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Contact angle entropy and macroscopic friction in noncohesive two-dimensional granular packings
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We study the relationship between the granular contact angle distribution and local particle friction on the
macroscopic friction and bulk modulus in noncohesive disk packings. Molecular dynamics in two dimensions
are used to simulate uniaxial loading-unloading cycles imposed on the granular packings. While macroscopic
Mohr friction depends on the granular pack geometric details, it reaches a stationary limit after a finite number
of loading-unloading cycles that render well-defined values for bulk modulus, grain coordination, porosity,
and friction. For random packings and for all polydispersities analyzed, we found that as interparticle friction
increases, the bulk modulus for the limit cycle decreases linearly, while the mean coordination number is reduced
and the porosity increased, also as approximately linear functions. On the other hand, the macroscopic Mohr
friction increases in a monotonous trend with interparticle friction. The latter result is compared to a theoretical
model that assumes the existence of sliding planes corresponding to definite Mohr-friction values. The simulation
results for macroscopic friction are well described by the theoretical model that incorporates the local neighbor
angle distribution that can be quantified through the contact angle entropy. As local friction is increased, the
limit entropy of the neighbor angle distribution is reduced, thus introducing the geometric component to granular
friction. Surprisingly, once the limit cycle is reached, the Mohr friction seems to be insensitive to polydispersity
as has been recently reported.

DOI: 10.1103/PhysRevE.96.012902

I. INTRODUCTION

The nonlinear mechanical behavior of granular matter is a
subject of strong interest since it has many industrial appli-
cations, especially in structural and mechanical engineering,
where concrete beams are designed and created to construct
buildings and bridges more resistant to external load patterns
[1–4]. This resistance is related to the shear strength and bulk
modulus of the material. Both variables are also studied in
soil mechanics using different mechanical assays such as
triaxial and uniaxial tests [5–8]. The shear strength is the
maximum shear stress that a material can sustain before failure.
This maximum shear stress is related to the Mohr-Coulomb
criterion, where one can determine a macroscopic friction
representing a resistance to shear stresses. The generalization
of this criterion to noncohesive granular packings with rigid
and periodic boundaries in two dimensions [9–12] have
suggested a relationship between particle friction, the contact
angle distribution, and the macroscopic friction of the granular
sample. The relation between local and macro friction has also
been explored in detail in three-dimensional packs [13–15],
nevertheless the effect of the packing structure component on
the macroscopic friction has not been widely explored.

The bulk modulus of a granular medium is a measure of the
resistance to bulk deformation. There have been theoretical

[16,17], numerical [18–20], and experimental [21,22] efforts
to understand the macroscopic bulk modulus of a granular
packing. However, a general constitutive relation that predicts
the global behavior of granular system under external forces
is still a challenge. Experimental [21,22] and numerical [18]
results report a scaling of the bulk modulus with pressure
P as P 1/2, in contrast to theoretical predictions [16,17] and
experiments [23], where a scaling of P 1/3 is found. This draw-
back was discussed in Ref. [17], arguing that the assumption
of affine deformations in mean-field theories inevitably leads
to the erroneous scaling. On the other hand, incorporating
nonaffine deformations makes the problem nonamenable to
treatment with regular elasticity theory. Previous works have
studied the effect of particle friction on the bulk modulus in 3D
systems using isotropic compression [19,20]. However, they
focused on the elastic response of the system, when particle
rearrangements are not present.

In this work, we will study numerically the effect of particle
friction and polydispersity on the macroscopic friction and
bulk modulus of granular packings. In Secs. II and III, we
describe our discrete particle dynamical simulations used
to model uniaxial loading-unloading cycles applied to each
granular packing. Such a uniaxial test has been used to
prepare isotropic packings [15,44] and to reach stationary
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macroscopic properties [18]. Here, particle rearrangements
and interpenetration are allowed to occur, and they result in
changing granular pack properties from one loading-unloading
cycle to the next. Our simulations allow for interpenetration
values higher than those that appear in standard granular
simulations, which are typically below δ/R = 1%. Never-
theless, we show that there exists a stationary limit cycle
above which the effective bulk modulus and Mohr-friction
properties remain unchanged. It is this well-defined state of
the granular pack that will be described, in order to clearly
expose the geometric component as a determining factor to the
macroscopic properties. In Sec. IV the simulation results for
the Mohr friction will be compared with a theoretical model,
which depends on the particle friction and the contact angle
distribution within the pack. The contact angle distribution
is quantified by the contact angle entropy that changes with
local friction values and singles out the geometric component
to Mohr friction. As the local friction increases, the contact
angle entropy decreases and results in a larger Mohr friction.
This relation establishes a direct relation between granular
order and macroscopic friction.

Finally, in Sec. V, we study the effect of changing
granular polydispersity on Mohr friction and the bulk modulus.
Previous works have studied the effect of polydispersity
on the macroscopic friction in two- and three-dimensional
granular packings [15,24], showing that the macroscopic
friction was independent of this variable. Such independence
was explained in Ref. [24], as a consequence of the interplay
between force chains and length scales within the packing.
In these works, triaxial and shear tests were used to impose
a nominal number of stress states on the packing without
reaching a limit hysteresis cycle. In this section, we address
the relation between polydispersity and Mohr friction in the
loading-unloading stationary limit, finding that the latter is also
surprisingly independent of polydispersity and is consistent
with the theoretical model of the previous section. We end
with a summary and the conclusions.

