. The other
quantity that appears in the prefactor in Eq. (2.3) is

ν(θ̃ ,ρ̃,Q) ≡ ln

(
1

θ̃

)
− ln

[
ln

(√
ρ̃

Q

)]
. (2.4)

The equation of motion for the scaled effective temperature
χ̃ is a statement of the first law of thermodynamics for the
configurational subsystem:

dχ̃

dε
= κ2

σq

μT Q

(
1 − χ̃

χ̃0

)
. (2.5)
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Here χ̃0 is the steady-state value of χ̃ for strain rates
appreciably smaller than inverse atomic relaxation times,
i.e., much smaller than τ−1

0 . The dimensionless factor κ2 is
inversely proportional to the effective specific heat ceff . Unlike
κ1, there is no reason to believe that κ2 is a rate-independent
constant. In [5], κ2 for copper was found to decrease from 17
to 12 when the strain rate increased by a factor of 106. Since
we will consider changes in strain rate of at most a factor of
102 here, we will assume that κ2 is a constant.

The equation of motion for the scaled ordinary temperature
θ̃ is

dθ̃

dε
= K(θ̃)

σq

Q
− K2

Q
(θ̃ − θ̃0). (2.6)

Here K(θ̃) = β/TP cpρd is a thermal energy conversion factor,
with cp the thermal heat capacity per unit mass, ρd the mass
density, and 0 < β < 1 a dimensionless constant known as
the Taylor-Quinney factor. As indicated here, K(θ̃) will be
found to be nontrivially temperature dependent for both of
the materials discussed in Secs. III A and III B. In addition,
K2 is a thermal transport coefficient that controls how rapidly
the system relaxes toward the ambient temperature T0, that is,
θ̃ → θ̃0 = T0/TP . This coefficient turns out to be too small
to be measured for the situations reported here, but that
will not always be the case. In principle, after long enough
times of steady deformation, systems must reach steady-state
temperatures determined by the balance between heating and
cooling terms in Eq. (2.6).

III. DATA ANALYSIS

A. Aluminum

The experimental results of Shi et al. [6] for aluminum,
along with our theoretical results based on the equations of
motion in Sec. II, are shown in Figs. 1–3. These figures are
presented in order of increasing strain rate, ε̇ = 0.25, 2.5, and
25 s−1. Within each figure are curves for the three different
temperatures 300 ◦C, 400 ◦C, and 500 ◦C (blue circles, black
triangles, and red squares, respectively) shown from top to
bottom.

In order to compute the theoretical curves in these figures,
we need values for five system-specific parameters: the
activation temperature TP , the stress ratio r , the steady-state
scaled effective temperature χ̃0, and the two dimensionless
conversion factors κ1 and κ2. We also need initial values of
the scaled dislocation density ρ̃(ε = 0) ≡ ρ̃i and the effective
temperature χ̃(ε = 0) ≡ χ̃i , which are determined by sample
preparation, presumably the same for all samples, but possibly
a source of experimental uncertainty. In addition, we need a
formula for the thermal conversion factor K(θ̃) in Eq. (2.6),
which, for aluminum, we can take to have the linear form

K(θ̃) = K0[1 + c1TP (θ̃ − θ̃1)], (3.1)

where TP θ̃1 is a reference temperature, chosen here to be
573 K. The numbers K0 and c1 remain to be determined
from the data. Finally, we need a formula for the temperature-
dependent shear modulus μ(T ), which we take from [14,15]

to be

μ(θ̃ ) = μ1 −
[

D

exp(T1/TP θ̃ ) − 1

]
, (3.2)

where μ1 = 28.8 GPa, D = 3.44 GPa, and T1 = 215 K. (A
simple linear approximation to this formula analogous to
Eq. (3.1) would be completely adequate for our purposes.)

