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Contact of a spherical probe with a stretched rubber substrate
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We report on a theoretical and experimental investigation of the normal contact of stretched neo-Hookean
substrates with rigid spherical probes. Starting from a published formulation of surface Green’s function for
incremental displacements on a prestretched, neo-Hookean, substrate [J. Mech. Phys. Solids 56, 2957 (2008)], a
model is derived for both adhesive and nonadhesive contacts. The shape of the elliptical contact area together with
the contact load and the contact stiffness are predicted as a function of the in-plane stretch ratios λx and λy of the
substrate. The validity of this model is assessed by contact experiments carried out using an uniaxally stretched
silicone rubber. For stretch ratio below about 1.25, a good agreement is observed between theory and experiments.
Above this threshold, some deviations from the theoretical predictions are induced as a result of the departure of
the mechanical response of the silicone rubber from the neo-Hokeean description embedded in the model.
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I. INTRODUCTION

Contact of soft solids such as elastomers, gels, or biological
tissues with rigid probes pertains to many practical situations
including, as an example, the determination of the mechanical
properties of these objects using indentation methods. Such
systems being very easily deformed, contact stresses are often
superimposed to bulk stresses which fall beyond the limit of
linear elastic descriptions. As an example, one can cite the local
friction of smooth rubbers surfaces with statistically rough
rigid bodies. At the scale of the macroscopic contact, the finite
sizes of the contacting bodies induce in-plane surface strains
which can easily exceed 0.2 under the action of frictional
stress [1,2]. At the microscopic scale, this implies that single
microasperity contacts occur locally on a prestretched rubber
surface. The effects of such finite strains on microcontacts
shape and stresses are largely overlooked in current contact
mechanics description of rough contacts, although they may
affect the prediction of the actual contact area and the
associated frictional forces.

From a theoretical perspective, contact problems on soft
rubber substrates subjected to finite strains have been es-
sentially handled within the framework of the infinitesimal
deformation theory developed by Biot [3], Green and cowork-
ers [4,5]. In these approaches, contact-triggered infinitesimal
deformations are superimposed upon finite deformations due
to prestress. Early solutions along these lines include the
work by Dhaliwal [6,7] and coworkers who handled the
problem of the contact of rigid axisymmetric probes with a
neo-Hookean body under a state of uniform biaxial stretching.
Using the solution established by Dhaliwal and Singh [7],
Yang derived analytical expressions for the relation between
contact stiffness, contact area, elastic constants, and finite
stretch [8]. Here again, the theory deals with the axisymmetri-
cal indentation of a neo-Hoohean solid under uniform bi-axial
stretching. Additional solutions for plane-strain contacts with
hyperelastic half spaces were also derived by Brock [9,10]
which incorporate anisotropic frictional situations.
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These problems were experimentally addressed by Bar-
quins and coworkers who carried out a series of contact
experiments involving spherical or cylindrical probes and
natural rubber sheets under a state of either uniaxial or
uniform biaxial tensile strains [11–14]. These works were
carried out with the objective of investigating the effects of
a prestretch on the formation of Schallamach waves [11], on
rolling friction [12], and on adhesion [13,14]. They especially
evidenced the anisotropy induced by uniaxial tensile stretching
which results in the development of elliptical contact shapes
(with spherical probes) and in anistotropic friction forces.
These experiments were revisited later by Gay [15] which
assumed that a superposition principle can be applied to
the response of the rubber to both the initial stretching and
the deformation due to the rigid probe. This superposition
being performed in Lagrangian coordinates, Gay developed
an argument stating that the indentation stage of an uniaxially
prestretched substrate can be assimilated to the indentation of
an elastic half-space by an ellipsoidal indenter which indeed
account for the elliptical contact shape.

In the present study, we develop a more general approach of
the contact problem of a prestretched neo-Hookean substrate
with a rigid spherical probe. It is based on the Green’s
function of the solid which describes its response to a point
force. Knowledge of this function allows one to calculate the
response of the solid to an arbitrary force distribution as the
weighted sum of point force responses. In a recent paper,
Biggins et al. [16] developed a linear theory with perfect
volume conservation for the Green’s function which enforces
the constraint of isochoric deformations exactly. This approach
is found to remain valid until strains become geometrically
large, but it is generalizable only to two-dimensional (2D) or
axisymmetric situations. Here we make use of the expressions
of the Green’s function for a neo-Hookean substrate which
were recently derived by He [17,18] within the framework
of incremental strain theory in order to develop a contact
model able to handle nonaxial stretch situations. Solutions
are provided for the contact shape, load, and contact stiffness,
which include the effects of adhesion. This model is validated
by contact experiments between a spherical glass probe and a
silicone substrate under various extent of uniaxial stretching.
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FIG. 1. Nominal tensile stress as a function of stretch ratio of the
PDMS rubber (cross-head speed: 0.5 mm s−1). The black solid line
corresponds to a fit of data points for λ < 1.25 to a neo-Hookean
model [Eq. (1)] with C1 = 0.526 MPa.

II. EXPERIMENTAL DETAILS

A commercially available transparent Poly(DiMethyl-
Siloxane) silicone (PDMS Sylgard 184, Dow Corning,
Midland, MI) is used as an elastomer substrate. The silicon
monomer and the hardener are mixed in a 10:1 weight ratio
and crosslinked at 70 ◦C for 48 h. In order to accurately
monitor the level of surface stretching in the contact zone, a
square network of small cylindrical holes (diameter 20 μm,
depth 5 μm, and center-to-center spacing 80 μm) is stamped
on the PDMS surface by means of standard soft lithography
techniques. Once imaged in transmission with a white light,
the pattern appears as a network of dark spots which are easily
detected. Full details regarding the design and fabrication of
PDMS substrates are provided in Ref. [1].

The stretching behavior of the PDMS rubber was deter-
mined using a conventional tensile testing machine (Instron
5565) equipped with an optical extensometer. Dog-bone-
shaped specimens with a gauge length 28×4×2 mm3 were
loaded at an imposed cross-head speed of 0.5 mm s−1 up
to a stretch ratio of 1.6. The resulting nominal stress σ versus
stretch ratio λ response is shown in Fig. 1. Data up to λ = 1.25
(i.e., before the occurrence of significant strain hardening) have
been fitted using a neo-Hookean model

σ = 2C1

(
λ − 1

λ2

)
, (1)

with C1 = 0.526 MPa. The resulting fit is reported as a black
line in Fig. 1.

Contact experiments are carried out using PDMS substrates
5×30×100 mm3 and a plano-convex BK7 glass lens with
a radius of curvature of 5.2 mm (Melles Griot, France). A
schematic of the custom setup is shown in Fig. 2 . The lens
indenter is fixed to a vertical translation stage (Microcontrole,
UMR 8.25) by means of a double cantilever. An optical fiber
(Philtec, Model D25) mounted on the vertical stage allows us
to measure with submicrometer resolution the deflection of the
blades during the indentation process. A mirror is located on

FIG. 2. Schematic of the custom-built indentation setup. A spher-
ical indenter (a) is fixed to a vertical translation stage (b) by means of a
cantilever with two flexible arms (c). During the application of normal
contact loading, a measurement of the deflection of the cantilever by
means of an optical fiber (d) and a reflecting surface (e) allows one
to determine the applied normal load on the PDMS substrate (f).
Images of the contact region are recorded with a microscope and a
camera (g).

the cantilever tip which provides a reflecting surface for the
displacement sensor. Then, from a knowledge of the calibrated
stiffness of the cantilever (11.7 kN m−1), the applied normal
load can be determined with mN accuracy from the measured
deflection of the cantilever. All the experiments are carried
out with a normal load less than 150 mN. This load range
ensures the achievement of semi-infinite contact conditions
(i.e., the ratio of substrate thickness to contact radius is larger
than 10 [19]). In order to vary the extent of adhesive forces
between surfaces, some experiments were carried out with the
contact fully immersed within a droplet of deionized water.

A zoom lens mounted on a CMOS camera (PhotonPhocus,
MV1024E) records 1024 × 1024, 8-bit images of the con-
tact region through the transparent PDMS substrate. When
stretched, the PDMS substrate is fixed between two grips, and
the stretch ratio is measured optically from the deformation
of the dot pattern at the surface of the rubber specimen.
Indentation experiments are carried out using a step-by-step
loading procedure. At each load step, a contact image is
recorded after ensuring that the contact size is no longer
evolving due to adhesive effects.

III. CONTACT MODEL

We consider the normal contact between a rigid spherical
probe with radius R and a neo-Hookean elastomer substrate
(shear modulus μ) which undergoes a uniform, finite prestretch
λx,λy along two orthogonal directions x and y of the
surface plane. In order to establish the contact equations,
we take advantage of the work by He [17] who derived a
surface Green’s function for incremental displacements on a
prestretched incompressible substrate obeying a neo-Hookean
constitutive law. Using this approach, the characteristics of
the contact are deduced below under the assumptions that the
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contact is frictionless and that the coupling between normal
pressure and lateral displacements, which does not vanish,
contrarily to the elastic case, has negligible effects on the
results.

Guided from experimental results, we assume that the
contact area is elliptic (semimajor axis a and b along
the directions x and y respectively). We further suppose that
the normal stress at the surface of the substrate can be derived
from a one-dimensional (1D) function through scaling along
both axis, i.e., a function p(u) can be defined which cancels
for u > 1 from which the normal stress σzz can be expressed as

σzz(r) = p

(√
x2

a2
+ y2

b2

)
. (2)

It is shown below that a stress distribution in this form may
indeed give rise to paraboloidal vertical displacements with
cylindrical symmetry on a prestretch substrate; it can thus
be a solution to the small indentation problem of a sphere.
Normal displacements on the prestretched substrate can be
accounted for by using the appropriate Green tensor coefficient
Gzz, which can be written in the 2D Fourier transform
space as [17]

Gzz(k) = 16λ2
xλ

2
y

3K

(η + k)k

ω
, (3)

where

η = λxλy

√
λ2

xk
2
x + λ2

yk
2
y, (4)

ω = η3 + η2k + 3ηk2 − k3, (5)

and K is a reduced modulus often used in contact mechan-
ics [20]; for incompressible materials, K = 16

3 μ where μ is
the shear modulus. Normal displacements uz(r) are deduced
from the inverse Fourier transform

uz(r) = 1

4π2

∫∫
Gzz(k)σ̂zz(k)e−ikr dkx dky, (6)

where σ̂zz(k) is the Fourier transform of the normal stress,
which can be expressed using the similarity property as

σ̂zz(k) =
∫∫

p

(√
x2

a2
+ y2

b2

)
eikr dx dy (7)

= ab

∫ 1

0
u du

∫ 2π

0
p(u)eikγ u cos v dv (8)

= 2πab

∫ 1

0
p(u)J0(kγ u)u du (9)

= 2πabσ̂ (kγ ), (10)

where

γ =
√

a2k̄2
x + b2k̄2

y, (11)

k =
√

k2
x + k2

y. (12)

J0(·) is the Bessel function of order 0 and the components
of the unit vector k−1k along the axis x and y are noted k̄x

and k̄y respectively. Then Fourier transform of the normal

stress, σ̂ (k), is expressed from the Hankel transform of the 1D
stress function p(u). The polar angles of k and r are noted
respectively β and θ . Normal displacements can be expressed
as

uz(r) = ab
8λ2

xλ
2
y

3πK

∫ 2π

0

η̄ + 1

ω̄
dβ

∫ ∞

0
σ̂ (kγ )e−ikr cos (β−θ) dk,

(13)

where

η̄ = λxλy

√
λ2

x cos2 β + λ2
y sin2 β, (14)

ω̄ = η̄3 + η̄2 + 3η̄ − 1. (15)

As the function to be back transformed Gzz(k)σ̂zz(k) is
invariant through the change k → −k, one can drop the
imaginary term in the integral and express

uz(r) = ab
8λ2

xλ
2
y

3πK

∫ 2π

0

η̄ + 1

ω̄
dβ

×
∫ ∞

0
σ̂ (kγ ) cos [kr cos(β − θ )] dk, (16)

which includes a cosine transform. As expected from the
Fourier-Hankel-Abel (FHA) cycle [21], expressing stress as
an Hankel transform and using Eq. (6.671.2) in Ref. [22], the
inner integral in the right-hand side of Eq. (16) can be written
as an Abel transform:

I =
∫ ∞

0
σ̂ (kγ ) cos [kr cos(β − θ )] dk (17)

=
∫ 1

0
p(u)u du

∫ ∞

0
J0(kγ u) cos [kr cos(β − θ )] dk (18)

= 1

γ

∫ 1

r| cos(β−θ )|
γ

up(u)√
u2 − r2 cos2(β−θ)

γ 2

du (19)

when r| cos(β − θ )| � γ and I = 0 when r| cos(β − θ )| � γ .
Defining the Abel transform of the stress function for
0 � s � 1 as

H (s) =
∫ 1

s

up(u)√
u2 − s2

du (20)

and H (s) = 0 otherwise, the vertical displacement can be
expressed as

uz(r) = ab
8λ2

xλ
2
y

3πK

∫ 2π

0

η̄ + 1

ω̄γ
H

(
r| cos(β − θ )|

γ

)
dβ. (21)

The function H ( r| cos (β−θ)|
γ

) does not cancel if

r| cos(β − θ )| �
√

a2 cos2 β + b2 sin2 β. (22)

It can be shown that this condition is fulfilled, whatever
the angle β is, for all points r inside the contact area. Indeed,
condition (22) reads D � 0 where

D = r2 cos2(β − θ ) − (a2 cos2 β + b2 sin2 β). (23)

For a given point (r,θ ) situated at the contact edge, the
parametric representation of the ellipse implies the existence
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of an angle α which verifies r cos θ = a cos α and r sin θ =
b sin α. Then

r2 cos2(β − θ ) = (a cos α cos β + b sin α sin β)2, (24)

and thus, for this point,

D = −(a sin α cos β − b cos α sin β)2 � 0. (25)

For points situated in the contact area, the condition is a
fortiori fulfilled.

We now define two anisotropy parameters, ϕ and ψ which
characterize the stretch state and the eccentricity of the elliptic
contact area, respectively:

ϕ = λ2
x − λ2

y

λ2
x + λ2

y

; ψ = a2 − b2

a2 + b2
, (26)

η̄ = λxλy

√
λ2

x + λ2
y

2

√
1 + ϕ cos 2β, (27)

γ = c
√

1 + ψ cos 2β, (28)

c =
√

a2 + b2

2
. (29)

In the following, we note δ the normal displacement of the
apex of the spherical indenter below the substrate plane. It will
be assumed that the contact size is much smaller than the radius
of curvature of the indenter and that in-plane displacements can
be neglected as compared to normal displacements. In such a
situation, normal displacements within the contact area can be
assumed to obey an axisymmetrical parabolic dependence to
the distance from the apex. Accordingly, they can be expressed
as

δ − r2

2R
= 8λ2

xλ
2
y

3πK

ab

c

∫ 2π

0

η̄ + 1

ω̄γ̄
H

(
r

c

| cos(β − θ )|
γ̄

)
dβ,

(30)

where γ̄ = √
1 + ψ cos 2β. This expression constitutes a

linear integral equation for the function H , of the first kind
with constant limits of integration. A polynomial solution can
be found [23] in the form

H (s) = 3K

8λ2
xλ

2
y

c

ab

(
δ

C0
− c2s2

2RC2

)
, (31)

Cm = 1

π

∫ 2π

0

η̄ + 1

ω̄γ̄

( | cos(β − θ )|
γ̄

)m

dβ, (32)

with m = 0,2. The stress distribution is retrieved using
inversion of the Abel transform Eq. (20):

p(u) = − 2

π

1

u

d

du

∫ 1

u

sH (s)√
s2 − u2

ds (33)

= 2

π

[
H (1)√
1 − u2

−
∫ 1

u

H ′(s)√
s2 − u2

ds

]
, (34)

where H ′(s) = dH (s)/ds. Normal load is obtained by inte-
gration of the stress function Eq. (2) expressed by Eq. (33):

P =
∫∫

p

(√
x2

a2
+ y2

b2

)
dx dy (35)

= 2πab

∫ 1

0
p(u)u du (36)

= 4ab

∫ 1

0
H (s) ds. (37)

When adhesion is neglected, normal stress is not singular at
the contact edge and thus H (1) = 0. In the Johnson, Kendall,
and Roberts (JKR) adhesion theory [24], adhesion induces a
stress singularity in this region, i.e., H (1) �= 0. Both situations
are discussed in the following sections. It can be noticed that
H function is very similar to the auxiliary function defined by
Sneddon to describe the contact of an axisymmetric punch on a
flat [25], which was generalized to the adhesive case [26–28].

A. Nonadhesive contact

When H (1) = 0, it comes from Eqs. (31) and (34) that the
normal stress can be derived from Eq. (2) using the function

p(u) = 3K

4πRC2λ2
xλ

2
y

c3

ab

√
1 − u2, (38)

which exhibits the classical Hertzian shape. To be admissible,
the stress field derived from this function must give rise to
axisymmetrical displacements within the contact area. From
Eq. (31), we get that the condition that C2 does not depend
on the orientation θ is sufficient to fulfill this requirement.
Expressing

cos2(β − θ ) = 1
2 (1 + cos 2β cos 2θ ) + 1

2 sin 2β sin 2θ, (39)

the second right-hand term, with a factor sin 2β, gives a
vanishing contribution to the integral (32) due to symmetry
reasons: the sign of the integrand changes when β → 2π − β.
One thus obtains

C2 = 1

2π

∫ 2π

0

η̄ + 1

ω̄γ̄ 3
(1 + cos 2β cos 2θ ) dβ. (40)

In order to obtain an isotropic result, the contribution of
the cos 2θ term to the integral should vanish, i.e., using the
symmetry properties of the integrand,∫ π

2

0

η̄ + 1

ω̄γ̄ 3
cos 2β dβ = 0. (41)

For a given stretch state, the functions η̄ and ω̄ are determined.
The solution ψ of this equation, easily obtained using
numerical integration, is noted ψs . For this solution, we define

C2s = 2

π

∫ π
2

0

η̄ + 1

ω̄γ̄ 3
s

dβ, (42)

C0s = 4

π

∫ π
2

0

η̄ + 1

ω̄γ̄s

dβ, (43)

γ̄s =
√

1 + ψs cos 2β. (44)
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From the condition (41) and the definition of γ̄ , it can
be verified that C0s = 2C2s . Furthermore, exchanging the
stretches λx and λy gives two opposite solutions, ψs (the role of
the axis is inverted), but the value of C0s remains unchanged.

The contact ellipticity ρs is

ρs = b

a
=

√
1 − ψs

1 + ψs

. (45)

It is independent of the normal load and of the curvature radius
of the indenter. The penetration depth, δ, is obtained from the
condition H (1) = 0 in Eq. (31):

δ = c2

R
(46)

= a2

R

1 + ρ2
s

2
(47)

= b2

R

1 + ρ−2
s

2
. (48)

Then

H (s) = 3K

8λ2
xλ

2
yC0sR

c3

ab
(1 − s2). (49)

The normal load P is obtained from (37) as

P = 1

λ2
xλ

2
yC0s

c3K

R
. (50)

It can also be expressed using the semiaxis lengths as

P =
(
1 + ρ2

s

) 3
2

2
3
2 λ2

xλ
2
yC0s

a3K

R
(51)

=
(
1 + ρ−2

s

) 3
2

2
3
2 λ2

xλ
2
yC0s

b3K

R
, (52)

and the load-penetration law reads

P = KR
1
2 δ

3
2

λ2
xλ

2
yC0s

. (53)

The contact stiffness, S, which is known to be affected by
the initial stress state [8], can be obtained by differentiating
the previous expression with respect to the penetration depth.
Expressing the result in terms of the contact size parameter c,
one obtains

S = 3

2

Kc

λ2
xλ

2
yC0s

. (54)

Equations (50), (46), and (54) are similar to the corresponding
ones for the Hertzian contact on an unstretched substrate,
provided that the contact radius and the reduced modulus are
replaced with an averaged contact size, c, and by the quantity
K(λ2

xλ
2
yC0s)

−1
, respectively.

From Eqs. (51) and (52), both semiaxis lengths are observed
to follow a Hertz-like dependence on the normal load at a
given stretch state but with different effective moduli. This
result could have been anticipated using dimensional analysis
(see Appendix A).

When the substrate is unstretched, one obtains a circular
contact area: ϕ = 0 in (41) leads to ψs = 0. Thus ρs = 1
and, as η̄ = 1, one obtains C0s = 1. The classical results
for Hertzian contacts are retrieved from expressions (51),
(52), (47), and (48). For equiaxially stretched substrate, the
contact remains circular too. In this case, however, as η̄ = λ3,
if λ is the stretch and a the contact radius,

P = a3K ′(λ)

R
, (55)

δ = a2

R
, (56)

where

K ′(λ) = λ9 + λ6 + 3λ3 − 1

2λ4(λ3 + 1)
K. (57)

Thus, in the case of equiaxial stretch, the contact is Hertzian,
with a stretch-dependent effective modulus. It can be verified
that it is higher (resp. lower) than the substrate elastic modulus
when there is traction (resp. compression) in the contact plane.
These results are in agreement with the analysis of adhesive
contact of a sphere on a equiaxially stretched substrate [18]
when adhesion is neglected.

B. Adhesive contact

When H (1) �= 0, normal stress can be derived from
Eqs. (31) and (34) as

p(u) = 2

π

H (1)√
1 − u2

+ 3K

4πRC2λ2
xλ

2
y

c3

ab

√
1 − u2. (58)

A similar form was postulated in the case of adhesive
contact of a sphere on an equiaxially stretched substrate by
He and Dong [18]. In their analysis, the parameter c would
represent the actual radius of the circular contact area. In line
with the JKR description of adhesion, the above expression
represents the superposition of a rigid cylindrical punch
displacement and of a nonadhesive indentation. The constant
H (1) may be determined from an appropriate estimation
of the adhesion energy [18,20]. Alternatively, Maugis and
Barquins [26,27] used a fracture mechanics argument jointly
with Griffith criterion to fix the value of the constant. In the
following, a method equivalent to the former one is used.

It should be noticed first that the isotropy condition for
the displacements in the contact area is the same as for
the nonadhesive case. Indeed, the second term in Eq. (58)
induces normal displacements with a square dependence with
the radius while the first one only contributes to a rigid
displacement of the points within the contact area. The later
is equivalent to the stress field associated with a cylindrical
punch and does not add any in-plane anisotropy. Then, as in the
nonadhesive case, the value ψs for the anisotropy parameter
ψ insures the isotropy of the displacements. It follows that
adhesion has no effect on the eccentricity of the contact area.

