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Anisotropic decay of the energy spectrum in two-dimensional dense granular flows
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We study anisotropic collective motions of two-dimensional granular particles under simple shear deformations.
Employing molecular-dynamics simulations of large system sizes, we find that anisotropic fluidized bands
develop in the system yielding under quasistatic deformations, where the spectrum of nonaffine velocities,
which is associated with the energy spectrum for turbulent flows, exhibits a quadrupole structure. To explain
theoretically the anisotropic spectrum, we derive hydrodynamic modes from a continuum model of dense granular
materials, where we find that fluidized bands are caused by long-lived hydrodynamic fluctuations characterized
by compressibility.
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I. INTRODUCTION

Dense granular materials have wide applications in in-
dustry, and the study of their flow behavior has long been
of practical importance to technology [1]. When granular
materials flow by external forces, the injected energy is
dissipated through inelastic interactions between constituent
particles so that kinetic energy is transferred from macro-
to microscopic scales [2–4]. Due to this nonequilibrium
nature, microscopic origins of their flow properties have not
yet been fully understood, e.g., kinetic theory of inelastic
particles succeeds in describing the rheology of granular
gases [5], while it fails to explain the rate-independent flow
behavior of yielding granular materials [6,7], i.e., the so-called
critical state in soil mechanics [1]. Therefore, in the past few
decades, the microscopic insight into dense granular flows
has been widely investigated via experiments and numerical
simulations, where turbulent-like collective motions of the
particles around mean flow were commonly observed [8–13].

In those previous studies, nonaffine components of particle
displacements or velocities, which are the direct measure
of particle rearrangements around mean flow, were assumed
to be isotropic in space. However, anisotropic collective
rearrangements were recently reported in molecular-dynamics
(MD) simulations of supercooled liquids [14], and the direc-
tional dependence of their spatial correlation functions was
found in experiments of sheared suspensions [15–17] and
MD simulations of athermal particles under shear [18–20].
Therefore, it is crucial to clarify anisotropic motions of
constituent particles behind the anomalous rheology of dense
granular materials, which we investigate numerically and
explain theoretically in this paper.

We show our numerical simulations in Sec. II and explain
our numerical results by a continuum theory in Sec. III. Then,
we conclude and discuss our results in Sec. IV.

II. NUMERICAL SIMULATIONS

We study two-dimensional granular flows by MD simula-
tions of frictional particles [21]. To avoid crystallization, we
use 50:50 binary mixtures of N particles, where different kinds
of particles have the same mass, m, and different diameters
(their ratio is 1.4). The force between the particles in contact is

divided into the normal and tangential directions: The normal
force, fn, is modeled by a linear spring-dashpot, where the
spring constant and viscosity coefficient are given by kn and
ηn, respectively. The tangential force, ft , is also described by
the linear spring-dashpot with the same spring constant and
viscosity coefficient, i.e., kt = kn and ηt = ηn, respectively,
while it switches to dynamical friction if it exceeds a threshold,
i.e., if |ft | > μm|fn| with a friction coefficient, μm = 0.5
[22]. In our simulations, the normal restitution coefficient is
estimated as en = exp(−π/

√
2knη

−2
n − 1) � 0.7 [21] and a

unit of time is introduced as tm ≡ ηn/kn = ηt/kt .
We randomly distribute the N particles in an L × L square

periodic box such that the area fraction of the particles is
given by φ0. Then, we apply simple shear deformations to
the system by the Lees-Edwards boundary condition [23].
In each time step, every particle position, ri = (xi,yi), is
replaced with (xi + �γyi,yi) (i = 1, . . . ,N) and equations of
translational and rotational motions are numerically integrated
with a small time increment, �t = 4 × 10−3tm [21]. Here, �γ

is a small strain increment so that the shear rate is defined as
γ̇ ≡ �γ/�t . In the following analyses, we scale every mass,
time, and length by m, tm, and mean particle diameter, dm,
respectively.

In our MD simulations, the mean velocity field is deter-
mined by the affine deformation as γ̇ yex , where y and ex are
the y coordinate and unit vector along the x axis, respectively.
On the other hand, complicated rearrangements of the particles
around the mean velocity field can be analyzed by nonaffine
velocities, δui ≡ ui − γ̇ yiex , where ui is the velocity of
the ith particle. Recently, anomalous statistics of nonaffine
velocities have been extensively studied, e.g., their probability
distributions showed tails much wider than those of Gaussian
distributions [10] and their spatial correlations revealed that
the collective behavior became significant in quasistatic flows
[11]. In addition, the spectrum of nonaffine velocities [9],
which was introduced by analogy with the energy spectrum
for turbulence, exhibited power-law decay on a mesoscopic
scale so that turbulent-like structures of nonaffine velocities
were inherent in two-dimensional dense granular flows [3].
In those analyses, however, spatial distributions of nonaffine
velocities were assumed to be isotropic, which is not the case
if the system size is large enough.
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FIG. 1. The system size dependence of nonaffine velocities (the
arrows), where the number of particles is given by (a) N = 512,
(b) N = 2048, (c) N = 8192, and (d) N = 32 768. The gray scale
represents the magnitude of nonaffine velocities scaled by the
maximum, i.e., |δui |/|δum| (i = 1, . . . ,N ). The control parameters,
φ0 = 0.84 and γ̇ tm = 2.5 × 10−5, are used in MD simulations.

Figure 1 displays our numerical results of the nonaffine
velocities (snapshots in steady states [24]), where we change
the number of particles from (a) N = 512 to (d) N = 32 768.
In this figure, no preferred direction of the nonaffine velocities
can be seen if the system size is too small [Figs. 1(a) and
1(b)], while they tend to align in the x or y direction as their
collective motions form anisotropic fluidized bands [14] in
large system sizes [Figs. 1(c) and 1(d)]. As shown in Appendix
A, the nonaffine velocities are dynamically changing during
steady state so that the anisotropic bandlike structures are not
permanent shear-banding. In addition, we have confirmed that
anisotropic collective motions were observed only if the area
fraction exceeded a critical value, φ0 > φc � 0.8, and the shear
rate was extremely small, γ̇ tm � 1, such that rate-independent
yield stress can be observed [3].