In earlier papers starting with [1], we were able to begin
evaluating the parameters by observing steady-state stresses
σss at just a few strain rates Q and ambient temperatures T0 =
TP θ̃0 and inverting Eq. (2.2) to find

σss = rμ
√

ρ̃ssν(θ̃0,ρ̃ss ,Q), ρ̃ss = e−1/χ̃0 . (3.3)

Knowing σss , T0, and Q for three stress-strain curves, we
could solve this equation for TP , r , and χ̃0 and check for
consistency by looking at other steady-state situations. With
that information, it was relatively easy to evaluate κ1 and κ2 by
directly fitting the full stress-strain curves. This strategy does
not work here because the thermal effects are highly nontrivial.
Examination of the experimental data shown in the figures
indicates that almost all of these samples are undergoing
thermal softening at large strains; the stresses are decreasing
and the temperatures must be increasing. Even the curves that
appear to have reached some kind of steady state have not in
fact done so at their nominal ambient temperatures.

To counter this difficulty, we have resorted to large-scale
least-squares analyses. (A preliminary discussion of this
procedure has been presented by two of us, Le and Tran
[16].) That is, we have computed the sum of the squares of
the differences between our theoretical stress-strain curves
and the experimental points and have minimized this sum
in the space of the unknown parameters. We have explored
options of omitting some of the data, fitting the theory to
just those portions of the data that seemed most reliable. For
example, we have looked to see what happens if we omit the
yield points in this calculation on the assumption that they are
most sensitive to variations in sample preparation. Our results
appear to be robust. We find TP = 2.40 × 104 K, r = 0.040,
χ0 = 0.249, κ1 = 0.97, κ2 = 12, ρ̃i = 0.0035, χ̃i = 0.224,
K0 = 7.0 × 10−6, c1 = 0.0257, and K2 = 0. So far as we can
tell, our values of K0 and c1 are consistent with values of
the Taylor-Quinney factor β of the order of unity or less. For
simplicity, we have set α = 1 in Eq. (2.1) because the slopes
of the initial elastic parts of the stress-strain curves are too
large to be meaningful here. Note, however, that with α ∼= 4
and r = 0.04, the ratio of the depinning length to the length
of the Burgers vector becomes 0.16, which seems physically
reasonable.

The agreement between theory and experiment seems to
us to be well within the bounds of experimental uncertainties.
Even the initial yielding transitions appear to be described
accurately by this dynamical theory. There are only a few
visible discrepancies. For example, the experimental data in
Fig. 1 for ε̇ = 0.25 s−1 and T = 500 ◦C exhibit a small abrupt
increase in the stress at about ε ∼= 0.8, which may indicate
some kind of instrumental problem. Also, the stresses for T =
400 ◦C in that figure are slightly below those predicted by the
theory and there is a smaller discrepancy of the opposite sign
on the curve at ε̇ = 2.5 s−1 and T = 300 ◦C in Fig. 2. Nothing
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FIG. 2. Stress-strain curves for aluminum at the strain rate ε̇ =
2.5 s−1, for temperatures 300 ◦C, 400 ◦C, and 500 ◦C shown from top
to bottom. The experimental points are taken from Shi et al. [6].

about these results leads us to believe that there are relevant
physical ingredients missing in the theory.

To complete our analysis of the Shi et al. data for pure
aluminum, we show in Fig. 4 our computed temperatures as
functions of strain for each of the nine stress-strain curves
shown in the preceding figures. Here we may be finding an
interesting discrepancy between our interpretation and that of
Shi et al. Those authors say that “[in] the high strain rate
tests, particularly at low temperatures, temperature rises of
up to 30 K were observed at the start of steady state.” We
do see temperature rises of roughly that magnitude. However,
as stated above, we do not think that these tests have reached
steady state, especially not the one at the highest strain rate and
lowest temperature shown at the top of Fig. 3, which clearly
is still softening at large strain. Also, as shown in Fig. 4, we
predict that the larger temperature increases occur at the higher
ambient temperatures because our data analysis tells us that
the thermal conversion factor K(θ̃) in Eq. (2.6) is larger there.
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FIG. 3. Stress-strain curves for aluminum at the highest strain
rate ε̇ = 25 s−1, for temperatures 300 ◦C, 400 ◦C, and 500 ◦C shown
from top to bottom. The experimental points are taken from Shi
et al. [6].
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FIG. 4. Temperature as a function of strain for each of the nine