From Eq. (31), the constant H (1) is related to the indenta-
tion depth by

H (1) = 3K

8C0sλ2
xλ

2
y

c

ab

(
δ − c2

R

)
. (59)
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The stress function can be written as

p(u) = 3K

4πC0sλ2
xλ

2
y

c

ab

[
δ − c2

R√
1 − u2

+ 2c2

R

√
1 − u2

]
. (60)

Indentation-induced stored elastic energy is

Uel = 1

2

∫∫ (
δ − x2 + y2

2R

)
p

(√
x2

a2
+ y2

b2

)
dx dy (61)

= ab

2

∫ 2π

0
dθ

∫ 1

0

(
δ − s2 a2 cos2 θ + b2 sin2 θ

2R

)
p(s)s ds

(62)

= Kc

20R2C0sλ2
xλ

2
y

(15R2δ2 − 10Rc2δ + 3c4). (63)

Under equilibrium conditions, the relation ( ∂Uel

∂A
)
δ
= w holds,

with A = πab. As the anisotropy of the contact shape is kept
constant, (

∂Uel

∂A

)
δ

=
√

1 + ρ2
s

2
√

2πρsa

(
∂Uel

∂c

)
δ

, (64)

and thus

w =
√

1 + ρ2
s

ρsa

3
√

2K

16πC0sλ2
xλ

2
y

(
δ − c2

R

)2

. (65)

Integration of the normal stress gives

P = Kc

2C0sλ2
xλ

2
y

(
3δ − c2

R

)
. (66)

Defining P1, the load corresponding to the same contact area
in the nonadhesive case (50) as

P1 = Kc3

C0sλ2
xλ

2
yR

=
(
1 + ρ2

s

) 3
2

2
3
2 λ2

xλ
2
yC0s

a3K

R
, (67)

one obtains

(P1 − P )2

6πa3K
= wρs

C0sλ2
xλ

2
y

√
1 + ρ2

s

2
. (68)

The form of this relation is equivalent to the JKR expres-
sion, and it constitutes its generalization to the case of
an incompressible stretched substrate. Here again, the un-
stretched situation corresponding to JKR model is retrieved by
letting C0s = 1,ρs = 1.

For an equiaxially stretched substrate, the previous expres-
sion reads

(P1 − P )2

6πa3K ′(λ)
= w, (69)

where

P1 = a3K ′(λ)

R
(70)

and

K ′(λ) = λ9 + λ6 + 3λ3 − 1

2λ4(λ3 + 1)
K. (71)

FIG. 3. Elliptical contact shape recorded for a stretch ratio
λ=1.32 and a contact load P = 100 mN (the stretching is applied
along the vertical direction).

The usual JKR relation is obtained, with an effective modulus
which depends on the stretch ratio. An equivalent expression
was obtained in Ref. [18].

IV. EXPERIMENTAL RESULTS

An example of a contact area picture is shown in Fig. 3
for a stretch ratio λ=1.32 and a normal load P = 100 mN.
The elliptical shape of the contact is clearly evidenced with
the major axis of the ellipse perpendicular to the stretch
direction. Consistently with a numerical analysis of Eq. (45)
with λx = λ,λy = λ− 1

2 , the aspect ratio is larger than one
(b > a). Figure 4 shows the changes in the contact ellipticity
ρs = b/a as a function of the applied contact load for a stretch

FIG. 4. Ellipticity ratio ρs = b/a of the contact area as a function
of the applied contact load for a stretch ratio λ = 1.19. Inset:
corresponding values of (•) the major and (◦) the minor semiaxis
lengths of the elliptical contact.
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FIG. 5. Semiaxis lengths (◦) a and b (•) of the elliptical contact
as a function of the stretch ratio λ. Solid lines correspond to the
theoretical prediction of Eqs. (51) and (52).

ratio λ = λx = 1.19. In agreement with the prediction for a
nonadhesive contact [Eqs (41) and (45)], it turns out that
the measured aspect ratio is nearly constant over the whole
investigated load range. This feature was preserved for all the
stretch ratios under consideration.

The dependence of the contact shape on the stretch ratio
is further examined in Figs. 5 and 6 where a, b, and their
ratio ρs are reported as a function of λ. In these figures, the
black solid lines correspond to theoretical predictions. For
stretch ratios less than about 1.2, experimental data are found
to be in good accordance with model. Above this threshold,
deviations from the theoretical predictions can be attributed
to departure of the PDMS mechanical behavior from the
neo-Hookean description which is embedded in the model
(cf. Fig. 1).

The effects of adhesion on the stretch dependence of the
contact ellipticity were considered by carrying out some of
the experiments with the contact fully immersed in a droplet

FIG. 6. Ellipticity ratio ρs = b/a of the contact area as a function
of the stretch ratio λ. (◦) contact in air; (•) contact in water; solid
line: theoretical prediction of Eq. (41).

FIG. 7. Cube of the semiaxis lengths a (open symbols) and b

(filled symbols) of the elliptical contact as a function of the applied
load. Circles: λ = 1.19, squares: λ = 1.32. Solid lines correspond to
linear regression fits.

of deionized water. As indicated in Appendix A, this resulted
in a decrease in the adhesion energy of the unstretched
substrate from 27 mJ m−2 to 5 mJ m−2. A comparison
between experiments carried out both in air and in water
(Fig. 6) show that the ρs(λ) relationship is insensitive to such a
change in adhesion. As stressed in the theoretical section, the
isotropy condition for the displacements in the contact area
is enforced by both adhesive and nonadhesive contacts. As a
consequence adhesion does not add any in plane anisotropy
and the ellipticity remains load-independent, consistently
with experimental observations.

The load dependence of the semiaxis lengths was further
examined in the light of Eqs. (51) and (52), which predict a
linear dependence of a3 and b3 on F . In Fig. 7 the measured
values of a3 and b3 are reported as a function of applied load
for two values of the stretch ratio (λ = 1.19 and λ = 1.32). A
linear behavior of both a3(F ) and b3(F ) relationships is indeed
observed. The vanishing intercept of the linear fits indicates
that adhesive effects can be neglected in such a representation.
It can also be noted that the semiaxis length a for a given load
is only marginally affected by the stretch ratio while a more
pronounced effect is observed for the semiaxis length b.

According to Eqs. (51) and (52), the slopes of these linear
relationships provide an estimate of the “effective” moduli Ka

eff
and Kb

eff along the major and minor axis of the contact ellipse,
which can be defined as

Ka
eff = K

(
1 + ρ2

s

) 3
2

2
3
2 λ2

xλ
2
yC0s

, (72)

Kb
eff = K

(
1 + ρ−2

s

) 3
2

2
3
2 λ2

xλ
2
yC0s

. (73)

For λ = 1.19, linear fits to data provides Ka
eff/K = 1.29 and

Ka
eff/K = 0.79, in relatively good agreement with Eqs. (51)

and (52), which predict Ka
eff/K = 1.20 and Ka

eff/K = 0.86.
Conversely, the deviation from the neo-Hokeean behavior
results in a significant departure from the theory for λ = 1.325,

013001-7



CHRISTIAN FRÉTIGNY AND ANTOINE CHATEAUMINOIS PHYSICAL REVIEW E 96, 013001 (2017)

especially regarding Ka
eff value which is under-predicted by

about 25%.

V. CONCLUDING REMARKS

The present model was derived for a spherical probe, and
it should be mentioned that it cannot directly be extended
to axisymmetrical punch shapes other than spherical or
cylindrical. As an example, for a conical shape with semiangle
α, assuming a stress function similar to Eq. (2) implies solving
an integral equation which is equivalent to Eq. (30):

δ − r

tan α
= 8λ2

xλ
2
y

3πK

ab

c

∫ 2π

0

η̄ + 1

ω̄γ̄
H

(
r

c

| cos(β − θ )|
γ̄

)
dβ.

(74)

The solution H (s) is linear and can be accepted if the
coefficient

C1 = 1

π

∫ 2π

0

η̄ + 1

ω̄γ̄ 2
| cos(β − θ )| dβ (75)

can be made independent of θ by a proper choice of the
parameter ψ . This is clearly the case when the substrate is
isotropically stretched (λx = λy , φ = 0): in this case ψ = 0
(a = b) is a solution. However, in the general case where
λx �= λy , considering that the Fourier series of

|cos(β − θ )| =
∞∑

m=0

Am cos[2m(β − θ )] (76)

and noting that (η̄ + 1)ω̄−1γ̄ −2 is a function of cos 2β, the
coefficient can be written as

C1 =
∞∑

m=0

Bm cos 2mθ, (77)

where

Bm = Am

π

∫ 2π

0

η̄ + 1

ω̄γ̄ 2
cos(2mβ) dβ. (78)

The invariance with respect to θ of the coefficient would
require that the Fourier series (77) is constant, or, equiva-
lently, Bm = 0 for m = 1,2,3 . . .. In turn, this would require
(η̄ + 1)ω̄−1γ̄ −2 to be constant, which is impossible when
ϕ �= 0 (or λx �= λy). This argument also applies for punch
profiles ∼rp when p is an odd integer. When p is even, a
finite number of harmonics contribute. However, p = 2 (the
spherical shape) is the only case where the cancellation of a
single harmonics of the function is sufficient, leading to the
exact solution presented in this paper.