II. CONTACT MODEL

When two grains of radii Ri , Rj , and linear and angular
positions ri , rj , θi , θj come into contact, they interact with the
following contact force [18,25,26]:

Fc = −
√

ξnReff(knξn + γnξ̇n)n̂ + Fs , (1)

where the first term is the normal contact force Fn. The
first term of Fn represents the elastic part of the model,
with ξn the relative normal displacement between the grain
surfaces in contact, defined as ξn = (Rj + Ri) − |rj − ri |.
Reff = RiRj/(Ri + Rj ), is the effective radius between two
grains, kn = 4

√
Eeff/3 is the normal stiffness of the contact,

Eeff = E/2(1 − ν2) is the effective Young’s modulus at con-
tact according to Hertz theory [27], while ν and E is the
Poisson’s coefficient and Young’s modulus of the grains. The
second term of Fn represents the viscous part of the model,
where γn is the normal grain-grain damping coefficient, ξ̇n

corresponds to the overlap rate, and n̂ = (rj − ri)/|rj − ri |
is a unitary normal vector to the grain-grain contact. Fs

represents the tangential contact force between the grains and it
is modeled as in previous works [12,18]. Such force is written

TABLE I. Parameters used in simulation. Values correspond
to quartz grains (see Ref. [33]), which are frequently found in
sedimentary rocks.

Prop. Symbol Value

Density ρg 2.65 g/cm3

Normal stiffness kn 191.30 GPa
Tangential stiffness ks 183.32 GPa
Poisson ratio ν 0.08
Damping coeff. γn,s 2 × 10−6g/(cm · s)
Micro friction μ [0.1–1]
Polydispersity δ [0–70]%

in a compact form as

Fs = −min(
√

ξnReff(ksξs + γs ξ̇s),μs |Fn|)ŝ, (2)

which depends on the minimum value between the viscoelastic
force and the Coulomb condition for sliding grains. The first
term represents the Mindlin model [28] with a viscoelastic
contribution between two grains. This model is suitable for
modeling tangential contact forces between grains and is
widely recognized in literature [26,29–31], although more
rigorous models have been proposed [32] albeit more difficult
to implement. ks = 8G/(2 − ν) is the tangential stiffness at
the contact and G is the shear modulus, while γs is the
tangential damping coefficient. The second term in Eq. (2)
is the Coulomb friction force before sliding, where μ is the
static microscopic friction between grains and ξs is the relative
tangential displacement between grains in contact computed as

ξs(t) =
∫ t

0
ξ̇s(t

′)dt ′, (3)

where ξ̇s = vij · ŝ + ωiRi + ωjRj is the magnitude of the
relative tangential velocity between the center of the grains,
and ωi and Ri are the angular velocity and the radii of grain
i, respectively. ŝ = �ξs/|�ξs | is a unit tangential vector to the
surfaces in contact.

This model is used to simulate the contact between rotating
and nonrotating disks. In the latter, the angular degree of
freedom, θ , is not considered allowing to sliding particles
only. The comparison of the macroscopic friction between
rotating and nonrotating disks are given in Fig. 6. Additional
simulations of rotating composite particles are also considered
in order to explore the effect of angularity on their frustration
of rotation. In Appendix B we will address this issue in detail.

III. GRANULAR PACKING CONSTRUCTION
AND SIMULATION PROCEDURE

A granular packing is composed of circular grains whose
radii are in the range of R ∈ [Rmin,Rmax]. Such radii are
chosen from a Gaussian distribution with average radius, Rav,
and standard deviation σ , resulting in a polydispersity of the
packing quantified by δ = σ/Rav = (Rmax − Rmin)/(Rmax +
Rmin). Where Rmin and Rmax are chosen to correspond to 1σ

around the mean of the Gaussian distribution.
The grain parameters used in simulations are given

in Table I. The simulation box has the dimensions of

012902-2



CONTACT ANGLE ENTROPY AND MACROSCOPIC . . . PHYSICAL REVIEW E 96, 012902 (2017)

FIG. 1. Granular packing composed of 10 900 grains constructed
using a ballistic deposition algorithm. The polydispersity of the
granular packing is δ = 50%. Grains colored in gray represent the
pistons. Vertical line represents an imaginary line used as guide to
determine the horizontal stresses inside the packing.

W = 150Rav in width and H = 300Rav in height. The granular
packing is constructed using a ballistic deposition algorithm,
where grains fall into a position inside the box, one by one,
where no frictional effects between grains are considered
[34]. Once the packing is constructed, a vertical segment,

y = 15Rav, is taken at the bottom and at the top of the
simulation box. Those grain positions satisfying ri � 
y

belong to the bottom wall, while those satisfying ri � H − 
y

belong to the top wall. These grain segments act as rigid blocks
corresponding to pistons, which are moved toward the center
of the pack to compact the system. Figure 1 shows a typical
packing and the corresponding pistons represented by the grey
particles.