stress-strain tests shown for aluminum in the preceding figures. The
initial ambient temperatures are 300 ◦C, 400 ◦C, and 500 ◦C (blue,
black, and red) as shown on the left axis. Each group of three curves
is for strain rates of ε̇ = 0.25, 2.5, and 25 s−1, from bottom to top.

Shi et al. [6] also show stress-strain curves for aluminum
alloys Al–1% Mn and Al–1% Mg. We have tried to analyze
these data sets using the same techniques that we used for
pure aluminum but have concluded that this is not a useful
exercise. The main problem is that the experimental results
show anomalously increasing stresses at large strains, which
Shi et al. attribute to breakdowns of the lubrication layers
between the samples and their instrumental supports. We have
tried to guess which portions of the experimental curves might
be unaffected by the lubrication problem, but we have not
succeeded in obtaining plausible self-consistent results.

B. Steel

As a second example of thermal processing data, we turn
to the Fe–30% Ni austenitic alloy studied by Abbod et al. [7].
According to those authors, this alloy is a good model material
for studying hot deformation of the austenitic phases of carbon-
manganese steels. For simplicity, we refer to it henceforth
simply as “steel.” We have digitized the experimental data from
their Fig. 1 and show it here in Figs. 5–7. In analogy to our
presentation of the aluminum data in Sec. III A, these figures
are shown in order of increasing strain rate, ε̇ = 0.1, 1.0, and
10 s−1. Within each figure are curves for the three different
temperatures 850 ◦C, 950 ◦C, and 1050 ◦C (blue circles, black
triangles, and red squares, respectively) shown from top to
bottom.

In analyzing these data, we have used the same least-
squares method that we used for aluminum. We find TP =
4.59 × 104 K, r = 0.122, χ0 = 0.284, κ1 = 0.958, κ2 = 5.43,
ρ̃i = 0.0023, χ̃i = 0.215, and K2 = 0. The one interesting
difference is that a slightly nonlinear thermal conversion factor
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FIG. 5. Stress-strain curves for steel at the small strain rate
ε̇ = 0.1 s−1, for temperatures 850 ◦C, 950 ◦C, and 1050 ◦C shown
from top to bottom. The experimental points are taken from Abbod
et al. [7].

of the form

K(θ̃) = K∗e−T ∗/TP θ̃ (3.4)

seems to produce a better fit to the data than the linear form
used previously. We find K∗ = 0.008 79 and T ∗ = 8390 K.
The activated form of this equation is suggestive but probably
not meaningful; note that we use it only over a narrow range
of temperatures. We also use the following approximation for
the shear modulus (derived from data given in [17]):

μ(θ̃ ) = 85 970 − 33.6TP θ̃ + 0.0009(TP θ̃ )2. (3.5)

Once again, the results of this analysis seem to be within
the bounds of experimental uncertainties. The one visible
discrepancy is for the top curve in Fig. 5, for ε̇ = 10 s−1 and
ambient temperature 850 ◦C, where the experimental data drop
below our prediction at a relatively small strain.

The potentially most serious discrepancy pertains to the
strain dependence of our predicted temperatures, shown here
in Fig. 8 in analogy to the temperatures for aluminum shown
in Fig. 4. Supposedly, the same temperatures are shown by

0.0 0.2 0.4 0.6 0.8
0

50

100

150

200

250

300

Strain Ε

St
re
ss
Σ
M
Pa

FIG. 6. Stress-strain curves for steel at the strain rate ε̇ = 1.0 s−1,
for temperatures 850 ◦C, 950 ◦C, and 1050 ◦C shown from top to
bottom. The experimental points are taken from Abbod et al. [7].
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FIG. 7. Stress-strain curves for steel at the highest strain rate
ε̇ = 10 s−1, for temperatures 850 ◦C, 950 ◦C, and 1050 ◦C shown
from top to bottom. The experimental points are taken from Abbod
et al. [7].