Though exact solution cannot be found for an arbitrary
punch profile, approximate solutions may be derived con-
sidering that the difference between actual contact and an
elliptic shape is not expected to be large. In the case of the
conical indenter, for instance, we enforce that the values
of the coefficient C1 [Eq. (75)] should be identical along
the directions x and y. Alternatively, we can enforce that
the leading anisotropic term of the Fourier expansion (77),
B1, is zero: ∫ 2π

0

η̄ + 1

ω̄γ̄ 2
cos(2β) dβ = 0. (79)

For an uniaxially stretched substrate, numerical calcu-
lations show that both approximations are in very good
agreement and that a/b 	 λ within a few percent when
λ < 1.5. Once the ellipticity parameter is determined, expres-
sions relating normal load and displacement or contact size are
obtained in a way similar to the case of the spherical indenter.
To be more specific, the above discussion was dealing with
the conical punch, but it can be extended to any axisymmetric
indenter with a power law profile.

Some additional comments are also in order regarding
elastic contact theories dealing with general Hertzian elliptical
contacts. In this context, Johnson and Greenwood developed
an approximate theory for adhesive elliptical contacts by
expressing that the stress intensity factor remains almost
constant all around the contact periphery [29]. They concluded
that eccentricity varies with the load. In the case of an
adhesive stretched substrate, the above results indicate that
the contact area for a sphere is elliptical, but its eccentricity
is load-independent and identical to the Hertzian case. The
stress intensity factor varies along the contact edge, reflecting
the anisotropy of the prestretched substrate properties upon
incremental displacements.

In conclusion, we have shown that contact area of a
undeformable sphere on a stretched elastomeric substrate has
an elliptic shape. Its eccentricity is completely determined by
the in-plane stretch of the substrate. In particular, it depends
neither on the applied load nor on the curvature radius of the
sphere or on adhesion properties.
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APPENDIX A: DIMENSIONAL ANALYSIS
OF THE STRETCHED CONTACT

According to Eqs. (51) and (51), both semiaxis lengths are
observed to follow a Hertz-like dependence on the normal load
at a given stretch state, but with different effective moduli. This
result could have been anticipated using dimensional analysis.
It can be observed that the semiaxis length, a, is determined
when the modulus, K , the normal load, P , the sphere radius, R,
and the stretch state, λx,λy , are fixed. Forming nondimensional
numbers, these parameters must be linked as

P

Ka2
= fa

( a

R
,λx,λy

)
. (A1)

Now, keeping the contact area constant, if all normal dis-
placements are multiplied by a number χ , by linearity of
the stress-strain problem described by the Green tensor, the
normal load is also multiplied by χ . From simple geometrical
considerations, it corresponds to a contact problem for a sphere
with a radius divided by χ . Thus

χ
P

Ka2
= fa

(
χ

a

R
,λx,λy

)
, (A2)

which should hold for any values of χ . The function fa is
thus homogeneous and of the first degree with respect to a/R.
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One may deduce

P = a3K

R
ga(λx,λy). (A3)

Similar results can be obtained for the other axis and for the
penetration depth. One has also

b

a
= g(λx,λy)

g(λy,λx)
, (A4)

which expresses that the contact shape anisotropy is controlled
by the stretch anisotropy only. In the unstretched situation, it
can be noticed that previous considerations allow us to recover
the Hertz expressions up to a constant numerical factor.

APPENDIX B: ADHESIVE CONTACT
OF THE UNSTRETCHED SUBSTRATE

The adhesive contact between the unstretched (λ = 1)
PDMS substrate and the glass lens was examined within the
framework of the JKR theory [24]. The following linearized
form of the relationship between the contact radius a and the
applied load F was considered:

a3/2

R
= 1

K

F

a3/2
+

√
6πw

K
. (B1)

The slope of this linearized relationship thus provides the
value of the reduced modulus K while the adhesive energy
w is deduced from the intercept. In Fig. 8 experimental

FIG. 8. Linearized plot giving the contact radius a versus the
applied normal force F for an unstretched (λ = 1) PDMS substrate.
(◦) contact in air; (•) contact immersed in deionized water; solid lines
are linear regression fits.

contact results have been reported using this representation
for contacts either in air or fully immersed in a droplet of
deionized water. As expected, linear relationships are obtained
in both cases with the same slope, i.e., the same value of
the reduced modulus (K = 3.36 ± 0.02 MPa). On the other
hand, a decrease in the intercept is observed for contact in
water, which reflects a decrease in the adhesion energy from
w = 27 mJ/m2 (air) to w = 5 mJ/m2 (water) as a result of
the screening of van der Waals forces between surfaces by the
water molecules.
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