To quantify the anisotropic collective behavior of nonaffine
velocities, we introduce their spectrum as a function of two-
dimensional wave number vector, k = (kx,ky), i.e.,

E(k) = mn0

2
〈|δû(k)|2〉, (1)

where n0 ≡ N/L2 is the number density and δû(k) =
n−1

0

∑N
i=1 δuie

−Ik·ri , where the imaginary unit I is the Fourier
transform of nonaffine velocities. In Eq. (1), the angular
brackets represent time average during steady state, where
the applied strain is in the range between 1 < γ < 2. In
addition, the spectrum is defined as the Fourier transform of
the (equal-time) spatial correlation function of the nonaffine
velocity field [25] and thus is neither dependent on time
during steady state nor stretched along the sheared direction
[26], as is the case with a static structure factor under simple
shear deformations [27,28]. The spectrum, Eq. (1), was first
introduced in the numerical study of granular flows under

constant pressure [9], where it was averaged over all the
directions of k, i.e., E(k) with the wave number k ≡ |k|
by assuming isotropic distributions of nonaffine velocities.
Because the integral

∫
E(k)dk is associated with granular

temperature [5], the spectrum, Eq. (1), quantifies the density
of fluctuation energy in different scales and directions.

Figure 2 shows logarithmic plots of the spectra in units of
mass, time, and length, i.e., m, tm, and dm, respectively, where
the system size, N = 131 072, is large enough to observe
anisotropic collective motions. In this figure, we increase the
area fraction φ0 and shear rate γ̇ tm in MD simulations as
indicated by the arrows, where the spectra exhibit quadrupole
structures if φ0 > φc and γ̇ tm � 1, which is a result of
fluidized bands developed along the x and y axes [Fig. 1(d)].
Such a quadrupole structure in Fourier space was first unveiled
by the spectrum of nonaffine displacements in supercooled
liquids, where the shear rate was large enough for the particles
to overcome random thermal forces, and the shear-induced
anisotropic cage breaking occurred [14]. In granular materials,
however, the particles are not affected by thermal fluctuations
and immediately show anisotropic rearrangements around
mean flows, where their collective motions enhanced in
yielding and the quasistatic regime, i.e., φ0 > φc and γ̇ tm � 1
[3], induce the large-scale fluidized bands. Moreover, similar
quadrupole patterns were also observed in spatial correlations
of plastic strains in sheared suspensions [16] as well as
athermal particles under shear [19,20]. We also confirm that
the static structure factor is quite insensitive to the area fraction
and is more isotropic if the shear rate is small (data are not
shown) [17,27,28]. Therefore, we suppose that the anisotropy
of nonaffine velocities, which we explain theoretically below,
is not caused by particle configurations under shear.

III. THEORY

To explain the anisotropic decay of spectra, we adopt a
continuum model of two-dimensional dense granular materials
[29]. In this model, the area fraction, φ(r,t), velocity field,
u(r,t) = (ux,uy), and granular temperature, θ (r,t), are defined
as hydrodynamic fields, where r and t represent position and
time, respectively. Then, their time development is described
by hydrodynamic equations,

Dtφ = −φ∇αuα, (2)

φDtuα = ∇βσαβ, (3)

φDtθ = σαβ∇αuβ − ∇αqα − χ, (4)

where the Einstein convention is used for the subscripts α and β

(=x,y). On the left-hand sides, Dt ≡ ∂/∂t + uα∇α represents
the material derivative. On the right-hand sides of Eqs. (3)
and (4), the stress tensor and heat flux are given by the usual
forms, i.e., σαβ = η(∇αuβ + ∇βuα) + δαβ{(ξ − η)∇νuν − p}
and qα = −κ∇αθ , respectively (ν = x,y), where p, η, ξ , and
κ are the pressure, shear viscosity, bulk viscosity, and thermal
conductivity, respectively. On the right-hand side of Eq. (4),
the last term, χ ≡ φθζ , represents energy dissipation in the
bulk, which is caused by inelastic interactions between the
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FIG. 2. Three-dimensional plots of logarithmic spectra, log E(k), where each component of the wave number vector is scaled by the mean
particle diameter [as shown only in (a)]. The number of particles is given by N = 131 072, and the control parameters, i.e., φ0 and γ̇ tm, increase
as indicated by the arrows, where φ0 = (a)–(c) 0.84, (d)–(f) 0.80, and (g)–(i) 0.70, and γ̇ tm = (a),(d),(g) 2.5 × 10−5, (b),(e),(h) 2.5 × 10−4, and
(c),(f),(i) 2.5 × 10−3 are used in MD simulations.

particles in contact, where ζ is introduced as a dissipation rate
[29].

In dense granular materials, not only individual motions
of the particles (i.e., a gaslike kinetic contribution), but
also contact forces between them (i.e., a solidlike contact
contribution) contribute to the stress. Therefore, in this model,
the pressure consists of kinetic and contact parts as p =
pkin + pcon [29]. The kinetic part is derived from kinetic
theory of granular gases as pkin = [1 + (1 + en)G(φ)]φθ [5],
where we use the global fitting model for the pair correlation
function at contact, G(φ) [30]. On the other hand, the contact
part is given by pcon = a0 log{(φ∞ − φc)/(φ∞ − φ)} with a
reference value a0, where φ∞ is introduced as the area fraction
corresponding to the closest packing [29]. The contact part,
pcon, is zero if the area fraction equals the critical value
(φ = φc), while it diverges if the area fraction approaches
the maximum (φ → φ∞). Thus, it should be noted that the
model can be used in the range between φc < φ < φ∞. The
input parameters, a0 = 3.25 × 10−2kn and φ∞ = 0.9, have
been adjusted to our numerical results of pressure [3], and

the normal restitution coefficient and critical area fraction are
estimated from our MD simulations as en = 0.7 and φc = 0.8,
respectively [3]. In addition to the pressure, the transport
coefficients (η,ξ,κ) and energy dissipation (χ ) are also divided
into the kinetic and contact parts, e.g., η = ηkin + ηcon [29].

Next, we divide the hydrodynamic fields into homogeneous
fields and fluctuations as φ(r,t) = φ0 + δφ(r,t), θ (r,t) =
θ0 + δθ (r,t), and u(r,t) = εyex + δu(r,t), where ε ≡ γ̇ tm
is the scaled shear rate, and the homogeneous granular
temperature, θ0, is determined by substituting the homo-
geneous fields into the equation of granular temperature,
Eq. (4). Note that δu(r,t) = (δux(r,t),δuy(r,t)) is equiva-
lent to the nonaffine velocity field. Then, expanding the
pressure, transport coefficients, and energy dissipation into
the Taylor series in δφ(r,t) and δθ (r,t), we linearize the
hydrodynamic equations (2)–(4) around the homogeneous
fields (see Appendix B 1). Applying the Fourier transform
to the fluctuations as ϕ̂k(t) = ∫

ϕ(r,t)e−Ik·rdr with ϕ(r,t) ≡
(δφ(r,t),δθ (r,t),I−1δu(r,t))T, we find that the hydrodynamic
mode, ϕ̂k(t) ≡ (δφ̂k(t),δθ̂k(t),δûk(t))T, satisfies the linearized
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hydrodynamics [31],

∂

∂t
ϕ̂k(t) =

(
L + εkx

∂

∂ky

)
ϕ̂k(t), (5)

whereL is the 4 × 4 hydrodynamic matrix, and the anisotropic
operator, εkx∂/∂ky , originates from the convection term [26].
Because the linear operator on the right-hand side, i.e., L +
εkx∂/∂ky , is time-independent, we rewrite the hydrodynamic
mode as ϕ̂k(t) ∝ ψ̂

(l)
k eλ(l)t so that Eq. (5) is reduced to

an eigenvalue problem, (L + εkx∂/∂ky)ψ̂ (l)
k = λ(l)ψ̂

(l)
k , where

λ(l) and ψ̂
(l)
k ≡ (δφ̂(l)

k ,δθ̂
(l)
k ,δû(l)

k )T are the lth eigenvalue and
eigenvector, respectively (l = 1, . . . ,4).