Abbod et al. [7] in their Fig. 2, but those temperatures are not
measured directly. Apparently, they are computed from the
stress-strain data, perhaps using a temperature-independent
thermal conversion factor. Their orders of magnitude and
growth as functions of strain rate at fixed ambient temperatures
are similar to our results, but their dependence on the ambient
temperatures themselves is qualitatively different.

Note finally that, with r = 0.122 and α = 4, the ratio of the
depinning length to the length of the Burgers vector becomes
0.48, which, if true, would imply an interestingly nontrivial
atomic-scale structure for the interaction between dislocations.
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FIG. 8. Temperature as a function of strain for each of the nine
stress-strain tests shown for steel in the preceding figures. The initial
ambient temperatures are 850 ◦C, 950 ◦C, and 1050 ◦C (blue, black,
and red) as shown on the left axis. Each group of three curves is for
strain rates of ε̇ = 0.10, 1.0, and 10 s−1, from bottom to top.
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IV. CONCLUSION

On the whole, these results seem to us to be quite
satisfactory. Note that we now are using the thermodynamic
dislocation theory not just to test its validity but also as a tool
for discovering properties of structural materials. For example,
we did not know at the beginning of this investigation that
thermal softening would play so important a role even for the
samples subjected to very slow deformations at moderately
low temperatures. One of the main reasons for the success of
this theory, as has been emphasized here and in earlier papers,
is the extreme sensitivity of the plastic strain rate to small
changes in the temperature or the stress.

To put this point in perspective, note the difference between
the expression for the dimensionless plastic strain rate q in
Eq. (2.2) and the phenomenological approach adopted by Shi
et al. and Abbod et al. Both of these groups of investigators
base their analyses on the Zener-Hollomon parameter, which,
in the present notation, is Z ≡ ε̇ exp(TZ/TP θ̃), where TZ

is an activation temperature analogous to TP . They express
their results for different stresses, strains, strain rates, and
temperatures as functions of Z, which, in analogy to Eq. (2.2),
means that their strain rate ε̇ is proportional to the activation
factor exp(−TZ/TP θ̃ ) multiplied by some function of the
stress. By fitting their data in this way, they find TZ/TP

∼= 0.79
for aluminum and 1.7 for steel. In other words, their estimated
activation energies are of roughly the same magnitude as ours.

One crucial difference between our approach and theirs
is that, in Eq. (2.2), the depinning activation barrier is itself
a function of the stress and the dislocation density. In this
way, the thermodynamic dislocation theory is qualitatively
different from conventional theories dating back to Peierls
and Nabarro in which dislocations are perceived to be

gliding independently through imperfect lattices, resisted by
barriers whose dynamical properties are independent of the
dislocations themselves. That is not what is happening in the
thermodynamic dislocation theory. The nonlinear sensitivity
to thermal variations that appears in the present investigation
is just a mild version of the same dynamical mechanism
that produces yielding transitions and adiabatic shear bands,
which have been beyond the reach of conventional dislocation
theories.

Even more importantly, the conventional theories are not
truly dynamic. For example, in a fully dynamic theory, an
activation factor such as the one occurring in the Zener-
Hollomon formula should mean that an increase in temperature
produces an increase in strain rate, which in turn increases the
rate of heat generation. This is the nonlinear feedback loop
that produces the thermal softening seen in this paper and the
runaway instability in the theory of adiabatic shear banding [4].
However, it is not easy to see how such an equation of motion
could be incorporated into conventional phenomenological
descriptions of dislocation enabled plasticity. We believe that
we have found better ways to make progress in this field by
focusing on the nonequilibrium statistical thermodynamics of
these systems.
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