As was shown before [18], when one subjects the granular
pack to a uniaxial loading, its configuration changes and the
pack changes in length and properties, such as porosity, mean
coordination number, bulk modulus, etc. As it is inconvenient
to study a nonstationary system under stress, we cycled the
pack until no further changes occurred. This limit was typically
reached for more than 15 cycles, the point at which one
reaches a stationary hysteresis loop, i.e., an unchanging route
in strain-stress space that closes on itself reproducibly. Each
cycle consists of several stress states of compaction and closes
on decompaction until it reaches the final state. Each stress
state, during the loading process, is reached by moving the
walls a distance δy toward the center of the pack. After N

strain steps, the pack length changes in δH = 2Nδy. The
macroscopic strain εyy is calculated according to the relation

εyy = δH

H
, (4)

where H is the reference length of the packing. During each
stress state, part of the injected energy is stored as potential
and kinetic energy of the grains, and the other part is dissipated
through friction and damping at the grain contacts. Once
the simulation reaches a particular strain state, it calculates
the characteristic time to relax the kinetic energy of the
grains to a predetermined value. Once this is verified, it
is said that the system has reached a static configuration.
At this point, the simulation continues with the next stress
state. After a few steps, the packing reaches a maximum
pre-selected vertical strain. Such value was considered here
to be εmax

yy = 0.15. Once the system reaches this value, the
simulation starts the decompression process, where the pistons
move away from the center of the granular packing, following
the same procedure explained before. The decompression
process ends when the stress on the pistons, σyy , falls below
5 MPa. The final configuration of each cycle will be the initial
configuration of the following loading cycle. The εmax

yy value
chosen leads to relatively large overlaps (see Appendix A)
and long-lasting contacts between disks. These cause larger
mean coordination and lower porosity compared with those in
standard simulations using hard-disk model [35].

In each strain state applied, the macroscopic stress σyy ,
transmitted along the vertical direction is calculated. In order
to avoid wall effects on the macroscopic behavior of the
granular sample, we consider periodic boundary conditions
in the direction perpendicular to compaction. An imaginary
line is drawn along the vertical direction positioned in the
center of the granular sample (see Fig. 1) in order to determine
σxx , which is calculated by a sum of the horizontal stresses
that the grains on one side of the line exert on the grains on
the other side. The whole procedure is described in Ref. [18].
Once σyy and σxx are determined, one can construct a Mohr
circle through the following expression:

τ 2 +
[
σn −

(
σyy + σxx

2

)]2

=
(

σyy − σxx

2

)2

, (5)

which relates the shear stress, τ , and normal stress, σn, for
a particular plane inside the packing. The radius and center
of each circle are calculated by R = (σyy − σxx)/2 and Ce =
(σyy + σxx)/2 respectively. Equation (5) corresponds to the
case where σxx and σyy directions match with the principal axes
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FIG. 2. Bulk modulus as a function of vertical stress for each
cycle. The data is shown only for the loading process. A power law
function is adjusted to cycle 15. Polydispersity and particle friction
of the granular packing are δ = 50% and μ = 0.3, respectively.

of the packing. At the final cycle, we have a sequence of Mohr
circles that are used to obtain the macroscopic friction by fitting
a straight line as suggested by the Mohr-Coulomb criterion.
Through this procedure, the normal and shear components
applied instantaneously to every plane in the material will be
described as a result of the uniaxial stress.

IV. EFFECT OF INTERPARTICLE FRICTION

A. Bulk modulus

The bulk modulus of the granular pack is calculated
following previous works [17,18], where a variation of the
vertical strain, 
εyy , is imposed when monitoring the variation
of vertical stress, 
σyy , and horizontal stress 
σxx . The bulk
modulus here can be written as

K = 
σyy + 2
σxx

3
εyy

. (6)

Equation (6) is strictly appropriate for macroscopically
isotropic systems, while our system is anisotropic, especially
due to how the contacts and the friction act redirecting the
vertical pressure sideways. Nevertheless, we use Eq. (6) as a
measure of the bulk modulus, or how the system responds to
changes in the volume of the granular pack in that particular
direction. As we measure the stresses in the granular pack,
we can compute this quantity. We note that this relation and
others related to macroscopic elastic quantities, such as shear
and Young modulus, are used in soil mechanics assuming the
structure of the soil as isotropic [36], which we know is not
necessarily correct.

A typical curve of the bulk modulus as a function of vertical
stress for each cycle during the loading process is shown in
Fig. 2. One can see that the granular pack hardens as the
vertical stress increases. For low vertical stresses, the bulk

modulus shows approximately the same values for each cycle.
In this range, the packing behaves as an elastic system because
particle rearrangements are less frequent. These results are
consistent with recent works [19,20], where the bulk modulus
is addressed in such elastic range. For higher values of vertical
stress, the bulk modulus increases with the number of cycles
due to particle rearrangements for large deformations. Such
rearrangements produce changes in the mean coordination
number and porosity from the initial values: Zi = 3.8 and
ψi = 17%, to the final values, Zf = 5.03 and ψf = 6.31%,
for the final loading cycle. This cycle is taken as the limit cycle
since variations of porosity and mean coordination number
beyond the 15th cycle are less than ±4.3% and ±0.2%,
respectively.

For the limit cycle, a good data fit can be made to a power
law,

K = K0 + a

(
σyy

σ0
− 1

)α

, (7)

where K0 ≈ 200 MPa is the elastic bulk modulus at minimum
stress σ0 = 4.1 MPa, a = 0.29 MPa, and α = 0.47. The value
of the exponent obtained here is consistent with those found
in experimental [21,22] and numerical results [18], showing
an exponent of 1/2 but above those obtained by mean-field
theories (MFT) [16,17] and other experiments [23,30,37],
where a 1/3 power law is found. This discrepancy between
the theory, the experiments, and simulations, is argued in
Ref. [17] to be due to the nonaffine motion of grains during
deformation, not taken into account in MFT. The latter
approach taking into account nonaffine deformations was
attempted in Refs. [38,39], where they study the comparison of
general aspects of nonaffine behavior evaluating correlations
and spatial fluctuations of granular systems.