In Appendix B 2, we solve the eigenvalue problem by
perturbation theory, where the scaled shear rate, ε, is used
as the expansion parameter because the anisotropic decay of
the spectrum, Eq. (1), is pronounced if ε � 1 (Fig. 2). Then,
we find that each eigenvector is given by

ψ̂
(1)
k �

⎛
⎜⎜⎜⎜⎜⎝

{pθ/J } + ε
{√

2φ2
0/J

}
f

(1)
3

−{pφ/J } + ε{√2p0/J }f (1)
3

ε
{
k̂yf

(1)
2 − √

2k̂xg
(1)
3

}
−ε

{
k̂xf

(1)
2 + √

2k̂yg
(1)
3

}

⎞
⎟⎟⎟⎟⎟⎠, (6)

ψ̂
(2)
k �

⎛
⎜⎜⎜⎜⎜⎝

ε
[{pθ/J }f (2)

1 + {√2φ2
0/J }f (2)

3

]
ε
[ − {pφ/J }f (2)

1 + {√2p0/J }f (2)
3

]
k̂y − ε

√
2k̂xg

(2)
3

−k̂x − ε
√

2k̂yg
(2)
3

⎞
⎟⎟⎟⎟⎟⎠, (7)

ψ̂
(3)
k �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

φ2
0√
2J

+ ε
φ2

0f
(3)
4 +√

2pθ f
(3)
1√

2J
+ Iε

φ2
0g

(3)
4 +√

2pθ g
(3)
1√

2J

p0√
2J

+ ε
p0f

(3)
4 −√

2pφf
(3)
1√

2J
+ Iε

p0g
(3)
4 −√

2pφg
(3)
1√

2J

I k̂x√
2

+ ε
k̂xg

(3)
4 +√

2k̂yf
(3)
2√

2
+ Iε

√
2k̂yg

(3)
2 −k̂xf

(3)
4√

2

I k̂y√
2

+ ε
k̂yg

(3)
4 −√

2k̂xf
(3)
2√

2
− Iε

√
2k̂xg

(3)
2 +k̂yf

(3)
4√

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(8)

and ψ̂
(4)
k � ψ̂

(3)∗
k , in the first-order approximation of ε, where

k̂α ≡ kα/k represents the α-component of the normalized
wave number vector (α = x,y), and the asterisk, ∗, indicates
the complex conjugate. Here, the real functions of wave
numbers, e.g., f

(2)
1 , are listed in Table I.

A theoretical expression of the spectrum, Eq. (1), can be
given by the superposition of lth eigenvectors, i.e., E(k) =
| ∑4

l=1 clδû(l)
k |2 with coefficients cl . However, we examine the

spectrum of each eigenvector, i.e., El(k) = |δû(l)
k |2, to under-

stand the effect of each mode on the anisotropic collective
behavior [Fig. 2(a)]. Figure 3 compares our numerical result
of the spectrum, E(k), with the theoretical expressions, El(k),
where the first mode (l = 1) explains well the quadrupole
structure [Figs. 3(a) and 3(b)], while the others are almost
constant, i.e., E2(k) � 1 and E3(k) = E4(k) � 1/2 [Figs. 3(c)
and 3(d)]. Note that the eigenvalue for the first mode is given
by λ(1) � −(φ0κ0k

2/J 2)(∂p/∂φ) (see the symbols in Table I)
so that the relaxation time of the first mode, τ1 ≡ −1/λ(1),

TABLE I. Real functions of wave numbers, kx , ky , and k ≡√
k2

x + k2
y , for the approximate eigenvectors, Eqs. (6)–(8), where J ≡√

p0pθ + φ2
0pφ and A ≡ (η0 + ξ0 + κ0p0pθ/J

2)/2φ0. The subscript
0 means the value for a homogeneous state, while the subscripts φ

and θ represent the derivatives with respect to the area fraction and
granular temperature, respectively.

f
(2)

1 = − 2φ2
0η0J

η0J 2−φ2
0κ0pφ

k2
y−k2

x

k3

f
(3)

1 = 2
√

2φ2
0η0J 4

φ2
0 (φ0κ0pφ−AJ 2)2k2+J 6

kxky

k2

g
(3)
1 = 2

√
2φ3

0η0J (φ0κ0pφ−AJ 2)

φ2
0 (φ0κ0pφ−AJ 2)2k2+J 6

kxky

k

f
(1)

2 = J (pθ ηφ−pφηθ )

η0J 2−φ2
0κ0pφ

k2
y−k2

x

k3

f
(3)

2 = (η0−φ0A)(φ2
0ηφ+p0ηθ )(k2

y−k2
x)−J 2

√
2J {(η0−φ0A)2k2+J 2}k

g
(3)
2 = (φ2

0ηφ+p0ηθ )(k2
x−k2

y)−φ0(η0−φ0A)k2
√

2φ0{(η0−φ0A)2k2+J 2}k2

f
(1)

3 =
√

2J 4(pθ ηφ−pφηθ )

φ2
0 (φ0κ0pφ−AJ 2)2k2+J 6

kxky

k2

g
(1)
3 =

√
2φ0J (pθ ηφ−pφηθ )(φ0κ0pφ−AJ 2)

φ2
0 (φ0κ0pφ−AJ 2)2k2+J 6

kxky

k

f
(2)

3 =
√

2{φ0J 2k2
x−pθ η0(η0−φ0A)(k2

x−k2
y)k2}

{(η0−φ0A)2k2+J 2}Jk3

g
(2)
3 =

√
2{pθ η0(k2

x−k2
y)+φ0(η0−φ0A)k2

x}
{(η0−φ0A)2k2+J 2}k2

f
(3)

4 = φ2
0ηφ+p0ηθ −2pθ η0

2J 2
kxky

k2

g
(3)
4 = − φ0

4J

kxky

k3

is proportional to the compressibility, i.e., τ1 ∝ k−2βs with
βs ≡ (∂p/∂φ)−1. We also confirm that the relaxation time of
the first mode is the longest one (Appendix C 2). Therefore,
we conclude that anisotropic fluidized bands are generated
by the long-lived hydrodynamic fluctuation characterized by
the compressibility. In addition, the first mode is immediately
suppressed if the system size is too small because the relaxation
time, τ1 ∝ k−2βs , becomes shorter with the increase of the
wave number, k [32].

