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Theory of helicoids and skyrmions in confined cholesteric liquid crystals
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Cholesteric liquid crystals experience geometric frustration when they are confined between surfaces with
anchoring conditions that are incompatible with the cholesteric twist. Because of this frustration, they develop
complex topological defect structures, which may be helicoids or skyrmions. We develop a theory for these
structures, which extends previous theoretical research by deriving exact solutions for helicoids with the
assumption of constant azimuth, calculating numerical solutions for helicoids and skyrmions with varying
azimuth, and interpreting the results in terms of competition between terms in the free energy.
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I. INTRODUCTION

When a cholesteric liquid crystal is confined between
surfaces with homeotropic (perpendicular) anchoring, it expe-
riences geometric frustration [1]: The boundary conditions are
incompatible with the favored cholesteric twist. This geometric
frustration is similar to the frustration of a cholesteric liquid
crystal in an electric or magnetic field [2], where the field
alignment is incompatible with the cholesteric twist. Because
of this frustration, the confined cholesteric phase forms
topological defect structures. Depending on the geometry and
anchoring strength, these defects may be elongated stringlike
objects called cholesteric fingers or helicoids [3–8], or they
may be localized pointlike objects called cholesteric bubbles
[9–12].

It has recently been recognized that cholesteric bubbles
have the remarkable topological properties of skyrmions.
Skyrmions are defects in which the magnitude of the order
parameter remains constant, but the orientation varies in a
complex texture that cannot anneal away. Skyrmions were
originally proposed in the field of nuclear physics [13], and
they are now studied extensively in chiral magnets [14–
18], where they have potential technological applications for
magnetic memory and logic. Hence, cholesteric bubbles or
skyrmions are important not only as defects in liquid crystals,
but also as examples of the general considerations of geometry
and energetics for skyrmions in other physical systems.

Liquid crystal skyrmions have been studied through a range
of techniques, including experiments [19–27] and numerical
simulations [27–31]. Furthermore, important variational cal-
culations have been done in two dimensions (2D) by Bogdanov
et al. [32,33], and more recently in 3D by Leonov et al. [34].
In particular, the latter paper minimized the Frank free energy
in a confined geometry to calculate the director texture for
both skyrmions and helicoids, and derived a phase diagram
showing the range of parameters in which the system exhibits
a skyrmion lattice, a helicoid lattice, or a uniform texture with
isolated defects [35].

The purpose of our current study is to perform further
variational calculations, which are related to the theory of
Leonov et al. but for the case of strong anchoring. First,
in Sec. II, we use their free energy with their assumption
of a constant azimuthal angle, and derive exact solutions
for the director field. The exact solution can be worked out
by conformal mapping for a single helicoid, and by Fourier

expansion for a helicoid lattice. Next, in Sec. III, we reexamine
the assumption of constant azimuthal angle, and show that the
three-dimensional liquid crystal can reduce its free energy by
allowing the azimuthal angle to vary, as in recent studies of
cholesteric droplets [36]. Without this assumption, we perform
numerical calculations of the director field and defect energies
for isolated helicoids and helicoid lattices. In Sec. IV, we use
the same numerical method to investigate isolated skyrmions
and skyrmion lattices. Finally, in Sec. V, we compare the free
energies to predict a phase diagram for the defect structures.
We interpret the results in terms of a competition among the
chiral elastic free energy that favors twist, the nonchiral elastic
free energy that penalizes director variations, and the free
energy cost of surface singularities.

II. HELICOIDS: EXACT SOLUTIONS WITH ASSUMPTION
OF CONSTANT AZIMUTH

Consider a cholesteric liquid crystal confined between two
surfaces at z = ±d/2. In the interior, the liquid crystal director
field n̂(r) has the Frank free-energy density

f = 1
2K1(∇ · n̂)2 + 1

2K2(n̂ · ∇ × n̂)2

+ 1
2K3|n̂ × ