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Nonlinear mechanics of rigidifying curves
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Thin shells are characterized by a high cost of stretching compared to bending. As a result isometries of the
midsurface of a shell play a crucial role in their mechanics. In turn, curves on the midsurface with zero normal
curvature play a critical role in determining the number and behavior of isometries. In this paper, we show how
the presence of these curves results in a decrease in the number of linear isometries. Paradoxically, shells are
also known to continuously fold more easily across these rigidifying curves than other curves on the surface. We
show how including nonlinearities in the strain can explain these phenomena and demonstrate folding isometries
with explicit solutions to the nonlinear isometry equations. In addition to explicit solutions, exact geometric
arguments are given to validate and guide our analysis in a coordinate-free way.
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I. INTRODUCTION

As a thin, elastic structure is deformed, it tends to flex with-
out appreciably stretching. This is evident in a sheet of paper
for example, which is soft to bending deformations but highly
resistant to stretching [1]. Even under significant deformation,
thin elastic structures tend to concentrate their stretching
distortion into small regions of high strain surrounded by
bent but relatively unstretched regions [2–6]. Because of
this, isometries—deformations that deform a surface without
stretching—play a privileged role in the mechanics of thin
shells.

Roughly speaking, the more isometric deformations there
are, the more ways you can deform a shell without stretching it.
For example, the cross-sectional geometry of a thin, cylindrical
shell can be deformed easily whereas a complete spherical
shell cannot without introducing in-plane, and elastically
costly, stretching. Indeed, a closed surface, such as a sphere,
generically has no infinitesimal, smooth isometries [7]. Any
deformations of a spherical shell must, therefore, balance
stretching and bending.

Interestingly, Tenenblat [8] and, later, Audoly [9,10]
pointed out that in the vicinity of asymptotic curves—curves
with zero normal curvature—the infinitesimal isometry equa-
tions are singular. As a result, there will be fewer smooth
isometric degrees of freedom near those curves. Does that
mean that these surfaces are more rigid in the zero thickness
limit? If so, that would seem to be at odds with experiments
described in Ref. [11], in which it was shown that a shell can
be folded continuously across an asymptotic curve without any
stretching at all, while folding across a nonasymptotic curve
would require traversing a stretching energy barrier.

In order to reconcile these two observations we need to
find a (not necessarily smooth) family of nearly isometric
deformations that connects the undeformed and folded states
and show that this deformation is energetically favored in
the experimental conditions of Ref. [11]. This last point is
discussed further in the conclusion in Sec. IV.

In this paper, we seek to resolve this potential difficulty
by accounting for the linearities in the elastic strain. Like the
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bending energy, these nonlinearities can also regularize the
divergences in the linear isometries and naturally lead to the
folded solution. We estimate the thickness range for which the
correction due to the nonlinearities will be dominant over the
bending energy considered in Ref. [9].

The paper is organized as follows. In Sec. II, we give an
overview of linear isometries and discuss their existence and
properties. We derive the infinitesimal isometry equations and
give explicit solutions to the particular case of a parabolic
torus [Eq. (18)], the behavior of the smooth and diverging
solutions are explored near the rigidifying curves. In Sec. III,
we show how the addition of the nonlinear terms in the
isometry equation can regularize the divergences. We derive
an approximate solution using the tools of boundary layer
theory. The nonlinear solutions are then used to explain how
folding across a rigidifying curve happens continuously and
isometrically. We conclude in Sec. IV.

II. LINEAR ISOMETRIES FOR AXISYMMETRIC
SURFACES

A. Isometric deformations and mechanics of shells

We start this section by giving an overview of the relation-
ship between isometric deformations and the mechanics of thin
shells. Starting with an undeformed shell, there are two related
considerations for understanding the role of isometries in the
mechanics of shells. First, the allowed isometric deformations
may be smooth or nonsmooth. For example a sphere admits C1

isometries with infinite bending cost. Of course in a real shell
the sharp feature will be smoothed out leading to finite energy
cost related to the shell thickness in a nontrivial way [4]. A
cylinder, on the other hand, admits many smooth isometries
[12]. In principle, there can also be nonsmooth isometries with
better continuity than C1 [13,14]. These isometries are far less
costly even for small thickness.

Second, one can ask whether an isometry is connected to
the undeformed state by a continuous one parameter family
(or families) of isometries X(u1,u2,ε). It was shown in the
experiments in Ref. [11] that a shell can be continuously folded
across an asymptotic curve without snapping, implying the
existence of a family of isometric deformations connecting
the undeformed and folded states.

2470-0045/2017/96(1)/013003(9) 013003-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.013003


SALEM AL MOSLEH AND CHRISTIAN SANTANGELO PHYSICAL REVIEW E 96, 013003 (2017)

FIG. 1. Displacement vector between two points on the midsur-
face of a shell.

For a smooth family X(u1,u2,ε), we may define the in-
finitesimal isometry as X1(u1,u2) ≡ ∂εX(ε = 0). Equivalently,
we may write

X0(u1,u2,ε) ≈ X0(u1,u2) + ε X1(u1,u2). (1)

If a smooth family of isometries X0(u1,u2,ε) fails to exist,
which implies the absence of infinitesimal isometries, the
surface is said to be rigid in the sense defined in Ref. [7],
in which it was proved that almost all simply connected closed
surfaces are rigid.

B. General linear isometries and self-stresses

To be self-contained and to establish our notation, we
start with a review of linear (or infinitesimal) isometries. We
parametrize the shape of the shell in terms of the coordinates,
u = (u1,u2), of its midsurface (Fig. 1). We start with a refer-
ence surface, whose shape is given by the three-dimensional
position of each point through a vector function X0(u1,u2).
Therefore, the preferred distance between two points described
by coordinates ui + dui and ui , for infinitesimal dui , is given
by the first fundamental form,

dX2
0 = ∂iX0 · ∂j X0 duiduj ≡ ḡij duiduj , (2)

where, in accordance with the Einstein summation convention,
repeated indices are summed unless explicitly stated. The last
equality defines the components of the (induced) reference
metric tensor ḡij , which encodes the equilibrium distances
on the surface and must be symmetric and positive definite.
Similarly we define a deformed metric gij for the deformed
surface X(u1,u2). Deformations for which gij = ḡij , called
isometries, satisfy

∂iX · ∂iX = ḡij . (3)

Consider a curve on the surface, with space curvature κ .
The normal curvature is the projection of the curvature vector
along the normal to the surface, and the geodesic curvature is
the projection along the tangent plane. This naturally leads to
the relation

κ2 = κ2
N + κ2

g . (4)

Curves with zero normal curvature are called asymp-
totic curves. Interestingly, the geodesic curvature does not
change under isometric deformations, we exploit this fact in
Appendix A. For an arc length parametrization of the curve

ui(s), the normal curvature is given by

κN = (N̂ · ∂i∂j X)
dui

ds

dui

ds
, (5)

where N̂ is the normal to the surface. We define the expression
in the parentheses as the curvature tensor bij ≡ N̂ · ∂i∂j X.

For shells of very small thickness compared to curvature,
we generically expect the deformations to be dominated
by isometries [1]. This propensity is characterized by the
Föppl-von Kàrmàn number, FvK = BR2/Y , which measures
the ratio of the bending stiffness B, characteristic length R, and
Young’s modulus Y [15]. Typically, FvK ∝ R2/t2 for shells
of thickness t , showing that in-plane elasticity dominates over
any bending energies [16,17]. For large FvK, we study the
deformations of a shell using the in-plane elastic energy [18]

Es = 1

2

∫
dAT ij (∂iX · ∂j X − ḡij ), (6)

where the stress T ij , a symmetric tensor, is treated as a
Lagrange multiplier to force the deformation to lie along an
isometry. To this we add a bending energy

Eb = B

2

∫
dA(bij − b̄ij )(bij − b̄ij ), (7)

where b̄ij measures the intrinsic curvature of the shell.
Next we derive equations governing the isometries of a

shell’s midsurface, X0. Consider a small deformation X =
X0 + X1 and a corresponding deformation of T ij to T ij + T

ij

1 .
Substituting this into the in-plane elastic energy and expanding
to lowest order, we obtain

δEs = −
∫

dA(DiT
ij ∂j X0 · X1 + T ij b̄ij N̂0 · X1)

+
∫

dAT
ij

1 (∂iX0 · ∂j X1) +
∮

d�T ij n̂i∂j X0, (8)

where Di is the covariant derivative with respect to X0, n̂ is a
vector tangent to the midsurface but normal to the boundary,
and d� is the integral over the boundary with respect to arc
length.

Decomposing X1 into components tangent and normal to
the surface,

X1 = An(u1,u2) N̂ + Ai(u
1,u2) êi , (9)

where êi are vectors tangent to the surface satisfying ∂iX0 ·
êj = δ

j

i and δ
j

i is the Kronecker δ, we find that, to linear order,
an isometry satisfies

− 2 b̄ijAn(u1,u2) + DiAj (u1,u2) + DjAi(u
1,u2) = 0 (10)

while the stress satisfies

DiT
ij = 0, T ij b̄ij = 0, (11)

subject to the boundary condition T ij n̂i = 0. We call any
X1 that satisfies Eq. (10) a first-order, or infinitesimal,
isometry, and any nonzero solution of Eqs. (11) a self-stress.
The relationship between self-stresses and isometries can be
understood by index theory, but this is outside the scope of the
current paper [19].