In order to study the effect of particle friction on the bulk
modulus, we vary the particle friction in the range μ = [0.1–1].
Ten granular packings were built with different particle
frictions, with the same microstructure and a polydispersity
of 50%. Then, 15 uniaxial loading-unloading cycles were
imposed for each packing. The bulk modulus was computed
for each frictional value at the limit cycle using Eq. (6).
Figure 3 shows the behavior of the bulk modulus with vertical
stress for different particle frictions when particle rotations
are prevented. We obtain that, as particle friction increases,
the bulk modulus decreases for a specific applied vertical
stress. These results are consistent with previous works in
three-dimensional granular packings (see Refs. [19,20]).

Figure 4(a) shows the reduction of the bulk modulus with
particle friction for the final loading state of the limit cycle
compared with the values obtained for less polydisperse and
monodisperse packings. We can see that the three packings
exhibit a nonmonotonous linear trend with particle friction,
where the highest polydisperse packing always shows larger
bulk modulus values than the other packings.

The reasons behind the reduction of the bulk modulus with
particle friction are related to change of the mean coordination
number and porosity with this microscopic variable. Previous
theoretical [16,17] and numerical [19] results show a reduction
of the bulk modulus when the mean coordination number
decreases and porosity increases. Both variables are shown
in Figs. 4(b) and 4(c) as a function of particle friction,
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FIG. 3. Bulk modulus as a function of vertical stress with different
particle frictions. The data is shown only for the loading process in the
final cycle. The polydispersity of the granular packings is δ = 50%.

FIG. 4. (a) Bulk modulus, (b) mean coordination number, (c)
porosity, and (d) α exponent as a function of the microscopic friction.
The data in (a) and (b) are shown for the final loading state of the
final cycle, while the data in (c) are shown for the final cycle. Dashed
lines represent linear fits to the data. Horizontal lines represent the
mean value of ᾱ = 0.49. The data for the packing with δ = 0.5 was
averaged over 5 different samples, respectively.

compared with those values obtained in polydisperse and
monodisperse packs. We obtain that the mean coordination
number decreases and porosity increases linearly with particle
friction for the four packings. Such reduction is also obtained
in a three-dimensional simulation [13]. At the grain level,
increasing particle friction means less particle rearrangements,
producing a reduction of the mean coordination number and
as a consequence a less compact system of higher porosity.
We note that, despite the high values of mean coordination
number and low porosity exhibited by the monodisperse
packing, it shows lower values for the bulk modulus as
compared to polydisperse packings. This result suggests that
the degree of polydispersity makes packings more rigid to bulk
deformation than monodisperse packings of similar friction.
We will address this point in Sec. V.

We should note that the high and low values for the
coordination number and porosity correspond to relatively
high overlaps at the contact between grains. This can be clearly
shown in Fig. 14 of Appendix A, where we have assessed the
distributions of contact interpenetration and the vast majority
do not exceed 2%, although a few rare contacts can reach 8%
for the highest polydispersity.

As an additional comment, the bulk modulus shown in
Fig. 3 were fitted to the power law given in Eq. (7) in order
to explore the variation of the α exponent as a function of
particle friction. We obtained that the α exponent fluctuates
approximately 10% around its mean value of ᾱ = 0.49; see
Fig. 4(d). Such variation meaning that the α exponent is
insensitive to particle friction.

The results presented in this section confirm that the
bulk modulus decreases with particle friction. This can be
understood since packings with higher friction result in a lower
coordination number and higher porosity. Friction interferes
with the reshuffling of the granular pack into a more dense
state.

B. Mohr bulk friction

The macroscopic friction of the granular packing is deter-
mined extending the concept of Mohr’s circles. This extension
has been studied in two-dimensional granular systems in
Refs. [9,11,12], where the envelope of successive Mohr’s
circles, in the loading process, is found to be linear and is
interpreted as an effective macroscopic friction for the granular
sample. This straight line corresponds to the Mohr-Coulomb
criterion written mathematically as

|τ | = C + μMσ, (8)

where σ and τ are the maximum normal and shear stresses
acting on a particular plane inside the material. C is the shear
stress due, in general, to cohesion of the granular pack (e.g.,
cementation between particles, not present here) and μM is
the macroscopic friction of the packing. We focus on the
second term, due to frictional stresses originated between
particle friction and interlocking (geometrical effects). In
addition, we study also how macroscopic friction changes
with particle friction when particle rotations are considered or
prevented. The latter case can be interpreted as if the packing
was composed actually by grains with irregular shapes or
angularity which contribute to frustrate their rotations.
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FIG. 5. Successive Mohr’s circles in the loading process for the
initial (c1), intermediate (c7), and final cycle (c15). The black line
corresponds with the fitting of the Mohr-Coulomb criterion. The
polydispersity and particle friction of the granular packing are δ =
50% and μ = 0.3, respectively.

Figure 5 shows successive Mohr’s circles for increasing
load imposed on a packing with μ = 0.3. The innermost circles
correspond with the first loading cycle, while the following
two correspond to an intermediate and limit loading cycle. A
macroscopic friction can be found for each loading succession
of Mohr’s circles given in Fig. 5. The reference macroscopic
friction for this packing is actually taken for the limit cycle
since its value does not change more than ±0.5% for further
cycles, so we have a stationary limit. For the limit cycle, we
obtained μM ≈ 0.5, for both rotating and nonrotating disks,
larger than the particle friction here at μ = 0.3, consistent
with previous works [9,11,12]. This result is expected, since
the dilatancy of the material depends on the structure of the
packing and opposes the sliding of fault zones [40] that are
contemplated in the Mohr-Coulomb criterion.

The ten packings with different particle friction and the
polydispersity of δ = 50% were used to determine their
macroscopic friction as a function of μ. Figure 6 shows
this relation considering the case of both sliding and particle
rotation and only particle sliding. We can see that when
particles only slide, the macroscopic friction increases ap-
proximately linear with μ, evidencing values always larger
than this microscopic variable. However, when particles are
able to slide and rotate, we observe two different behaviors for
the macroscopic friction. One regime in which μM > μ and
another where μM < μ. We can interpret such behaviors as a
competition between particle sliding and particle rotations.
For the smaller μ values, points follow the curve consid-
ering only sliding, suggesting that sliding is dominant over
rotations. Particle rotations start to contribute as μ increases
and become dominant for larger values of local friction.
This leads to the saturation range, which has been obtained
in bidimensional [11,43] and three-dimensional simulations
[15,44]. This clearly demonstrates that 2D simulations also
possess important macroscopic features, such as macroscopic
friction, exhibited in 3D packings.

The simulation results obtained for the case of particle
slidings are compared with a simple bidimensional model

FIG. 6. Macroscopic friction as a function of particle friction.
Hollow symbols represent the data for cycle 1 with slidings and
particle rotations. Filled symbol are the data for cycle 15 with only
particle slidings. The degree of polydispersity for the packings was
set to δ = 50%.

which relates friction and contact orientation of grains with the
macroscopic friction of the packing. This model was developed
in Ref. [9] using Rankine analysis under the assumption that
grains can only slide but no rotate, and tested by numerical
simulations presented in Ref. [12].

Although particle rotations in granular simulations are
crucial since they control, e.g., the development of shear bands
in granular packings [45], frustration of particle rotations
seems to be the norm when more realistic angular particles are
considered and higher overlaps occur [46,47]. Our simulations,
which allow for some overlap beyond 1%, can bind disks
together obstructing rotations. This situation is more in tune
with a granular solid than a granular material and possibly
a transition between the two [48]. This statement allows us
to justify the nonrotating disk model used in our simulations,
which can be viewed as a limiting case for angular grains
frustrating all rotations. To show this, we undertook an
independent validation of our rotationally frustrated limit by
modeling more realistic angular particle systems as particles
made up of clumps of disks with varying “angularity.” The
results, described in detail in the Appendix B, show an
increasing dominance of sliding for a larger range of local
friction values as such angularity increases. These results are
consistent with previous results [49,50], where mean friction
mobilization increases as angularity increases. Based on this
fact, our theoretical model can be understood as one addressing
the contribution of rotation frustration by the angularity of the
grains that increase the shear strength of the packing. For the
rest of the paper, we will ignore rotations in our granular pack
treating only this limit.

The macroscopic friction in this model can be calculated
using the following expression derived in Ref. [12]:

〈μM〉 =
∫ φmax

φmin

P (φ)tan

(
2

3
[φm − φ + π/4]

)
dφ, (9)
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FIG. 7. Comparison of the initial contact angle distribution of
the packings before compaction and four distribution after final
loading cycle for different particle friction. The polydispersity of
each granular packings is δ = 50%.

where P (φ) is the contact angle distribution in the packing, φm

is the friction angle between grains so that tan φm = μ. φmax

is the maximum angle of contact allowed given by φm + π/4.
This limit is found by imposing that tan φM � 0. Nevertheless,
the lower limit φmin is a free parameter, depending on the
structure of the sliding plane, and is further restricted. For
example, for a perfectly ordered straight line of spheres of the
same size, the lower limit is −π/6. Roughness of such a plane
or line (for a two-dimensional pack), will yield larger average
angles [9].

Figure 7 shows the comparison between a normalized
contact angle distribution of the packings before compaction
and some of them after the final loading cycle for different
particle friction. Before compaction, the initial distribution
exhibits an anisotropic structure (top panel) with privileged
orientations between grains. Less frequent contact angles are
about 0◦, which corresponds to one grain on top of the
other, and ±π/2, which is for grains to the left or right of
each other. Interestingly, after the limit number of cycles, the
distributions change depending on the local friction value.
Such change also depends on the number of cycles performed.
For low interparticle friction, the distribution is quite isotropic.
However, for intermediate and higher interparticle friction, the
distributions show highly privileged angles around 0◦, ±30◦,
and ±90◦.

FIG. 8. Shannon entropy as a function of the number of stress
states applied to four packings, with a degree of polydispersity of
δ = 50% and different particle frictions.

To study the concentration of these distributions as a
function of the number of stress states imposed, we use the
definition of Shannon entropy, written as

S = −
N∑

k=1

P (φk)lnP (φk), (10)

where the sum is over the number of φk angles exhibited by the
distribution. Such an expression has been used in the literature
as a measure of the structural disorder of the contact angles
in the packing [51,52]. Figure 8 shows the initial value of
the entropy, S ≈ 1.415, which corresponds to the first loading
state applied on the packings. This value corresponds to the
initial distribution given in Fig. 7, representing a quite ordered
structure. The latter value of entropy is higher than the entropy
calculated for a triangular packing, Stri ≈ 1.386, representing
the most ordered packing. Successive loading states make
the packings evolve from an ordered to a disordered state,
increasing their entropy until the final loading state of the first
cycle is reached. After this point, the unloading process begins
and the entropy decreases slightly, suggesting a small reduction
of disorder inside the packing. Successive loading-unloading
cycles increase the entropy, until an approximated saturated
value is reached. Such value depends on particle friction.
For example, for μ � 0.3, the packings exhibit a maximum
value of entropy in the limit cycle. This value corresponds
to a uniform distribution, as we can see in Fig. 7, defining a
disordered packing. As particle friction increases, μ > 0.3,
displacement of particles is frustrated by friction and the
packing reaches a lower maximum entropy. In this case, there
remain privileged contact angles, defining an ordered packing.

An interesting feature is that while less frictional packings
reach a stable value for the maximum entropy, the more
frictional packings first reach a peak for the entropy, which then
gets reduced for further cycles. We have no simple explanation
for this effect, but it seems that the contact angle entropy is a
sensitive way to probe granular pack changes.
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FIG. 9. Macroscopic friction as a function of particle friction for
the final loading cycle. The polydispersity of the granular packings
is δ = 50%.

The evolution of the contact angle distribution with loading
cycles has not been contemplated before as a determining
factor of Mohr friction. In fact, previous attempts to fit
the theory to simulation, in Ref. [12], assumed as a good
approximation the initial uncycled contact distribution for all
friction values, while in Ref. [9], two ad hoc distributions were
surmised. These assumptions are clearly incorrect in view of
the previous discussion on the results of Fig. 7, so that it
is necessary to use the distribution for each local friction to
evaluate Eq. (9). Figure 9 shows a comparison between the
theoretical relation involving Eq. (9) and the Mohr friction.
We find that the model fits very well the simulation results,
representing a linear trend. This result was achieved by using
a particular value of φmin for each distribution with a specific
particle friction. Such values, listed in Table II, represent
the best for adjusting the theoretical model to the simulation
results. Additionally, the theoretical model was also adjusted
to the simulations results for the first cycle and we obtained
a good fit once the appropriate distributions were considered.
The values of φmin obtained for this cycle are those given in
Table II. We highlight that the values of φmin for cycle 15 are
larger than cycle 1, increasing slightly with particle friction.
As particle friction increases both φmax as φmin increase, this
means that the range of contact angles to evaluate Eq. (9)
is wider, contributing to a higher macroscopic friction (see
Fig. 9). We can see that the macroscopic friction increases
within the range of interparticle frictions considered, being

always larger than μM = μ. A linear fit is also shown as a
guide to the eye.

V. EFFECT OF POLYDISPERSITY

A. Bulk modulus

The previous studies were done at a fixed polydispersity,
so it is necessary to gauge the robustness of those results
against changes in polydispersity. Ten packings with different
polydispersity in the range δ = [0–70]% are created, keeping
the same particle friction μ = 0.3. After applying a sufficient
number of uniaxial loading-unloading cycles in order to reach
the limit stationary pack, the bulk modulus was calculated
using Eq. (6). The bulk modulus for each packing increases
with vertical stress following a power law of the form K ∼ σα

yy .
The exponent α as a function of polydispersity is shown in
Fig. 10(a), where its value changes less than 4% with respect
to its mean value ᾱ = 0.458, so that α is independent of
polydispersity within the error bars. Only the data of δ ∈
[5,20,50,70]% were averaged over three different samples.

Figure 10(b) shows the values of the bulk modulus for
the final loading state of the final cycle as a function of
polydispersity. The bulk modulus increases linearly with
polydispersity in the range of δ ∈ [5,70]%. This result is in
contrast to those obtained in compressional three-dimensional
granular packings [41], where the elastic modulus decreases
as the degree of polydispersity increases. Figures 10(c) and
10(d) show the values of the mean coordination number and
porosity, compared with those of the loading stage of the
first cycle as a function of polydispersity. The figures show
that the mean coordination number and porosity decrease
slightly with polydispersity. After the final loading state of
the final cycle, the mean coordination number has increased
with respect to the values of the first cycle but still decreases
with polydispersity very weakly. This result is consistent
with previous work in three-dimensional systems [41]. On
the other hand, the porosity decreases with respect to the
values of the first cycle, but it varies little with polydispersity,
showing an approximate saturation value for each packing.

In Fig. 10(b) we can see that the packing with the highest
bulk modulus is that with the highest polydispersity, showing
lower mean coordination number and the same porosity as
monodisperse or slightly polydisperse packings. This is an
unexpected result since previous works have shown that the
mean coordination number of packings decreases with the
degree of polydispersity [31,41], being responsible for the
reduction of the bulk modulus [19]. We would have expected
that packings with higher polydispersity would exhibit a lower
bulk modulus than monodisperse or slightly polydisperse
packings, however, this is not the case. Preliminary results
show that while the degree of polydispersity increases, the

TABLE II. Values of φmin used to integrate Eq. (9) for the initial (C1) and final cycle (C15). (Neg) was written for short and it means that
all values of φmin are negatives.

μ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

φmin(C1)(Neg) 22.9◦ 25.7◦ 31.5◦ 35.5◦ 39.5◦ 39.5◦ 39.5◦ 39.5◦ 39.5◦ 39.5◦

φmin(C15)(Neg) 25.7◦ 37.2◦ 45.8◦ 48.7◦ 48.7◦ 48.7◦ 46.9◦ 46.4◦ 45.8◦ 42.9◦
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FIG. 10. (a) α exponent, (b) bulk modulus, (c) mean coordination
number, and (d) porosity as a function of polydispersity. Square
symbols (�) correspond to the data for the first loading state of
the first cycle (C1), while circular symbols (•) correspond to those
for the final loading state for the final cycle (C15). Horizontal dashed
lines represent guide lines. Horizontal solid line represents the mean
value of ᾱ = 0.458. Particle friction was set to μ = 0.3.

number of large grains increases; a fraction of them support
strong forces, which form a rigid structure inside the packing
difficult to overcome during deformation. This argument is
similar to previous results in highly polydisperse packings
composed of disks [24] and pentagonal grains [42], where
strong forces propagate through more larger particles as the
size of polydispersity increases. We think that such structures
are responsible primarily for the increment of the bulk modulus
with polydispersity. These findings will be part of a future
work.

B. Mohr friction with polydispersity

Figure 11 shows the relation of the macroscopic friction
with polydispersity for each cycle imposed, setting μ = 0.3
for all polydisperse packings. We see that the macroscopic
friction for different polydispersities increases with cycle,
obtaining a saturation value in the final cycle. For the first
three cycles, we obtain that increasing polydispersity increases
the Mohr friction. After a number of cycles, nevertheless, the
macroscopic friction is essentially constant, showing only sta-
tistical variations around the mean value of μ̄M = 0.54. These
results suggest that the macroscopic friction is independent

FIG. 11. Macroscopic friction as a function of polydispersity
for each cycle imposed. The particle friction of the packings is
μ = 0.3. In the inset we show the curves of macroscopic friction
with polydispersity for the initial and final cycle with four error bar
corresponding to δ ∈ [5, 20, 50, 70]. The data were averaged over
three different samples.

of polydispersity beyond the limit cycle and it achieves this
behavior by the reorganization of the pack. A previous work
[15], studied the macroscopic friction with polydispersity in
three-dimensional packings. They found that the macroscopic
friction increases from 0.41 for lower polydispersity to 0.44 for
higher ones implying only a weak dependence. Other works
on highly polydisperse packings studying force chains and
macroscopic friction of disks [24] and pentagonal grains [42]
found that the macroscopic friction was independent of the size
of polydispersity but unexpectedly, it declines with increasing
the degree of shape irregularity of pentagonal grains.

The reorganization of the grains inside the packings was
explored using Eq. (10). Figure 12 shows how the initial
entropy increases as a function of polydispersity, showing
that packings with higher polydispersity have more disordered
structures. On the other hand, the monodisperse packing
exhibits the lower entropy (see inset in Fig. 12), displaying
a strongly ordered structure. In the final loading state of
the last cycle, packings of δ � 30% show almost the same
value of entropy, suggesting that an equivalent configurational
structure was reached after a given cycle, i.e., similar contact
angle distribution were obtained. Nevertheless, for packings of
δ < 30%, the entropy reaches a maximum value for a particular
stress state, and then it reduces to an approximate stationary
value. Even though a different contact angle distribution was
obtained for slightly polydisperse or monodisperse packings, a
similar value for the Mohr friction were obtained (see Fig. 11).
This is an interesting kind of universal behavior (independence
to a degree of polydispersity) that should explored further.

On the other hand, changing the value of microscopic
friction from μ = 0.3 to μ = 0.7, we also obtained different
results on the curve of entropy as a function of the number of
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FIG. 12. Shannon entropy as a function of the number of stress
states for four packings with different degree of polydispersity. The
Inset shows the Shannon entropy values for monodisperse packing.
Particle friction for each packing is μ = 0.3.

stress states for different polydispersities (see Fig. 13). Here,
we also see the behavior observed in the previous section
(see Fig. 8), where the entropy changes qualitatively below
μ = 0.3. We obtained that for all polydispersities considered,
the entropy reached a maximum value to then relax to a lower
value. When particle friction increases the contact between
grains are preserved since particle rearrangement are less
frequent. From this point of view, polydisperse packings are
effectively more ordered than those with μ = 0.3, obtaining
smaller entropy values. An opposite result is obtained for
monodisperse packing, where a more disordered state is
reached when μ = 0.7 than that with μ = 0.3.

FIG. 13. Shannon entropy as a function of the number of stress
states for four packings with different degree of polydispersity. The
Inset shows the Shannon entropy values for monodisperse packing.
Particle friction for each packing is μ = 0.7.

VI. SUMMARY AND CONCLUSIONS

We have studied the relationship between the granular
contact angle distribution and local particle friction on the
macroscopic friction and bulk modulus in two-dimensional
noncohesive granular packings. The system studied is a
granular pack subjected to uniaxial loading-unloading cycles.
We found that the system has reached a limit cycle where its
properties remain stationary under uniaxial stress. For random
packings and for all polydispersities analyzed, we found that as
interparticle friction increases, the bulk modulus for the limit
cycle decreases linearly, while the mean coordination number
is reduced and the porosity increased, also as approximately
linear functions. On the other hand, the macroscopic Mohr fric-
tion increases in a monotonous trend with interparticle friction.

