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Phase separation and folding in swelled nematoelastic films
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We explore reshaping of nematoelastic films upon imbibing an isotropic solvent under conditions when isotropic
and nematic phases coexist. The structure of the interphase boundary is computed taking into account the optimal
nematic orientation governed by interaction of gradients of the nematic order parameter and solvent concentration.
This structure determines the effective line tension of the boundary. We further compute equilibrium shapes of
deformed thin sheets and cylindrical and spherical shells with the rectilinear or circular shape of the boundary
between nematic and isotropic domains. A differential expansion or contraction near this boundary generates
a folding pattern spreading out into the bulk of both phases. The hierarchical ordering of this pattern is most
pronounced on a cylindrical shell.
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I. INTRODUCTION

Any change in nematic order in a nematic elastomer film
causes it to deform. Following the early theoretical prediction
of deformation of monodomain liquid-crystal elastomers [1],
its first experimental realization [2], and the development of
a theory combining nematic and elastic contributions to the
Landau–de Gennes functional [3–6], a variety of shapes in
patterned nematoelastic films have been constructed in recent
years [7–12]. The various shapes have been produced by
imposing a desired orientation in a liquid-crystalline film prior
to polymerization, and heating the textured nematoelastic film
above the nematic-isotropic transition (NIT) point [13–16].
Textures can also be affected by composition changes carried
out either by adding a suitable dopant (most commonly,
by light-induced isomerization [17–20]) or by swelling the
nematic gel in either nematic [21] or isotropic solvents [22,23].

Swelling of either isotropic or nematic gels is counteracted
by entropic elasticity of the polymer network [24], and
equilibrium swelling is governed by the balance of the mixing
and elastic energy. An additional factor in nematic gels is
the change of nematic order, which is reduced when an
isotropic solvent is imbibed. Recently, Cheewaruangroj and
Terentjev [25] brought attention to an interesting possibility
of the coexistence of a monodomain nematic state at lower
solvent concentrations, and the isotropic one at higher solvent
concentrations. They investigated the coexistence conditions
for nematic elastomers in one-dimensional (1D) string geom-
etry, as they write, “especially to avoid complicated issues of
inhomogeneous swelling.” It is exactly these more complicated
phenomena arising in 2D film geometry that we wish to explore
in this paper.

After formulating the basic computation procedure in
Sec. II, we explore in Sec. III A the properties of the boundary
(front) between the nematic and isotropic state, assuming the
overall energies of both states (comprising elastic, nematic,
and mixing constituents) to be equal, and the front to be
stationary and rectilinear. Next, we explore, with the help of
the algorithm delineated in Secs. II C and III B, deformation
of a nematic film or shell brought into contact with a solvent.
We do not consider a very complicated dynamic process of
inhomogeneous swelling, phase separation, and coarsening
of an emerging pattern, rather we concentrate on the final

equilibrium state minimizing the overall energy of the system,
including the energies of separated nematic and isotropic
domains and the energy of their boundary. Since the width
of the latter, largely determined by nematic elasticity, is
small, it can be treated in macroscopic computations as a line
characterized by the line energy extracted from the preliminary
computation. We shall see that differential expansion or
contraction near the front generates a folding pattern spreading
out into the bulk of both phases. The folding patterns are
substantially different in flat sheets (Sec. IV A) and cylindrical
(Sec. IV B) or spherical (Sec. IV C) shells.

II. BASIC EQUATIONS

A. Nematic alignment

The nematic alignment in a flat film is obtained by
minimizing the nematic energy functionalFn dependent on the
2D tensor nematic order parameter Q expressed in Cartesian
coordinates as

Q =
(

p q

q −p

)
= S√

2

(
cos 2ϑ sin 2ϑ

sin 2ϑ − cos 2ϑ

)
, (1)

where S =√
Tr(Q · Q)=

√
p2 + q2 is the scalar nematic order

parameter (NOP), and ϑ is the director orientation angle. The
nematic energy per unit area in a layer with the solvent fraction
ϕ is expressed as Fn = ∫

Lnd
2x with the Lagrangian

Ln = (1 − ϕ)αh

[
−1 − γ ϕ

2
QijQij + 1

4
(QijQij )2

+ κ1

2
|∇iQij |2 + κ2

4

∑
ijk

(∇iQjk)2 − β∇iϕ∇jQij

]
,

(2)

where α is the characteristic nematic orientation energy per
unit volume, h is the film thickness, and κ1,κ2 are elastic
constants (not taking into account their dependence on nematic
orientation); summation over repeated indices is presumed.
This expression contains the dependence on the solvent ratio
ϕ and its gradient. The gradient terms are important only in
the vicinity of defects and phase boundaries, but the term
mixing the gradients of the NOP and solvent ratio [26–28]
plays an important role by setting nematic orientation near
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the interphase boundary. The effect of this term is made
transparent when only the scalar NOP S is variable. With
fixed orientation, Eq. (2) simplifies to

Ln = (1 − ϕ)αh

[
−1 − γ ϕ

2
S2 + 1

4
S4 + κ

2

(
S2

x + S2
y

)

− β(ϕxSx cos 2ϑ + ϕxSy sin 2ϑ)

]
, (3)

where κ = κ1 + κ2, and the indices denote partial derivatives,
with ϕ assumed to be changing along the x axis. Assuming
that S decreases with ϕ (γ > 0), the optimal angle, reducing
the overall anergy at β < 0, is ϑ = 0, so that the director tends
to orient along the concentration gradient. At β > 0, on the
contrary, the lowest energy is attained at ϑ = π/2 when the
director is oriented normally to the gradient (along the y axis);
the change of S along the y axis does not affect this argument.
This term is therefore responsible for spontaneous anchoring
at a nematic-isotropic interface [28].

An additional term in the Lagrangian (2) allowed by sym-
metry, Qij∇iϕ∇jϕ, amounts to a weak anisotropic correction
to the rigidity coefficient χ in (4) below. This correction should
be negligible, since orientation of the polymer network is not
expected to influence interactions between solvent molecules
determining the value of χ .

B. Swelling and nematic-isotropic demixing

Imbibition of a solvent changes the energy of an isotropic
gel, on the one hand by the entropic effect of mixing and
possibly gel-solvent van der Waals or polar interactions, and
on the other hand by stretching the polymer network. The free
energy of solvent-polymer interaction Fm = ∫

Lmd2x is given
by the Flory-Huggins equation [29]

Lm = h

[
χ

2
|∇ϕ|2 − ζϕ(1 − ϕ)

+ nkT [ϕ ln ϕ + (1 − ϕ) ln(1 − ϕ)]

]
, (4)

where χ > 0 is the rigidity coefficient, n is the total number
of solvent molecules and monomer segments per unit volume,
k is the Boltzmann constant, T is the temperature, and ζ is
the Flory-Huggins interaction parameter. The internal elastic
energy of a swelling isotropic gel is [25] Fe = 3

2nf kT V0(1 −
ϕ)−2/3, where nf is the number of network filament segments
per unit original volume V0. In a nematic gel, swelling causes,
in addition, a change of nematic energy, and the equilibrium
state should be determined by minimizing the sum of nematic,
mixing, and elastic energies, with the latter acquiring a much
more complicated form dependent on the change of NOP.

In a uniform (either monodomain nematic or isotropic)
state, the scalar NOP is rigidly tied to the solvent fraction,
so that, according to Eq. (3), S = √

1 − γ ϕ or S = 0 at
ϕ > ϕc = 1/γ . If the nematic orientation remains fixed in
the course of solvent imbibition, and only the scalar order
parameter S decreases, the length shortens upon nematic-
isotropic transition along the director by the factor λ = 1 +
a(1 − √

1 − γ ϕ) and extends in the two normal directions by
the factor

√
λ. As a result, the elastic swelling energy becomes

anisotropic, and the energy of a uniform film reduces to

Fe = nf kT V0

2(1 − ϕ)2/3

(
1

λ2
+ 2λ

)
. (5)

The optimal swelling of a uniform film is obtained by
minimizing Fe + Fm with respect to ϕ with the gradient term
in Eqs. (4) omitted, and S and consequently λ related to ϕ,
as stated above. Nematic-isotropic demixing takes place when
there are two energy minima [25], one corresponding to the
isotropic state at ϕ ≥ 1/γ , and the other to the nematic state
at ϕ < 1/γ .