IV. SUMMARY

In this study, we have investigated the anisotropic collective
behavior of nonaffine velocities in two-dimensional dense
granular flows. From MD simulations with large system sizes,
we found that fluidized bands developed along the x and y

directions [Fig. 1(d)] if the area fraction exceeded a critical
value, φ0 > φc, and the shear rate was extremely small, γ̇ tm �
1, i.e., when the system was yielding under quasistatic defor-
mations. Then, the spectrum, Eq. (1), exhibited quadrupole
structures (Fig. 2), representing the strong anisotropy in spatial
correlations of nonaffine velocities like the fluidized bands
[14]. We found that the hydrodynamic mode derived from
a continuum model well explained the quadrupole structure
[Figs. 3(a) and 3(b)], implying that fluidized bands were
caused by the hydrodynamic fluctuation with the relaxation
time proportional to the compressibility. However, there is
still room for improvement on the theoretical expression of the
spectrum, which might be achieved by constructing the general
solution for the hydrodynamic modes, replacing the radial
distribution function in the continuum model, and including
higher-order terms in the perturbation theory. In the future,
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FIG. 3. (a) A contour plot of the spectrum, E(k), obtained from MD simulation. (b)–(d) Contour plots of the spectra of each eigenvector,
El(k), where (b) E1(k), (c) E2(k) − 1, and (d) E3(k) − 1/2 are plotted. In both the MD simulation and theoretical expressions, the control
parameters are as in Fig. 2(a), i.e., φ0 = 0.84 and ε ≡ γ̇ tm = 2.5 × 10−5.

it will be important to extend our analyses of anisotropy to
spatiotemporal structures of nonaffine velocities, where the
effects on viscoelastic responses [33] and slip avalanches [34]
in yielding granular materials should be clarified. Needless
to say, the analyses in three dimensions are also crucial to
industrial applications of granular materials.
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APPENDIX A: TIME DEVELOPMENT
OF FLUIDIZED BANDS

In this appendix, we show the time development of
anisotropic collective motions of granular particles under

simple shear deformations. Figure 4 displays snapshots of
nonaffine velocities, δui ≡ ui − γ̇ yiex (i = 1, . . . ,N), where
the shear strain increases from (a) γ = 1.2 to (d) γ = 1.8. As
can be seen, anisotropic fluidized bands dynamically change
during steady state (1 < γ < 2) such that nonaffine velocities
are spatiotemporally fluctuating around the linear velocity
profile, γ̇ yex (though the granular temperature stays constant).
On the other hand, the (global) velocity profile remains linear
during steady state (Fig. 5) so that the magnitude of nonaffine
velocities is much smaller than the (total) velocities. Therefore,
it should be noted that anisotropic fluidized bands are not
permanent and do not disturb the linear velocity profile,
implying that it is not caused by hydrodynamic instabilities (or
unstable modes with positive eigenvalues, λ(l) > 0) [35–37].

APPENDIX B: HYDRODYNAMIC MODES

In this appendix, we derive theoretical expressions of
hydrodynamic modes from the hydrodynamic equations (2)–
(4). We introduce linearized hydrodynamics in Appendix B 1
and explain our perturbation theory in Appendix B 2.

1. Linearized hydrodynamics

The hydrodynamic equations (2)–(4) have a homogeneous
solution, i.e., φ(r,t) = φ0, θ (r,t) = θ0, and u(r,t) = εyex with
the scaled shear rate, ε ≡ γ̇ tm. Substituting the homogeneous
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FIG. 4. Time development of nonaffine velocities (arrows), where
the applied shear strain is given by (a) γ = 1.2, (b) γ = 1.4, (c)
γ = 1.6, and (d) γ = 1.8. The gray scale represents the magnitude
of nonaffine velocities (as in Fig. 1), where N = 32 768, φ0 = 0.84,
and γ̇ tm = 2.5 × 10−5 are used in MD simulations.

solution to the equation of granular temperature, we find the
balance between the external supply of energy by simple shear
deformations and dissipation of kinetic energy due to inelastic
interactions as ε2η = χ . Here, we scale the energy dissipation,

FIG. 5. Time development of the (total) velocity field along the
sheared direction, ux(y) (the blue open circles), where the red solid
lines represent the linear velocity profile, γ̇ y. The number of particles,
N , the area fraction, φ0, the scaled shear rate, γ̇ tm, and the shear strain,
γ , in (a)–(d) are as in Fig. 4.

or inelasticity, as χ ∼ ε2 so that the mean granular temperature
is finite in a steady state.

If we introduce small fluctuations around the homogeneous
solution as

φ(r,t) = φ0 + δφ(r,t), (B1)

θ (r,t) = θ0 + δθ (r,t), (B2)

u(r,t) = εyex + δu(r,t), (B3)

the pressure, transport coefficients (i.e., bulk viscosity, shear
viscosity, and thermal conductivity), and energy dissipation,
which are the functions of φ and θ , are expanded into the series
of small fluctuations as

p � p0 + pφδφ + pθδθ + · · · , (B4)

ξ � ξ0 + ξφδφ + ξθδθ + · · · , (B5)

η � η0 + ηφδφ + ηθδθ + · · · , (B6)

κ � κ0 + κφδφ + κθδθ + · · · , (B7)

χ � χ0 + χφδφ + χθδθ + · · · , (B8)

respectively, where p0, ξ0, η0, κ0, and χ0 are the values for
the homogeneous state (i.e., φ = φ0 and θ = θ0) and we
introduced the derivatives as pα ≡ ∂p/∂α, ξα ≡ ∂ξ/∂α, ηα ≡
∂η/∂α, κα ≡ ∂κ/∂α, and χα ≡ ∂χ/∂α (α = φ,θ ). Then,
introducing coefficients associated with the energy balance
as

ωα ≡ ε2ηα − χα (B9)

(α = 0,φ,θ ), we linearize the hydrodynamic equations as

∂δφ

∂t
+ εy∇xδφ � −φ0∇iδui, (B10)

∂δux

∂t
+ εy∇xδux

� (εη̄φ∇y − p̄φ∇x)δφ + (εη̄θ∇y − p̄θ∇x)δθ

+ (
η̄0∇2 + ξ̄0∇2

x

)
δux + (ξ̄0∇x∇y − ε)δuy, (B11)

∂δuy

∂t
+ εy∇xδuy

� (εη̄φ∇x − p̄φ∇y)δφ + (εη̄θ∇x − p̄θ∇y)δθ

+ (
η̄0∇2 + ξ̄0∇2

y

)
δuy + ξ̄0∇x∇yδux, (B12)

∂δθ

∂t
+ εy∇xδθ

� ω̄φδφ + (ω̄θ + κ̄0∇2)δθ + (2εη̄0∇y − p̄0∇x)δux

+ (2εη̄0∇x − p̄0∇y)δuy, (B13)

where we introduced scaled quantities as p̄α ≡ pα/φ0,
ξ̄α ≡ ξα/φ0, η̄α ≡ ηα/φ0, κ̄α ≡ κα/φ0, and ω̄α ≡ ωα/φ0 (α =
0,φ,θ ).
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Next, we introduce the Fourier transforms of the fluctua-
tions as

δφ(r,t) =
∫

δφ̂k(t)eIk·rdk, (B14)

δθ (r,t) =
∫

δθ̂k(t)eIk·rdk, (B15)

δux(r,t) = I

∫
δûxk(t)eIk·rdk, (B16)

δuy(r,t) = I

∫
δûyk(t)eIk·rdk, (B17)

with the imaginary unit, I , where k = (kx,ky) is the wave num-
ber vector. Here, the Fourier coefficients, i.e., δφ̂k(t), δθ̂k(t),
δûxk(t), and δûyk(t), are defined as hydrodynamic modes and
we find that Eqs. (B10)–(B13) are Fourier-transformed as

∂

∂t
ϕ̂k(t) =

(
L + εkx

∂

∂ky

)
ϕ̂k(t), (B18)

where the hydrodynamic modes were written in a
vector form as ϕ̂k(t) ≡ (δφ̂k(t),δθ̂k(t),δûxk(t),δûyk(t))T.
The hydrodynamic matrix, L, is given by

L =

⎛
⎜⎜⎜⎝

0 0 φ0kx φ0ky

ω̄φ ω̄θ − κ̄0k
2 p̄0kx − 2εη̄0ky p̄0ky − 2εη̄0kx

εη̄φky − p̄φkx εη̄θ ky − p̄θ kx −(
η̄0k

2 + ξ̄0k
2
x

) −ξ̄0kxky − ε

εη̄φkx − p̄φky εη̄θ kx − p̄θ ky −ξ̄0kxky −(
η̄0k

2 + ξ̄0k
2
y

)

⎞
⎟⎟⎟⎠ (B19)

with a scaled quantity, ω̄α ≡ ωα/φ0 (α = φ,θ ). Because the linear operator on the right-hand side of Eq. (B18), i.e.,L + εkx∂/∂ky ,
is time-independent, we can separate the time dependence of hydrodynamic modes as ϕ̂k(t) = f (t)ψ̂(k), where Eq. (B18) is
rewritten as

1

f (t)

∂f (t)

∂t
= 1

ψ̂(k)

(
L + εkx

∂

∂ky

)
ψ̂(k) ≡ λ (B20)

with a constant, λ. Therefore, the time dependence of hydrodynamic modes is found to be ϕ̂k(t) = f (0)eλt ψ̂(k), and the constant
λ is given by solving an eigenvalue problem, (

L + εkx

∂

∂ky

)
ψ̂(k) = λψ̂(k), (B21)

where λ and ψ̂(k) are redefined as an eigenvalue and right-eigenvector, respectively. For later use, we also introduce a left-
eigenvector, ψ̃(k), as

ψ̃(k)

(
L + εkx

∂

∂ky

)
= λψ̃(k). (B22)

2. Perturbation theory

We solve the eigenvalue problems, Eqs. (B21) and (B22), by perturbation theory, which is well established for the linear
stability analysis of simple shear flows of granular gases. Because the anisotropic decay of energy spectra, E(k), is observed
in quasistatic flows, ε ≡ γ̇ tm � 1, we use ε as a small expansion parameter, where the hydrodynamic matrix, eigenvalue, and
eigenvectors are expanded into the power series of ε as

L = L0 + εL1 + ε2L2, (B23)

λ(l) = λ
(l)
0 + ελ

(l)
1 + ε2λ

(l)
2 + · · · , (B24)

ψ̂ (l) = ψ̂
(l)
0 + εψ̂

(l)
1 + ε2ψ̂

(l)
2 + · · · , (B25)

ψ̃ (l) = ψ̃
(l)
0 + εψ̃

(l)
1 + ε2ψ̃

(l)
2 + · · · , (B26)

respectively. In Eqs. (B24)–(B26), the upper script represents each mode (l = 1, . . . ,4) and the matrices on the right-hand-side
of Eq. (B23) are given by

L0 =

⎛
⎜⎜⎜⎝

0 0 φ0kx φ0ky

0 −κ̄0k
2 p̄0kx p̄0ky

−p̄φkx −p̄θ kx −(
η̄0k

2 + ξ̄0k
2
x

) −ξ̄0kxky

−p̄φky −p̄θ ky −ξ̄0kxky −(
η̄0k

2 + ξ̄0k
2
y

)

⎞
⎟⎟⎟⎠, (B27)
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L1 =

⎛
⎜⎝

0 0 0 0
0 0 −2η̄0ky −2η̄0kx

η̄φky η̄θ ky 0 −1
η̄φkx η̄θ kx 0 0

⎞
⎟⎠, (B28)

L2 =

⎛
⎜⎝

0 0 0 0
�̄φ �̄θ 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, (B29)

respectively, where the coefficients associated with the energy
balance, Eq. (B9), were scaled as ω̄α ≡ ε2�̄α (α = φ,θ ).
Then, substituting the power series, Eqs. (B23)–(B26), into
the eigenvalue problems, Eqs. (B21) and (B22), we collect
each order term of the perturbation parameter, ε.

First, we find zeroth-order equations as

L0ψ̂
(l)
0 = λ

(l)
0 ψ̂

(l)
0 , (B30)

ψ̃
(l)
0 L0 = λ

(l)
0 ψ̃

(l)
0 . (B31)

In Appendix C, we solve Eqs. (B30) and (B31) in a
long-wavelength limit, k → 0, where the eigenvalues, right-
eigenvectors, and left-eigenvectors are approximated to
Eqs. (C32)–(C36), respectively.

Next, we find a first-order equation as

λ
(l)
1 ψ̂

(l)
0 = (

L0 − λ
(l)
0

)
ψ̂

(l)
1 +

(
L1 + kx

∂

∂ky

)
ψ̂

(l)
0 . (B32)

Multiplying the left-eigenvector, ψ̃
(l)
0 , to Eq. (B32), we find a

first-order correction to the eigenvalue as

λ
(l)
1 = ψ̃

(l)
0

(
L1 + kx

∂

∂ky

)
ψ̂

(l)
0 , (B33)

where the orthonormality, ψ̃
(i)
0 ψ̂

(j )
0 = δij , was used (see Ap-

pendix C) and the first term on the right-hand side of Eq. (B32)
was vanished because of ψ̃

(l)
0 (L0 − λ

(l)
0 ) = 0 [see Eq. (B31)].

To determine the first-order correction to the right-eigenvector,
we write ψ̂

(l)
1 as a linear combination of ψ̂

(l)
0 , i.e.,

ψ̂
(l)
1 =

4∑
j=1

a
(l)
j ψ̂

(j )
0 , (B34)

where a
(l)
j (j,l = 1, . . . ,4) is defined as a coefficient of ψ̂

(j )
0 .

Then, the first-order equation (B32) is rewritten as

λ
(l)
1 ψ̂

(l)
0 =

4∑
j=1

(
λ

(j )
0 − λ

(l)
0

)
a

(l)
j ψ̂

(j )
0 +

(
L1 + kx

∂

∂ky

)
ψ̂

(l)
0 ,

(B35)
where we used L0ψ̂

(l)
1 = ∑

j a
(l)
j L0ψ̂

(j )
0 = ∑

j a
(l)
j λ

(j )
0 ψ̂

(j )
0 .

Multiplying the left-eigenvector, ψ̃
(n)
0 (n �= l), to Eq. (B35),

we find the coefficient as

a(l)
n = 1

λ
(l)
0 − λ

(n)
0

ψ̃
(n)
0

(
L1 + kx

∂

∂ky

)
ψ̂

(l)
0 . (B36)

Note that we cannot determine the coefficients for n = l from
Eq. (B36) and thus simply assume a

(l)
l = 0, where we calculate

explicit forms of the coefficients, a(l)
n (n �= l), in Appendix

D. From Eqs. (B25), (B34), and (B36), we find that the
right-eigenvectors are given by Eqs. (6)–(8) in the first-order
approximation of ε, where the functions, f (l)

n and g(l)
n , in Table I

represent the real and imaginary parts of the coefficient, a(l)
n ,

respectively.

APPENDIX C: THE ZEROTH-ORDER
EIGENVALUE PROBLEMS

In this appendix, we solve the zeroth-order eigenvalue
problems, Eqs. (B30) and (B31), in a long-wavelength limit,
k → 0 (Appendix C 1), and we examine the relaxation time of
each hydrodynamic mode (Appendix C 2).

1. Perturbation theory

We expand the zeroth-order hydrodynamic matrix, eigen-
value, and right- and left-eigenvectors into the power series of
small wave number, k � 1, as

L0 = kM1 + k2M2, (C1)

λ
(l)
0 = kς

(l)
1 + k2ς

(l)
2 + k3ς

(l)
3 + · · · , (C2)

ψ̂
(l)
0 = ξ̂

(l)
0 + kξ̂

(l)
1 + k2ξ̂

(l)
2 + · · · , (C3)

ψ̃
(l)
0 = ξ̃

(l)
0 + kξ̃

(l)
1 + k2ξ̃

(l)
2 + · · · , (C4)

respectively (l = 1, . . . ,4). On the right-hand side of Eq. (C1),
the matrices are introduced as

M1 =

⎛
⎜⎜⎜⎝

0 0 φ0k̂x φ0k̂y

0 0 p̄0k̂x p̄0k̂y

−p̄φk̂x −p̄θ k̂x 0 0

−p̄φk̂y −p̄θ k̂y 0 0

⎞
⎟⎟⎟⎠, (C5)

M2 =

⎛
⎜⎜⎜⎝

0 0 0 0
0 −κ̄0 0 0

0 0 −(
η̄0 + ξ̄0k̂

2
x

) −ξ̄0k̂x k̂y

0 0 −ξ̄0k̂x k̂y −(
η̄0 + ξ̄0k̂

2
y

)

⎞
⎟⎟⎟⎠, (C6)

respectively, where k̂α ≡ kα/k (α = x,y) represents each
component of the normalized wave number vector. Substi-
tuting the power series, Eqs. (C1)–(C4), into the zeroth-order
eigenvalue problems, Eqs. (B30) and (B31), and collecting
each order term of the wave number, k, we find the first
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nontrivial equations as

M1ξ̂
(l)
0 = ς

(l)
1 ξ̂

(l)
0 , (C7)

ξ̃
(l)
0 M1 = ς

(l)
1 ξ̃

(l)
0 . (C8)

The eigenvalues, ς
(l)
1 , are readily found to be

ς
(1)
1 = ς

(2)
1 = 0, ς

(3)
1 = −ς

(4)
1 = I

J

φ0
(C9)

with a constant, J ≡
√

p0pθ + φ2
0pφ , where corresponding

right- and left-eigenvectors are given by

ξ̂
(1)
0 =

(pθ

J
,−pφ

J
,0,0

)T
, (C10)

ξ̂
(2)
0 = (

0,0,k̂y,−k̂x

)T
, (C11)

ξ̂
(3)
0 =

(
φ2

0√
2J

,
p0√
2J

,I
k̂x√

2
,I

k̂y√
2

)T

, (C12)

ξ̂
(4)
0 =

(
φ2

0√
2J

,
p0√
2J

,−I
k̂x√

2
,−I

k̂y√
2

)T

, (C13)

and

ξ̃
(1)
0 =

(
p0

J
,−φ2

0

J
,0,0

)
, (C14)

ξ̃
(2)
0 = (

0,0,k̂y,−k̂x

)
, (C15)

ξ̃
(3)
0 =

(
pφ√
2J

,
pθ√
2J

,−I
k̂x√

2
,−I

k̂y√
2

)
, (C16)

ξ̃
(4)
0 =

(
pφ√
2J

,
pθ√
2J

,I
k̂x√

2
,I

k̂y√
2

)
, (C17)

respectively. It is readily found that the orthonormality,
ξ̃

(i)
0 ξ̂

(j )
0 = δij , is satisfied.

Because the first two eigenvalues are degenerated to zero,
i.e., ς

(1)
1 = ς

(2)
1 = 0, we reformulate the expansion of right-

eigenvectors, Eq. (C3), as

ψ̂
(l)
0 = ζ̂

(l)
0 + kξ̂

(l)
1 + k2ξ̂

(l)
2 + · · · (C18)

for the eigenmodes, l = 1 and 2, where the leading-order term
was replaced with a linear combination of ξ̂

(l)
0 , i.e.,

ζ̂
(l)
0 ≡ b

(l)
1 ξ̂

(1)
0 + b

(l)
2 ξ̂

(2)
0 (C19)

with coefficients b
(l)
j (l,j = 1,2). Then, the next nontrivial

equation in the order of O(k2) is found to be

M1ξ̂
(l)
1 + M2ζ̂

(l)
0 = ς

(l)
1 ξ̂

(l)
1 + ς

(l)
2 ζ̂

(l)
0 . (C20)

Because of the zero eigenvalues, ς
(1)
1 = ς

(2)
1 = 0, Eq. (C20) is

reduced to

M1ξ̂
(l)
1 + M2

{
b

(l)
1 ξ̂

(1)
0 + b

(l)
2 ξ̂

(2)
0

} = ς
(l)
2

{
b

(l)
1 ξ̂

(1)
0 + b

(l)
2 ξ̂

(2)
0

}
.

(C21)

Multiplying the left-eigenvector, ξ̃
(j )
0 (j = 1,2), to Eq. (C21),

we find that

ξ̃
(j )
0 M2

{
b

(l)
1 ξ̂

(1)
0 + b

(l)
2 ξ̂

(2)
0

} = ς
(l)
2

{
b

(l)
1 δj1 + b

(l)
2 δj2

}
, (C22)

where the first term on the left-hand side of Eq. (C21) was
vanished as ξ̃

(j )
0 M1 = 0. Note that Eq. (C22) is explicitly

written as(
ξ̃

(1)
0 M2ξ̂

(1)
0 ξ̃

(1)
0 M2ξ̂

(2)
0

ξ̃
(2)
0 M2ξ̂

(1)
0 ξ̃

(2)
0 M2ξ̂

(2)
0

)(
b

(l)
1

b
(l)
2

)
= ς

(l)
2

(
b

(l)
1

b
(l)
2

)
, (C23)

where each element of the matrix, ξ̃
(j )
0 M2ξ̂

(l)
0 , is given by

ξ̃
(1)
0 M2ξ̂

(1)
0 = −φ0κ0pφ

J 2
k2, (C24)

ξ̃
(1)
0 M2ξ̂

(2)
0 = 0, (C25)

ξ̃
(2)
0 M2ξ̂

(1)
0 = 0, (C26)

ξ̃
(2)
0 M2ξ̂

(2)
0 = −η0

φ0
k2, (C27)

i.e., the matrix is diagonal. Thus, we readily find that the
second-order corrections to the eigenvalues are given by

ς
(1)
2 = −φ0κ0pφ

J 2
k2, ς

(2)
2 = −η0

φ0
k2, (C28)

where the coefficients are determined as (b(1)
1 ,b

(1)
2 )T = (1,0)T

and (b(2)
1 ,b

(2)
2 )T = (0,1)T.

Next, we calculate the second-order corrections to the third
and fourth eigenvalues. For l = 3 and 4, the equation in the
order of O(k2) is found to be

M1ξ̂
(l)
1 + M2ξ̂

(l)
0 = ς

(l)
1 ξ̂

(l)
1 + ς

(l)
2 ξ̂

(l)
0 . (C29)

Multiplying the left-eigenvector, ξ̃ (l)
0 , to Eq. (C29), we find that

ς
(l)
2 = ξ̃

(l)
0 M2ξ̂

(l)
0 , (C30)

where we used ξ̃
(l)
0 M1ξ̂

(l)
1 = ς

(l)
1 ξ̃

(l)
0 ξ̂

(l)
1 . Then, it is readily

found that the second-order corrections to the third and fourth
eigenvalues are given by

ς
(3)
2 = ς

(4)
2 = − 1

2φ0

(
η0 + ξ0 + κ0p0pθ

J 2

)
. (C31)

In summary, the eigenvalues of the zeroth-order hydrody-
namic matrix, L0, are given by

λ
(1)
0 = −φ0κ0pφ

J 2
k2, (C32)

λ
(2)
0 = −η0

φ0
k2, (C33)

λ
(3)
0 = − 1

2φ0

(
η0 + ξ0 + κ0p0pθ

J 2

)
k2 + I

J

φ0
k, (C34)

λ
(4)
0 = − 1

2φ0

(
η0 + ξ0 + κ0p0pθ

J 2

)
k2 − I

J

φ0
k, (C35)

in the order of O(k2), where the right- and left-eigenvectors
are given by

ψ̂
(l)
0 = ξ̂

(l)
0 , ψ̃

(l)
0 = ξ̃

(l)
0 , (C36)
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FIG. 6. (a) Real parts of the eigenvalues in the leading order of
ε, i.e., Re[λ(l)

0 ] (l = 1, . . . ,4), where the inset shows a zoom-in to
small wave numbers. Real parts of the third and fourth eigenvalues
are equivalent, i.e., Re[λ(3)

0 ] = Re[λ(4)
0 ]. (b) Relaxation time of each

hydrodynamic mode estimated as τ (l) � −1/Re[λ(l)
0 ]. In both (a) and

(b), the red solid, blue dotted, and green broken lines correspond to
the modes, l = 1, 2, and 3 (or 4), respectively, and �k ≡ 2π/L with
the linear system size, L, is the increment of wave number.

respectively (l = 1, . . . ,4), in the leading order of k. Note that
the eigenvectors, Eq. (C36), satisfy the orthonormality, i.e.,
ψ̃

(i)
0 ψ̂

(j )
0 = δij .

2. Relaxation time

The relaxation time of each hydrodynamic mode is given
by the inverse of the real part of the eigenvalue as τ (l) ≡
−1/Re[λ(l)] (l = 1, . . . ,4). Since the eigenvalues have been
calculated as Eqs. (C32)–(C35) in the leading order of ε,
we approximate the relaxation time as τ (l) � −1/Re[λ(l)

0 ] to
examine its magnitude. Figure 6(a) displays the real part
of each eigenvalue, Re[λ(l)

0 ], where all the real parts are
negative and decreasing functions of the wave number, i.e.,
Re[λ(l)

0 ] ∝ −k2. In this figure, the area fraction is given by
φ0 = 0.84 and the first mode is always the largest one so that

the relaxation time of the first mode is always the longest one
[Fig. 6(b)].

APPENDIX D: EXPLICIT CALCULATIONS OF THE
COEFFICIENTS FOR THE FIRST-ORDER CORRECTION

TO RIGHT-EIGENVECTORS

In this Appendix, we explicitly calculate the coefficients,
a(l)

n [Eq. (B36)], for the first-order corrections to right-
eigenvectors, ψ̂

(l)
1 [Eq. (B34)], where n,l = 1, . . . ,4.