Quantifying the geometrical structure of the cycled granular
pack through the contact angle distribution, we find that it
depends critically on the local friction values displaying a
multiply peaked distribution for the larger friction values.
This is well evidenced through the values of the contact
angle entropy, showing how the pack is organized as it is
compressed and cycled. The Mohr-friction trend is compared
to a theoretical model which assumes the existence of sliding
planes corresponding to definite Mohr-friction values. The
simulation results for macroscopic friction are well described
by the theoretical model only when the details of the particular
neighbor angle distribution is contemplated. As local friction is
increased, the limit entropy of the neighbor angle distribution
is reduced, thus demonstrating the geometric component to
granular friction. Surprisingly, once the limit cycle is reached,
the Mohr friction seems to be insensitive to polydispersity as
has been recently reported. The latter behavior is also seen for
the contact angle distribution and entropy which is practically
unchanged as a function of polydispersity. Thus contact angle
entropy seems to be a useful tool to assess the geometrical
contributions to granular pack Mohr friction.
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APPENDIX A: DISTRIBUTIONS OF CONTACT
INTERPENETRATION

Our simulations create initially loose packings with mean
coordination number around Z ∼ 4 for monodisperse system
and slightly below this value for our most polydisperse
case. The former result is consistent with the rule Zc = 2D
applicable to frictionless monodisperse grains. Compressing
the packings up to the maximum deformation imposed will
increase the mean coordination number above Zc.

We quantify the distribution of normal contact interpen-
etration for each particular packing presented in Fig. 4(b),
corresponding to the limit cycle (compression state). This is
achieved to explore the overlap at contacts between grains
since it is known that in standard simulations of granular
systems a maximum overlap of 1% is required in order
to suppose a realistic model of the nature. We define the
interpenetration at each contact as δc

n/(Ri + Rj ), where δc
n is

012902-10



CONTACT ANGLE ENTROPY AND MACROSCOPIC . . . PHYSICAL REVIEW E 96, 012902 (2017)

the normal overlapping and Ri is the radii of each grain forming
the contact. Figure 14 shows that the bulk of the grains for all
values of polydispersity are below of 2% overlapping although
few grains of the sample exhibit larger values. We think that
those large values of interpenetration are responsible for the
large and low values of the mean coordination number and
porosity of the packings.

APPENDIX B: EFFECT OF PARTICLE ANGULARITY
ON MACROSCOPIC FRICTION

In this Appendix, we briefly describe a simple model to
contemplate angularity into our simulations and see how the
trend between local and global friction is changed compared
to that of rotating disks. We will show that within this
model, “angular grains” approach the behavior of nonro-
tating disks when angularity degree is increased. Particle
angularity was introduced by clumping three disks together
to construct a single angular grain, where its angularity
degree can be characterized by changing the distance between
particles.

To create a grain with a particular angularity, we start by
fixing the center of one disk at the origin, then two more
disks are added touching the first one with their centers
at 30◦ angles with respect to the origin as indicated in
Fig. 15(a). This configuration represents the starting point of
our particle angularity model, here r = 2R and the angularity
is a maximum. Now one can shorten r with respect to
R and reduce r all the way to zero, keeping the relative
angles, reaching the limit of a circular grain. The angularity,
which we label β can then be quantified by the expres-
sion β = r

2R
, for 0 < r < 2R. Figure 15(b) shows different

particle angularities constructed by our model. A similar
approach for constructing angular grains was presented in
Refs. [49,50].

The three composite particles with different angularities
are used to construct three packings with a polydispersity of
δ = 0.5 in order to compare with those simulations obtained
for disks. The composite particles contemplate rotations.
The macroscopic friction for each packing was obtained as
a function of the particle friction value. Figure 16 shows
the results for the macro and micro friction when particle
angularity changes. For low local friction, we obtain that all
data fall on the curve corresponding to nonrotating disks,
showing that particle sliding dominates over rotations. How-
ever, when particle friction increases, particle rotations become
important giving rise to the saturation range exhibited by
the macroscopic friction (as for rotating disks). Nevertheless,
the macroscopic friction increases for large values of particle
friction, as angularity increases. We can see that the range
of agreement with the nonrotating disk curve increases. This
suggests that frustration of particle rotations increases as
angularity increases. These results are similar to previous
works [49,50], where they found that macro friction and mean
friction mobilization increases when angularity increases.
Such results justify the consideration of nonrotating disks
in our simulations as a limiting model for angular grains.
Even though rotating nonspherical particles would represent a
more realistic representation of granular matter, we believe that
mapping the rolling resistance of disks as particle angularity

FIG. 14. Distribution of normal contact interpenetration for each
packings of Fig. 4(b). Data are for loading state of the limit cycle
(cycle 15). The friction between particles is μ = 0.3.

[53] or preventing rotation, as in the present study (see
also Refs. [13,43]), mimics well the experimental results.
It remains to prove a precise correspondence between the
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FIG. 15. (a) Model to create a grain with a particular angularity.
(b) Four grains types with different angularity, characterized by
the distance between particles r in a triangular arrangement. As β

increases the particle angularity is higher.

phenomenological model and detailed simulations including
the rotational degree of freedom.

FIG. 16. Macroscopic friction as a function of particle friction
when particle angularity changes. Data are shown for disks: Nonro-
tating disks (filled symbol) and rotating disks (hollow symbols). We
consider particle angularities with β = 0.25, β = 0.62, and β = 0.90.
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