When can we find a solution to the three equations in
Eq. (10)? Naively, An appears algebraically in Eq. (10) and
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FIG. 2. Torus with a curve of κN = 0 shown in black.

can be eliminated, leaving two equations in two unknowns.
Since Eq. (10) is first order, it appears that specifying the
two in-plane deformations of a surface along a single curve
is sufficient to determine the isometric deformation of the
entire surface uniquely. However, the Gaussian curvature of
the surface itself determines whether Eqs. (10) are elliptic or
hyperbolic [1,9]. Thus, any curve along which the Gaussian
curvature changes sign, or alternatively one of the principle
curvatures changes sign as it does in the torus (Fig. 2),
changes the character of the isometry equations. Specifically,
asymptotic curves (where κN ≡ 0) are the characteristics of
Eq. (10). Because information propagates along these curves,
unlike other curves, arbitrary boundary conditions cannot be
specified on them. In other words, they have fewer infinitesimal
isometric degrees of freedom. A consequence of the change
from elliptic to hyperbolic in Eqs. (10) is that some linear
isometries appear to diverge as they approach the curves of
κN,K = 0 [9,10].

Even when the Gaussian curvature does not vanish, a
problem with Eqs. (10) can develop. For example, the horizon
at the pseudosphere (Fig. 3) has one vanishing and one
diverging principle curvature and cannot, consequently, be
extended beyond its boundary despite K being constant.

C. Axisymmetric surfaces and rigidifying curves

To demonstrate these features in simplest context, we
specialize the linear isometry equations to axisymmetric
surfaces. In that case, the embedding, �X0, can be expressed
as

�X0(s,θ ) = s ŝ(θ ) + h(s) ẑ, (12)

where s is the radial distance from the z axis, ŝ is the unit vector
pointing in the radial direction, and h(s) is the vertical height
of the surface. The tangent vectors are ∂θ

�X0 = s θ̂ and ∂s
�X0 =

ŝ + h′(s) ẑ, where the prime indicates a derivative with respect

FIG. 3. Pseudosphere with the curve of κN = 0 shown in black.

to s. The first and second fundamental forms are

ḡij =
(

1 + h′(s)2 0

0 s2

)
(13)

and

b̄ij = 1√
1 + h′(s)2

(
h′′(s) 0

0 s h′(s)

)
. (14)

The normal curvature along the curves of constant s vanishes
when h′(s) = 0; these are precisely the rigidifying curves.

An arbitrary displacement of the surface can be written as

�X1(s,θ ) = As(s,θ )ŝ(θ ) + Aθ (s,θ )θ̂(θ ) + Az(s,θ )ẑ (15)

in terms of the basis (ŝ,θ̂ ,ẑ). We can exploit the axisymmetry
of the isometry equations by expressing them in terms of the
Fourier transforms of the functions Ai(s,θ ),

Ai(s,θ ) =
∑
m

Ãi(s,m) eimθ , (16)

where m is an integer. After some algebra, these three equations
can be combined into a single equation for each mode m for
Ã,

Ã′′
z (s) + h′′(s)

h′(s)
Ã′

z(s) − m2 h′′(s)

s h′(s)
Ãz(s) = 0. (17)

This second-order differential equation has two analytic solu-
tions as long as h′(s) �= 0. If there is a singularity, h′(s∗) = 0
for some s = s∗, it will be regular if h′(s) ∼ (s − s∗) as s

approaches s∗.
We illustrate the behavior of the isometries near the

curve h′(s∗) = 0, by considering the parabolic torus near the
rigidifying curve described by

h(s) = 1

2 a
(s − R)2. (18)

The surface of Eq. (18) can be thought of as an approximation
of more general axisymmetric surfaces near a rigidifying curve
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FIG. 4. Smooth isometric deformations of the parabolic torus,
normalized so that A(s = R + a) = 1 and m = 4. Az and As

represent displacements of the initial surface, rather than absolute
positions.

at s = s∗. Since h′(R) = 0 with h′′(R) �= 0, Eq. (17) has a
regular singularity at s = R and, indeed, the surface described
by h(s) has a circle of zero normal curvature along s = R. In
dimensionless variables, the linear isometry equation becomes

∂2
uYz(u) + 1

u
∂uYz(u) − m2

u(u + 1)
Yz(u) = 0, (19)

where u ≡ (s − R)/R and Ãz(u) ≡ R Yz(u). The solutions
have the form

Yzm = Am 2F1(−m,m; 1; −u) + Bm ln |u| 2

×F1(−m,m; 1; −u) + Bm 2G1(−m,m; 1; −u),

(20)

and

2G1(α,β; 1; −u)

≡
∞∑

r=1

[

(α + r) 
(β + r)


(α)
(β)(r!)2

×
r−1∑
k=0

(
1

α + k
+ 1

β + k
+ 2

1 + k

)
(−u)r

]
, (21)

where Am and Bm, are constants, 2F1(a,b; c; z) is a hy-
pergeometric function, and we have defined the analytic
function 2G1(−m,m; 1; −u). The functions Azm(u), Asm(u),
and Aθm(u), for m > 1, can be found from Yzm(u) and the
isometry equations.