First, we introduce a diagonal matrix as

� ≡

⎛
⎜⎜⎝

λ(1) 0 0 0
0 λ(2) 0 0
0 0 λ(3) 0
0 0 0 λ(4)

⎞
⎟⎟⎠, (D1)

where each diagonal element corresponds to each eigenvalue
of the hydrodynamic matrix, L. Then, the power series of the
eigenvalue, Eq. (B24), can be written in matrix form as

� = �0 + ε�1 + ε2�2 + · · · , (D2)

where each diagonal matrix on the right-hand side, �n (n =
0,1,2, . . . ), is given by

�n ≡

⎛
⎜⎜⎝

λ(1)
n 0 0 0
0 λ(2)

n 0 0
0 0 λ(3)

n 0
0 0 0 λ(4)

n

⎞
⎟⎟⎠. (D3)

If we write the zeroth-order right-eigenvectors, ψ̂
(l)
0

[Eq. (C36)], in matrix form as

�0 ≡ (
ψ̂

(1)
0 ,ψ̂

(2)
0 ,ψ̂

(3)
0 ,ψ̂

(4)
0

)

=

⎛
⎜⎜⎜⎜⎜⎝

pθ

J
0 φ2

0√
2J

φ2
0√
2J

−pφ

J
0 p0√

2J

p0√
2J

0 k̂y
I k̂x√

2
− I k̂x√

2

0 −k̂x
I k̂y√

2
− I k̂y√

2

⎞
⎟⎟⎟⎟⎟⎠, (D4)

TABLE II. Explicit forms of the coefficients, a(l)
n , for n �= l, where

only a
(2)
1 and a

(1)
2 are real numbers and the other elements are given

by complex conjugates as a
(4)
1 = a

(3)∗
1 , a(4)

2 = a
(3)∗
2 , a(1)

4 = a
(1)∗
3 , a(2)

4 =
a

(2)∗
3 , and a

(3)
4 = a

(4)∗
3 (∗ indicates the complex conjugate). Here, J ≡√

p0pθ + φ2
0pφ and A ≡ (η0 + ξ0 + κ0p0pθ/J

2)/2φ0.

a
(2)
1 = − 2φ2

0η0J

η0J 2−φ2
0κ0pφ

k2
y−k2

x

k3

a
(3)
1 = 2

√
2φ2

0η0J {J 3+Iφ0(φ0κ0pφ−AJ 2)k}
φ2

0 (φ0κ0pφ−AJ 2)2k2+J 6

kxky

k2

a
(1)
2 = J (pθ ηφ−pφηθ )

η0J 2−φ2
0κ0pφ

k2
y−k2

x

k3

a
(3)
2 =

√
2bφ0(η0−φ0A)(k2

y−k2
x )−J√

2{(η0−φ0A)2k2+J 2}k + I {√2bJ (k2
x−k2

y )−φ0(η0−φ0A)k2}√
2{(η0−φ0A)2k2+J 2}k2

a
(1)
3 =

√
2J (pθ ηφ−pφηθ ){J 3+Iφ0(φ0κ0pφ−AJ 2)k}

φ2
0 (φ0κ0pφ−AJ 2)2k2+J 6

kxky

k2

a
(2)
3 =

√
2{φ0J 2k2

x−pθ η0(η0−φ0A)(k2
x−k2

y )k2}
J {(η0−φ0A)2k2+J 2}k3

+
√

2I {pθ η0(k2
x−k2

y )+φ0(η0−φ0A)k2
x }

{(η0−φ0A)2k2+J 2}k2

a
(4)
3 = φ0cm

2J

kxky

k2 + I
φ0
4J

kxky

k3
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the zeroth-order equation (B30) is rewritten as

L0�0 = �0�0. (D5)

We also introduce a matrix form of the zeroth-order left-eigenvectors, ψ̃
(l)
0 [Eq. (C36)], as

�−1
0 ≡

⎛
⎜⎜⎜⎝

ψ̃
(1)
0

ψ̃
(2)
0

ψ̃
(3)
0

ψ̃
(4)
0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

p0

J
−φ2

0
J

0 0

0 0 k̂y −k̂x

pφ√
2J

pθ√
2J

− I k̂x√
2

− I k̂y√
2

pφ√
2J

pθ√
2J

I k̂x√
2

I k̂y√
2

⎞
⎟⎟⎟⎟⎟⎠ (D6)

such that �0 and �−1
0 are orthonormal, i.e., �−1

0 �0 = I with the identity matrix, I. Then, we find that a part of the right-hand-side
of Eq. (B36), i.e., ψ̃

(n)
0 (L1 + kx∂/∂ky)ψ̂ (l)

0 , is given by the (n,l) element of the matrix,

� ≡ �−1
0

(
L1 + kx

∂

∂ky

)
�0. (D7)

By using Eqs. (B28), (D4), and (D6), and the derivatives of wave numbers, kx∂k̂x/∂ky = −k̂2
x k̂y and kx∂k̂y/∂ky = k̂3

x , we
calculate each element of the matrix, �, as

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 2φ2
0 η̄0

J

k2
y−k2

x

k
I

2
√

2φ2
0 η̄0

J

kxky

k
−I

2
√

2φ2
0 η̄0

J

kxky

k

a
k2
y−k2

x

k

kxky

k2 b
k2
y−k2

x

k
− I√

2
b

k2
y−k2

x

k
+ I√

2

−√
2Ia

kxky

k

√
2pθ η̄0

J

k2
x−k2

y

k
− √

2I k̂2
x − kxky

2k2 − Icp
kxky

k

kxky

2k2 − Icm
kxky

k√
2Ia

kxky

k

√
2pθ η̄0

J

k2
x−k2

y

k
+ √

2I k̂2
x

kxky

2k2 + Icm
kxky

k
− kxky

2k2 + Icp
kxky

k

⎞
⎟⎟⎟⎟⎟⎟⎠

, (D8)

where the constants a, b, cp, and cm have been introduced as

a ≡ pθ η̄φ − pφη̄θ

J
, (D9)

b ≡ φ2
0 η̄φ + p0η̄θ√

2J
, (D10)

cp ≡ φ2
0 η̄φ + p0η̄θ + 2pθ η̄0

J
, (D11)

cm ≡ φ2
0 η̄φ + p0η̄θ − 2pθ η̄0

J
, (D12)

respectively. Note that the diagonal elements of � correspond to the first-order corrections to eigenvalues, Eq. (B33), and its
off-diagonal elements correspond to the coefficients for the first-order corrections to right-eigenvectors, Eq. (B36), except for the
factor 1/(λ(l)

0 − λ
(n)
0 ), i.e., πll = λ

(l)
1 and πnl = (λ(l)

0 − λ
(n)
0 )a(l)

n (n �= l) if we write the (n,l) element of � as πnl . In Table II, we
list explicit forms of the coefficients, a(l)

n .
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