C. Deformation and bending

Nematic-isotropic transition (NIT), as well as any change of
NOP, necessarily causes the initially flat film to buckle, since
in-shell deformations are strongly discouraged in thin films,
and it is otherwise impossible to accommodate the change of
metric caused by extension and shortening along and across
the director. Bending, in turn, may affect the distribution of
the solvent fraction.

The macroscopic elastic energy of a film is determined by
deviations u,v from, respectively, optimal local in-shell and
thickness deformations, and it is defined as Fe = ∫

Led
2x,

with

Le = E

2

[
|u|2 + v2 + h2

9
Tr(C2)

]
, (6)

where E is the Young modulus and C is the curvature
tensor; the coefficient at the curvature term corresponds to the
Poisson ratio 1/2. This functional is discretized on a domain
triangulated by the Delaunay algorithm [30] as

Fe = nf kT
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i C

2
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]⎫⎬
⎭. (7)

Here Vi = hiAi is the instantaneous volume at a node i,
where Ai = 〈Aij 〉 is the average surface area of the adjacent
tiles. The local thickness values hi , as well as those of ϕ

and λ, are defined at nodes, and the local curvature at a
node is computed as C2

i = 4H 2
i − 2Ki , where the Gaussian

curvature Ki = (2π − ∑
ρj )/Ai is expressed through the

angles between two adjacent links ρj = ∠(lij ,lij+1), and the
mean curvature Hi = ∑

(lij ηj )/(4Ai) is expressed through
the angles between the normals to neighboring triangles,
ηj = ∠(mij ,mij+1). The first term accounts for deviations of
the observed length lij from the “optimal” length lij accounting
for the intrinsic elongation or shortening following swelling
and NIT. The term is divided by 2 because each edge lij is
counted twice in the sum over all nodes. The in-shell length
transformation matrix due to NIT for an edge at an angle ψ to
the director is R−1(ψ)�R(ψ), where � is the diagonal matrix
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with the elements {1/λ,
√

λ}, and R(ψ) is the rotation matrix.
After adding the swelling effect and accounting for the change
of the thickness h, this yields

l =
l0

√
1
4

(√
λ − 1

λ

)2
sin2 2ψ + (√

λ sin2 ψ + cos2 ψ

λ

)2

(1 − ϕ)1/3
,

h = h0

√
λ

(1 − ϕ)1/3
. (8)

The expressions (6) and (7) do not contain a bulk modulus,
since the gel can be viewed as incompressible at a constant
solvent ratio. The volume can, however, change due to expul-
sion or imbibition of the solvent, which requires recomputing
ϕ by minimizing Eqs. (4) and (5) discretized on the same mesh
in conjunction with Eq. (7) (see Sec. IV B for more details).

III. NUMERICAL COMPUTATION

A. Interphase boundary

We are interested in the case when the isotropic and nematic
states coexist, being separated by an interphase boundary,
or a front. In an undeformed film, the front is expected to
be stationary and rectilinear when the sum of mixing and
elastic energies, Eqs. (4) and (5), in the uniform nematic
and isotropic states has two equal minima. This happens
at certain combinations of parameters, and it was fixed in
our computations by choosing α = 0.5, β = −0.5, γ = 5,
nf kT = 1, κ = 1, χ = 1, and ζ = 0. The dependence of the
overall energy and its constituent parts on ϕ for this set of
parameters is shown in Fig. 1(a). Under the chosen conditions,
the nematic energy plays a minor role, and the overall balance
is determined by the mixing and elastic energies, the former
being negative and the latter positive, and both increasing their
absolute values with ϕ, as seen in the inset of Fig. 1(a).

At the front, the gradient terms in Eqs. (3) and (4) become
important, and the width of the transitional zone is determined
by the values of the parameters κ , χ , and β. The necessary
computation for a flat film or a cylinder with a uniform nematic
orientation is one-dimensional (1D). The change of S and ϕ

across the front, shown in Fig. 1(b), is independent of the
sign of β, provided the nematic director is oriented in the
optimal way, i.e., normally to the front at β < 0, and parallel
to the front at β > 0. At the ends of the computation interval
(far exceeding the front width), S and ϕ approach the values
corresponding to the total energy minima in the homogeneous
nematic and isotropic phases shown in Fig. 1(a). The interfacial
energy (i.e., excess over the energy of the homogeneous state),
also shown in Fig. 1(b), exhibits a kink at the front location.
The integral of this curve determines the line tension of the
front responsible for its relaxation to the minimal length (the
straight line on the flat sheet or a geodesic on a bent surface).