Figures 4–7 illustrate these solutions for the parabolic torus
of Eq. (18). Thus, Eq. (20) has one solution that diverges
logarithmically as u → 0 for each mode m. The asymptotic
behavior of the solutions for u � 1 is

Yzm(u) = Am + Bm ln |u| + O(u ln u). (22)

Taking the inverse Fourier transform we can rewrite this limit
as

Yz(u,θ ) = A(θ ) + B(θ ) ln |u| + O(u ln u), (23)

where A(θ ) and B(θ ) are arbitrary functions of θ . Any axisym-
metric surfaces satisfying h(s) ∝ (s − s∗) + O[(s − s∗)2] will
have the same leading behavior given in Eq. (23). In the next
section, this form will be convenient for asymptotic matching

FIG. 5. Diverging isometric deformations of the parabolic torus,
normalized so that A(s = R − a) = 1 and m = 4. Notice that the
displacement in the z direction behaves as Az ∼ ln u as u → 0.

to the nonlinear solution in the vicinity of the rigidifying curve.
The solutions to Aθ and As corresponding to the diverging
solution are also non-analytic at u = 0, but they both vanish
as O(u ln u) as u → 0.

Naive considerations would suggest that we require Bm = 0
to avoid the divergences that occur in the isometry. However,
the approximation of linear elasticity also breaks down near
the rigidifying curve. As we will see in the next section, when
we include nonlinear terms in our analysis, the divergence of
the isometry is regularized.

III. NONLINEAR MECHANICS OF RIGIDIFYING CURVES

Though we may be tempted to exclude the diverging
solutions, only the vicinity of the rigidifying curves becomes
rapidly varying and large. Thus, two of our assumptions
become invalid near the rigidifying curves: the bending energy
may not be neglected and geometrical nonlinearities in the
strain are no longer negligible. For sufficiently thin surfaces
[see Eq. (28)], the bending energy can always be made smaller
than the nonlinear strain terms, therefore we will consider the
effect of the unavoidable nonlinearities.

The full nonlinear isometry equations are, unfortunately,
complicated. They read

0 = 2∂sAs + 2h′(s)∂sAz + (∂sAs)
2

+ (∂sAθ )2 + (∂sAz)
2 (24)

FIG. 6. Surface deformed by smooth linear isometry.
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FIG. 7. Surface deformed by diverging linear isometry.

0 = 2s(∂θAθ + As) + (∂θAs − Aθ )2

+ (∂θAθ + As)
2 + (∂θAz)

2 (25)

and

0 = s∂sAθ + ∂θAs − Aθ + h′(s)∂θAz

+ (∂θAs − Aθ )∂sAs + (∂θAθ + As)∂sAθ

+ (∂θAz)(∂sAz). (26)

As in Sec. II C, we assume h(u) ≈ (s − R)2/(2a) and u =
(s − R)/R as s ∼ R.

If we substitute in the linear solution, we note that Aθ ∼
u ln u and As ∼ u ln u, suggesting that the terms nonlinear in
As and Aθ can be ignored. This approximation can be justified
post hoc .

Within this approximation, we set Az(s,θ ) =
R2Yz(u,θ )/(2a) and use the linearized forms of Eqs. (24) and
(25) to eliminate As and Aθ . Thus, we obtain a single equation
for Yz,

0 = 2 (1 + u) ∂uYz + 2 u (1 + u)∂2
uYz + 2 ∂2

θ Yz

− [∂θYz − (1 + u) ∂θ∂uYz]2

(u + 1)2

+ [
∂2
θ Yz + (1 + u) (2u + ∂uYz)

]
∂2
uYz (27)

Equation (27) can be solved numerically (the results are
shown in Appendix B). Here, we will pursue an analytic
approach to obtaining approximate solutions. There are three
regimes. The linear solution is valid when u 
 |Yz(u ∼ a

R
)|1/2.

Within the layer u <∼ |Yz(u ∼ a
R

)|1/2, the nonlinearities become
important and the linear solution is no longer valid. For
the nonlinearities to become important before the bending
energy modifies the solution, the width of this layer (λN )
must be bigger than the width of the layer that would result
from bending energy regularization λB ∼ (t R a)1/3 [10].
Therefore, our analysis is valid when

λB � λN ⇒ t � R2 |Yz(u ∼ a
R

)|3/2

a
. (28)

When this condition is met we can obtain a finite solution to
Eq. (27) in powers of u near the rigidifying curve (Appendix
B). This shows that the nonlinear terms are sufficient to
regularize the divergences of the nonlinear theory. This is the
inner solution in the language of boundary layer theory. In the
intermediate regime, |Yz(u ∼ a

R
)|1/2 � u � 1, we may obtain

FIG. 8. The two inner solutions obtained from Eq. (31) with δ± =
0.2 cos(2 θ ) and γ± = 0.6 + 0.3 cos(2 θ ), evaluated at θ = π/7.
The two solutions have opposite signs of normal curvature, which
is required for existence of folding isometries [11,20].

a better approximation by considering how large the various
terms in the nonlinear equation become as we approach the
rigidifying curve when substituting the linear solution into
Eq. (27). The most divergent term is proportional to ∂uYz ∂2

uYz,
which behaves as ∼1/u3 for small u, whereas all the other
nonlinear terms diverge as ∼u−2 or slower. On the other hand,
the first two linear terms in the equation are O(u−1) and
the linear term ∂2

θ Yz only grows as ln u. Taken together, this
suggests that Eq. (27) has a regime, |Yz(u ∼ a

R
)|1/2 � u � 1,

where all the nonlinear terms except the last term can be treated
as a perturbation.