B. Deformation due to swelling

We compute the equilibrium shape of a film, originally
in the monodomain nematic state, as it is deformed due
to swelling and phase separation into nematic and isotropic
domains. The computation follows an iterative minimization
procedure on a triangulated mesh, which is refined near the

FIG. 1. (a) Dependence of total energy F = Fn + Fe + Fm and
respective nematic, elastic, mixing energies (in the inset) on the
solvent fraction ϕ. (b) The dependence of the scalar NOP S and
ϕ on the coordinate x normal to the front.

interphase boundary to resolve the local structure. We start
with the 1D distribution of ϕ and λ obtained above, with
the rectilinear interphase boundary oriented in the optimal
way, i.e., normally or parallel to the director, respectively,
at negative or positive β. The positions of nodes are then
relaxed to minimize Fsb, following the pseudo-time-evolution
equations ∂xi/∂t = −δFsb/δxi for the positions of nodes xi .

Deformation causes local volume changes, thereby influ-
encing the solvent fraction ϕ, since the gel would squeeze or
imbibe the solvent due to in-plane compression or stretching.
Therefore, we update the distribution of ϕ by evolving,
and ∂ϕi/∂t = −δ(Fm + Fe)/δϕi for the local solvent ratios
ϕi at the nodes. Since deformation and folding take place
at distances large compared to the front width, where the
gradients of ϕ and S are small, we neglect the gradient terms
in this computation and assume S and λ to be rigidly tied to
ϕ as in homogeneous domains. We carry out this computation
iteratively, relaxing the node positions and solvent fraction in
turn until the overall energy minimum is reached.

Buckling affects the location of the interphase boundary
and changes the distribution of the solvent fraction and NOP
in its vicinity, so that the front ceases to be rectilinear. The
gradients along the front remain small, however, compared
to the transverse gradients. The procedure is only slightly
modified for nonplanar shells, with an appropriately placed
front.
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FIG. 2. (a) Squared curvature and solvent fraction along the
section parallel to the front at x = 10 shown by a dotted white line in
the inset. Inset: the actual shape of a deformed sheet with h0 = 0.8.
(b) Comparison of the profiles along the same section for sheets of
different thickness.

IV. FOLDING PATTERNS

A. A deformed sheet

Folds on a deformed sheet are formed mostly in the isotropic
region [on the right side of the inset in Fig. 2(a)], where the
anisotropic stretching and compression are more pronounced,
while shorter transverse folds are observed near edges in the
nematic domain. The distribution of the solvent fraction ϕ

and vertical deviation from the original planar film are highly
correlated, with ϕ larger at highly curved locations. This is seen
in the plots of ϕ and squared curvature along a line parallel
to the original location of the front [Fig. 2(a)]. The number of
folds increases with decreasing thickness of the sheet, as seen
in Fig. 2(b). The folds spread out at distances from the front
far exceeding its thickness, and they gradually fade away, as
seen in the inset of Fig. 2(a).

The folding pattern in Fig. 2 corresponds to the case
β < 0. The buckling effect is much weaker at β > 0 when
the director is oriented parallel to the front. Buckling is caused
by extension or contraction along the front and is initiated
due to a large contrast of S and, consequently, the extension
ratio λ across the front. When the director is oriented normally
to the front, both NIT and swelling cause extension parallel
to the front, thereby enhancing this effect. On the contrary,
when the director orientation is parallel, contraction due to NIT
and swelling partially compensate each other, thereby reducing
the effect. The situation is mirrored in the opposite case of
isotropic-nematic transition whereby the process is started
from the isotropic state and nematic order is established upon
drying, with the orientation at the front dependent on the sign
of β. Then elongation along the front due to parallel orientation

FIG. 3. The solvent fraction and squared curvature in the isotropic
domain of a cylindrical shell with h0 = 0.05, R0 = 10, and L0 = 100.
The cylindrical surface is cut along a generatrix for a full view.

is compensated by shrinking, while shortening along the front
due to normal orientation is, on the contrary, enhanced.

B. Folds on a cylinder

The formation of folds becomes better ordered on a
cylindrical shell with a circular front, since the spectrum of
admissible wavelengths is limited there by the periodicity
around the circumference. A circular front, being a geodesic of
the cylindrical surface, has the same structure as a rectilinear
front on a flat sheet, and, similar to the latter, it is neutrally
stable to shifts in the normal direction. We computed the shape
and solvent distribution in a long cylinder with L = 100 and
the circular front placed at the distance x = 20 from the left
edge to allow for ample space for the development of folds
in the swelled isotropic domain at the right. The correlation
between the local curvature and solvent fraction becomes even
more pronounced here, as seen in Fig. 3, showing the isotropic
part of the cylinder.

The number of folds increases with decreasing thickness
(Fig. 4). In a thin shell, one can clearly see that the folds
form a hierarchal structure, with the maximum number near
the front and decreasing by stages due to convergence of
pairs of folds. This process becomes, however, very slow with
increasing separation, as it commonly happens in coarsening.
The persistence of folds on a cylinder at large distances from
the interphase boundary, as compared with their fast decay
on a sheet, is a consequence of quantization imposed by the
circumferential periodicity. The minimal wavelength of folds
is of the same order of magnitude as the front thickness, and
the maximum number of folds increases with increasing ratio
of the circumference of the shell to the front thickness.

C. Deformation of a sphere

Reshaping of a spherical shell due to NIT generates much
more elaborate forms than a rounded tetrahedral structure of
a nematic vesicle governed by the balance of nematic and
mechanical elasticity [31,32]. The origin of either form is in
the structure of the nematic texture on the sphere with the
hubs on the four + 1

2 -charged defects placed symmetrically at
vertices of a tetrahedron. This texture, computed analytically

012709-4



PHASE SEPARATION AND FOLDING IN SWELLED . . . PHYSICAL REVIEW E 96, 012709 (2017)

FIG. 4. The folding patterns (shown by the changes of the local
radius) in cylindrical shells with L0 = 100, R0 = 10 (a)–(c) and R0 =
15 (d), and different thicknesses (as indicated). The surface is cut
along a generatrix for a full view.

via conformal transformation [33], is presented in the Mercator
projection in Fig. 5(a). The defects are situated here at the
polar angles θ1,2 = arccos(1/

√
3) ≈ 0.304 π and azimuthal

angles φ1 = − 1
4π, φ2 = 3

4π in the northern hemisphere, and
at θ3,4 = arccos(−1/

√
3) ≈ 0.696 π, φ3 = 1

4π, φ4 = − 3
4π in

the southern hemisphere. The nematic director is aligned with
level lines of the real part of the appropriate complex analytic
function with the zero level corresponding to the “baseball
seam” seen in Figs. 5(a)–5(c) as an undulating white belt. The
“comet tails” of two pairs of defects placed in the northern and
southern hemispheres connect through the opposite poles.

When a spherical shell, originally in the nematic state,
imbibes the solvent and turns into the isotropic state with a
uniform solvent concentration corresponding to the isotropic
minimum in Fig. 1(a), a rich folding pattern develops, seen
in the Mercator projection in Fig. 5(b) and in the side view
in Fig. 5(c). Deformation in the vicinity of defects, with
folds parallel to their “comet tails” and a bulge on the other
side, is similar to that originating from a planar pattern [10].
This folding pattern spreads out along the “baseball seam,”
while relatively deep depressions appear along the connections
between pairs of defects. The deformation structure originates
in anisotropic expansion and contraction following NIT that
corresponds to the original nematic texture.