This argument does not work when the coefficient of the
ln u term vanishes at some value of θ . We will treat these
regions separately and unless otherwise stated we will assume
that the coefficient of the ln u solution is greater than zero.

The resulting reduced equation can be written in the form

∂u

[
u∂uYz + 1

4
(∂uYz)

2

]
= 0, (29)

and solved by

∂uYz(u,θ ) = −2 u ±
√

4 u2 + γ±(θ ), (30)

where γ (θ ) is a constant of integration. We can now solve for
the z component of the displacement by integrating (30) to
find

Yz±(u) = δ±(θ ) − u2 ± u

2

√
4 u2 + γ±(θ )

+ γ±(θ )

8
ln

(
±2 u +

√
4 u2 + γ±(θ )√
γ±(θ )

)2

, (31)

where δ±(θ ) is another integration constant. Note that there are
two branches of solution, shown in Fig. 8, with opposite signs
of the normal curvature κN ∼ ±√

γ±. This is what we would

expect (see Ref. [20]) from the relation κN = ±
√

κ2 − κ2
g ∼

± √
δκ [see Eq. (4) and Appendix A for more details].

Note that Yz± remains finite as u → 0, quite unlike in the
case of infinitesimal isometries. In the limit u/|γ±|1/2 � 1,
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this solution behaves as the regular series

Yz± = δ±(θ ) ±
√

γ±(θ ) − u2 ± 2 u3

3
√

γ±
. (32)

This series can be matched to a series expansion solution
of Eq. (27) near the rigidifying curve. Notice that the
solution does not make sense unless γ± > 0. In light of the
relation κN ∼ ± √

δκ ∼ ±√
γ±, this requirement is equivalent

to the requirement that δκ > 0, or that κ > κg within our
approximation. More generally it can be shown that the full
(no approximations) isometry equations are not well behaved
when κN changes sign (see Appendix A).

The limit u/|γ±|1/2 
 1 (for u > 0), on the other hand,
yields

Yz+ = F+(θ ) + γ+(θ )

4
ln u (33)

Yz− = −2u2 + F−(θ ) − 1

4
γ−(θ ) ln u (34)

F± = 1

8

(
±γ±(θ ) + γ±(θ ) ln

(
16

γ±(θ )

)
+ 8 δ±(θ )

)
. (35)

The form of this solution can be matched to the infinitesimal
isometry far from the rigidifying curve. Notice that it is only
possible to match one of the solutions (Yz+) to the region
u 
 ε1/2 > 0. The −2u2 behavior of Yz− corresponds to
the deformation h(s) → −h(s), which is a reflection of the
undeformed surface about the z axis.

Similarly, if u < 0, the limit |u|/|γ±|1/2 
 1 yields

Yz+ = −2u2 + G+(θ ) − 1

4
γ−(θ ) ln u (36)

Yz− = G−(θ ) + γ+(θ )

4
ln u (37)

G± = 1

8

(
∓γ±(θ ) + γ±(θ ) ln

(
16

γ±(θ )

)
+ 8 δ±(θ )

)
. (38)

We again find that only one of the solutions can match the
linear behavior on the u < 0 side. Interestingly, in this case it
is Yz− that matches the linear solution.

Thus, each of the smooth solutions match the linear
isometries only on one side of the rigidifying curve. On the
other side, the smooth isometry approximates the reflection of
the original parabolic torus about the z axis. Take for example
Az+, the z component of the isometry corresponding to Yz+.
In the limit γ+ → 0 and δ+ → 0 it is approximately equal to

Az+ =
{

(s−R)2

2 a
s > R

−(s−R)2

2 a
s < R,

(39)

which is the original parabolic torus with the region s < R

reflected along the z axis. While being isometric to the original
surface, it is not connected to it through a small displacement.
Thus, there will be an energy barrier preventing the solutions
Yz+ and Yz− from being realized starting from the undeformed
torus.

To construct a solution that is connected to the parabolic
torus through a small displacement, we need to attach Az+
in the region s > R with Az− on s < R. This results in an
isometry that is not smooth on the curve s = R; on one side

FIG. 9. Comparing the numerical solutions of Eq. (27) to the
matched approximation. Here a = 1, R = 3, δ+ = 0.002 cos(2 θ ),
and γ± = 0.006 + 0.003 cos(2 θ ).

of the curve, Az+ has a positive normal curvature, while the
opposite side has a negative normal curvature, which is what
you would expect when two surfaces are joined isometrically
along a fold (see Refs [20], [21], and [11]).

Whether this actually happens in practice will depend on the
energetics of stretching and bending [22]. The folded solution
can be made energetically favorable if the surface is creased
(made thinner) at the curve s = R as was done experimentally
in Ref. [11]. In the remainder of this section, we will construct
explicitly the global isometric solution by connecting together
the partial solutions in the various regimes.

We have already seen that in the regime u � 1, the linear
solution takes the form of Eq. (23). There is an overlap between
the regions of validity of both these approximations, namely
δ

1/2
± � u � 1, so we may match them to obtain [23]

A(θ ) = R

2 a
F+(θ ), B(θ ) = R

8 a
γ+(θ ), u > 0, (40)

A(θ ) = R

2 a
G−(θ ), B(θ ) = R

8 a
γ−(θ ), u < 0. (41)

Therefore the two assumptions that we made, B(θ ) �= 0 and
γ± > 0, are consistent. Figure 9 shows the agreement between
the matched inner and linear approximations [24] and the
numerical solution of Eq. (27).

Consider the setup shown in Fig. 10. We attach a frame
of a given shape to the rigidifying curve. Since the curve has
only two isometric degrees of freedom, we need only specify
Az(θ ) and As(θ ) on the curve and Aθ (θ ) will be determined.
Specifically,

Az(s = R,θ ) = R2 δ±(θ )

2 a
(42)

As(s = R,θ ) = R2 τ±(θ )

2 a
, (43)

where τ± is determined by γ± using the series solution
of the isometry equation (24), and where we neglected the
nonlinearities in Aθ and As . To leading order in |δ±| and up to
rigid xy translations, we have

τ±(θ ) = a

R
Re

[
i ei t

∫ t

0
e−i σ γ±(σ ) dσ

]
, (44)
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FIG. 10. The nonlinear isometries corresponding to δ± =
0.1 cos(4 θ ) and γ± = 0.2 + 0.15 cos(4 θ ) joined continuously at
u = 0. The region u < 0 represents the surface deformed by the
isometry corresponding to Yz−, which satisfies κN < 0. The u > 0
region in green (shaded), corresponds to Yz− and satisfies κN > 0.
The dashed curves satisfy θ = 0, and the arrows are their tangents at
u = 0. As explained in the text the arrows are perpendicular to the
rigidifying curve and must stay strictly above the xy plane because
of the requirement γ± > 0.

This choice fixes As(u = 0,θ = 0) = 0.
Interestingly there is no way to distinguish whether we are

in the κN > 0 branch or the κN < 0 branch just by knowing
the shape of the deformation at s = R. Either isometry can be
attached to a given boundary condition and can be continuously
reached from the undeformed torus (but not smoothly, because
of the γ

1/2
± in the solutions). This is consistent with the results

in Refs. [11] and [21].
Finally, notice that the constraint γ± > 0 can be expressed

as a constraint on the s displacement of the rigidifying
curve or, equivalently, on the shape of the boundary curve.
Consider the curves perpendicular to the rigidifying curve.
On an undeformed (parabolic) torus they are (parabolas)
circles satisfying θ = const., and with tangents at u = 0
pointing toward the center of the torus in the xy plane. After
isometric deformation, the tangents are still perpendicular
to the rigidifying curve (Fig. 10), but since ∂uAz > 0 when
u > 0 and ∂uAz < 0 when u < 0, these curves will be pointing
strictly above the xy plane. This is another way to express the
requirement γ > 0.

IV. CONCLUSION

We showed in Sec. II C that some of the infinitesimal
isometries of surfaces diverge near a rigidifying curve. Taken
at face value this seems to indicate a reduction in the number
of isometries of the surface near these curves. Indeed it can
be shown using geometric arguments (see Appendix A and
Ref. [1]) that rigidifying curves have constant curvature κ

under linear isometries.
On the other hand, the experiments in Ref. [11] show that

folding along curves with κN = 0 can happen continuously
without a stretching energy barrier. We have shown, in Sec. III,
how the presence of nonlinear terms in the isometry equations
reconciles these two observations. The argument for the
rigidity of the κN = 0 curves relies on the assumption that an
expansion of the form X(ε) = X0 + ε X1 + · · · exists, where
ε parametrizes the isometries. However, we have shown, using
series and boundary layer approximations of the full isometry
equations, that the solution cannot be analytic in ε. In the full

nonlinear solution, the normal curvature can be different from
zero after deformation.

Moreover, we found pairs of solutions having opposite
signs of normal curvature across a rigidifying curve. These
correspond to continuous solutions across κN = 0 curves.

Further work must be done to understand the energetics of
these folded isometries and why they seem to be realized in
experiment instead of the smooth isometries of Fig. 8. Since
the smooth isometries have an unavoidably large component
proportional to u2 whereas the folded on can have arbitrarily
small displacements, there will be a range in parameter space
where the folded solutions—with a suitably smoothed fold—is
favorable energetically. However, it is likely that the smooth
solutions are not realized because of a lack of a low-energy
paths in deformation space leading to them starting from the
reference surface, even if their energy is lower. The folded
solutions on the other hand can start infinitesimally close to
the starting surface and be varied continuously.

ACKNOWLEDGMENTS

We acknowledge valuable conversations with A. Evans,
B. Chen, and C.S. acknowledges the generous hospitality of
the Kavli Institute of Theoretical Physics in Santa Barbara.
This work was funded by the National Science Foundation
under award EFRI-ODISSEI-1240441.

APPENDIX A: ISOMETRIES AND GEOMETRIC
NONLINEARITIES

Here we will examine the nature of isometries from a
general geometric perspective. This will provide us with
guidance and a bird’s eye view of what to expect for the
isometry spectrum of a surface. The main two guiding
principles will be Bonnet theorem [25] and the relationship
between the normal and geodesic curvatures [20].

Let us start by considering the Gaussian curvature K(gij ),
which is a function of the metric. Gauss’s Theorema Egregium
states that

b2
12 = b11κN − Kρ2, (A1)

using Gaussian normal coordinates [26], we have d�2 =
(du1)2 + ρ2(u1,u2)(du2)2 and where κN = b22/ρ

2 is the nor-
mal curvature along lines of constant u1.

Under an isometry, the last term, Kρ2 must remain constant.
Equation (A1), together with

∂1b12 = ∂2b11 − b12
∂1ρ

ρ
and

ρ∂1(ρκN ) = ∂2b12 + b11ρ∂1ρ − b12
∂2ρ

ρ
, (A2)

form the Gauss-Codazzi-Mainardi (GCM) equations. Bonnet’s
theorem [25] states that if (A1) and (A2) are satisfied, a unique
surface will be determined up to rotations and translations.
Using this and the Cauchy-Kowalevski (CK) theorem applied
to the GCM equation, we can say something general about the
local existence and number of isometries without restricting
ourselves to infinitesimal isometries.

Consider the vicinity of an arbitrary curve on the surface.
Without significant loss of generality we assume this curve
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satisfies u1 = 0. The CK theorem states that, as long as all the
coefficients on the right-hand side of (A2) are analytic, there
will be a unique solution in the vicinity of the curve for an
arbitrarily specified b12(u1 = 0, u2) and κN (u1 = 0, u2) �= 0.
In other words, the curve will have two isometric degrees of
freedom as long as κN �= 0 on the final deformed surface.
However, κN may well be vanishing on the starting surface, as
in the case of a torus. This is consistent with the inner solutions
we found in Sec. III; we can specify δ± and ±√

γ± ∼ κN to
determine the solution uniquely.

On the other hand, if at any point on the u1 = 0 curve
we have κN = 0 (on the final surface), the CK theorem
fails and there is no guarantee of solutions. However, in
this case, we can determine what happens by first expand-
ing b11 = b

(0)
11 (u2) + b

(1)
11 (u2)u1, b12 = b

(0)
12 (u2) + b

(1)
12 (u2)u1,

ρ2K = K (0)(u2) + K (1)(u2)u1 and κN = κ
(1)
N (u2)u1, and col-

lecting terms with common powers of u(1). We obtain

b
(0)
11 κ

(0)
N −

(
b

(0)
12

)2
= K (0)

b
(0)
11 κ

(1)
N + b

(1)
11 κ

(0)
N − 2b

(0)
12 b

(1)
12 = K (1) (A3)

and so on. From Eqs. (A2), we see that

b
(1)
12 = ∂2b

(0)
11 + b

(0)
12 κ (0)

g

κ
(1)
N = κ (0)

g κ
(0)
N + ∂2b

(0)
12 − κ (0)

g b
(0)
11 , (A4)

where κg = −∂1ρ is the geodesic curvature of the u1 = 0 curve
and ρ(0,u2) = 1. Putting this together, we obtain a constraint
in terms of the intrinsic geodesic curvature and Gaussian
curvature in the vicinity of the curve,

K (1) = b
(1)
11 κ

(0)
N + 2b

(0)
12

[
∂2b

(0)
11 + b

(0)
12 κ (0)

g

]
− b

(0)
11

[
κ (0)

g κ
(0)
N + ∂2b

(0)
12 − κ (0)

g b
(0)
11

]
. (A5)

When κN = 0, Eqs. (A1) and (A5) turn into a constraint
entirely on the boundary curve because b

(1)
11 drops out. This

explains why the inner solutions are singular when ∼ κ2
N ∼

γ± = 0: we can specify b
(0)
12 arbitrarily close to the point

κN = 0, but not exactly on the point, this leads to a singularity
in the solution which we see in the series solution to Eq. (27).

Note that the only isometry of a torus with κN = 0
everywhere on the rigidifying curve is the torus itself, this is
easy to see because Eqs. (A1) and (A5) completely determine
b2

12 = −ρ2 K = 0 and b2
11 = −K1/κg , these in turn can be

used to determine the full series solution in the variable u1.
Now we turn our attention to linear deformations, general

geometric arguments provide guidance here as well, and can
shed light on what is special about surfaces with κN = 0
curves. Imagine a one parameter family of isometries X(ε),
where X(0) is the starting surface and X(ε) is the final surface.
A linearized isometry can be expressed as dX(ε)/dε|ε=0. For
any curve on the surface X(ε) we can write the following

geometric identity

κ2(ε) = κ2
N (ε) + κ2

g . (A6)

The linearized version of this identity is κ κ̇ = κN κ̇N , where
a dot over the symbol means a derivative with respect to ε. On
the rigidifying curve κN = 0, in this case it is obvious that for
the linear isometry we have κ = κg + O(ε2), implying rigid
motion of the curve, without change in curvature. It can easily
be checked, using Eq. (20), that the finite linear isometries to
the parabolic torus do indeed satisfy this property.

Yet another check on our solution comes from Eq. (A1).
The linearized version of the equation is written as

0 = ḃ11(0) κN (0) + κ̇N (0) b11(0) − 2ḃ12(0) b12(0). (A7)

On the rigidifying curve of the parabolic torus this gives
κ̇N (0) = 0, implying that the normal curvature is zero in the
linearized isometric deformation. In addition the diverging
linear solutions are inconsistent in the linear regime because
they have nonzero normal curvature. Yet as we have already
seen, κN �= 0 on the final surface is perfectly well behaved
as a nonlinear isometry. Therefore the divergence in the linear
solutions is only a reflection of the fact that X(ε) is not analytic
near ε = 0.

To conclude this section we demonstrate the nonanalyticity
of X(ε) using a simple argument. Eq. (A6) can be rewritten as

κN (ε) = ±
√

κ2(ε) − κ2
g . (A8)

The first-order derivative with respect to ε diverges at ε = 0.
Indeed, expanding to first order gives κN ≈ ±√

2ε κg κ̇(0),
which is inconsistent with a first-order expansion X0 + ε X1

and κN0 + ε κN1, thus explaining the appearance of singular
solution in the linear regime.

APPENDIX B: SERIES AND NUMERICAL SOLUTIONS
OF ISOMETRIES

The aim of this Appendix is to verify our inner solutions
against a series and numerical solution of the full isometry
equations (24). Although we will still neglect the nonlinearities
in Aθ and As , we can verify explicitly using the approximate
inner solutions that these terms are indeed subdominant.

We first check that the series solution of Eq. (27) is
consistent with the inner approximate solution. Note that
Eq. (27) is derived from Eq. (24) by eliminating As and Aθ

and then taking derivatives of the third equation. Therefore any
solution of Eq. (24) is a solution of Eq. (27), but the converse
is not true. In order to make sure that the solutions we find
are consistent with the isometry equations, we check that we
can use Eq. (24) with Az(R) ≡ ε δ and ∂sAz(R) ≡ ±√

ε γ to
determine the series coefficients of As and Aθ . The parameter ε

is introduced here to control order ε terms of the series solution.
Thus, any solution of Eq. (27) is consistent with Eq. (24) only
with a particular choice of the integration constant τ (θ ), which
was given to leading order in ε back in Eq. (44).

In terms δ(θ ) and γ (θ ), the series solution gives

∂2
uYz(0,θ ) = ±ε γ ′

± (±γ ′
± − 4

√
ε γ± δ′

±) + 4 γ± [ε2 δ′2
± − 2 (±√

ε γ± + ε δ′′
±)]

4 γ± (±√
ε γ± + ε δ′′±)

. (B1)
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FIG. 11. Comparing the series (up to order u8) and numerical
solutions of Eq. (27) to the inner approximation. Here, a = 1, R = 3,
δ+ = 0.002 cos(2 θ ), and γ± = 0.006 + 0.003 cos(2 θ ).

However, from the inner solutions we get ∂2
uYz(0,θ ) = −2. To

leading order in ε, the two expressions agree. This happens
at every order in u. We can use boundary layer theory (see
Ref. [23]) to determine to which order (in ε) the inner solution
is valid for every term in the series (in u). This can be done by
defining

Yz(u,θ ) ≡ ε ϒ(μ,θ ) and μ ≡ u

ε1/2
, (B2)

where ϒ as well as its derivatives are O(1) in the interior
layer, which has width of order ε1/2. Using this we can expand
Yz(u,θ ) to get

Yz(u,θ ) ≈ ε ϒ + ε1/2∂uϒ u + ∂2
uϒ u2

2
+ ∂3

uϒ u3

6 ε1/2
. (B3)

Hence we see that the term proportional to u2 is O(1) with
approximation error scaling as O(ε1/2). This is indeed what
we find in Eq. (B1). Using Mathematica we extend Eq. (B1)
to find terms up to order u11 in the expansion of Yz(u,θ ).
Figure 11 compares the numerical and series solutions of
(27) to the approximate solution that we obtain by combining
the inner and outer (linear) solutions to form a global
approximation.

Finally, we use γ± and δ± to find the series expansion of
Aθ and As , up to integration in the θ direction. We confirm
that we can indeed use γ± and δ± to determine the isometry,
which implies that solutions of (27) that we find are indeed
consistent with solutions of (24). For example, from the series
solution, we have that ∂uAs(0,θ ) = −ε R2 γ±/(8 a2) which
matches what we find from the inner approximate solution.
We will not explicitly show the rest of the series solution here
for brevity.
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