Computation of phase-separated equilibrium states on a
sphere is impeded, first, by the absence of a monodomain
nematic state on a spherical surface, and second, by the
absence of geodesics neutrally stable to shifts in the normal
direction. The only possible way to set up a monodomain
nematic region on a spherical shell is to restrict it to the

FIG. 5. (a) The nematic texture in a spherical shell (in the
Mercator projection). (b),(c) The Mercator projection (b) and shape
(c) of a spherical shell with the initial radius R0 = 10 and thickness
h0 = 0.01 after NIT starting from the state with four + 1

2 -charged
defects. White dashed lines show the “baseball seam” and the
“comet tails” of two pairs of defects in the original nematic texture.
(d) The shape of the shell with the same initial radius following
isotropic-nematic transition to a biphasic state with an equatorial
monodomain nematic belt with fronts located at the polar angle
� = 1

2 π (1 ± 1
6 ). Shading in (b)–(d) encodes the local radius.

equatorial belt within the range of polar angles |θ − π/2| < �,
with the polar regions being isotropic. The isotropic state is
likely to nucleate at the defect locations and spread out as the
solvent fraction increases, and the final lowest energy state
may be eventually achieved, assisted by fluctuations to avoid
metastable equilibria.

Assuming that the front width is small compared to the
radius of the sphere, and that nematic distortions are avoided,
the energy of the phase-separated state is expressed as F =
LnemVnem + LisoViso + σLh, where Lnem,Liso are energies per
unit volume of the uniform nematic and isotropic states,
Vnem,Viso are the volumes they occupy, σ is the line tension
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FIG. 6. The shape (a) and distribution (b) of solvent in a
spherical shell with the initial radius R0 = 10 and thickness h0 = 0.01
following NIT in the southern hemisphere, with the nematic texture
in the northern hemisphere remaining frozen (shown in the Mercator
projection).

of the front computed in Sec. III A, and L,h are the length
of the front and the thickness of the film at this location. The
motion of the front is determined by an energy change due
to infinitesimal displacements, and therefore its equilibrium
is totally determined by local conditions at the front. Since
the change of energy due to an infinitesimal displacement δx

is proportional to the energy difference �L = Lnem − Liso,
the equilibrium condition is simply �LδA + σδL = 0. On
the boundary circle, the equilibrium condition reduces to
σ/�L = tan �. This equilibrium is, however, unstable, as
the isotropic state would spread further when the front shifts
toward the equator or retreats to a latitude closer to the poles.
Stable equilibrium can only be attained when the total amount
of the solvent is limited.

In our computations, we assume the final configuration to
be as described above, with an arbitrarily chosen latitude �,

which fixes the total amount of the solvent. The equilibrium
shape with the uniform meridional alignment in the nematic
domain obtained after deforming from the isotropic state after
partially squeezing out the solvent, shown in Fig. 5(d), is rather
bland. There is an expected constriction in the equatorial belt
caused both by the loss of solvent and shortening by the factor√

1 + aS. Elongation of the equatorial belt is counteracted by
the loss of solvent. Folds develop in the isotropic region and, as
usual, are most pronounced near the front. Closer to the poles,
they undulate in the meridional direction, unlike straight folds
on a cylindrical shell.

Shapes originating from the nematic state may also evolve
to a monodomain equatorial belt after a long evolution, but
the emerging deformation pattern will depend strongly on
the orientation of this belt relative to the original pattern,
and inclusion of original defects. If, on the other hand, the
texture in the nematic domain remains frozen, the deformation
pattern in the emerging isotropic domain (placed in the
southern hemisphere in Fig. 6) is similar to that in the case
when NIT takes place in the entire shell, while deformation in
the domain remaining in the nematic state is minimal, and is
largely caused by a slight increase of solvent content, which
takes place on the “comet tails” of extinct defects extending
into the northern hemisphere.

Different shapes would be obtained starting from a nematic
shell with half-charged defects replaced by defects of unit
charge, which is possible at certain ratios between splay and
bend nematic elasticities [34] or fixing defects at specific
locations during polymerization [35].

V. CONCLUSION

The above shapes present just a small sample of a variety of
shapes that can be obtained in nematic elastomers with variable
distribution of admixtures (solvent or dopants) affecting
the nematic order. The folding patterns emerging due to
differential extension or contraction can be compared with
folding and wrinkling patterns of different physical origin in
soft materials [36–39], but their distinguished feature is, on
the one hand, anisotropy specific to soft nematic solids, and
on the other hand, spatial inhomogeneity that allows one to
manipulate them by external inputs.
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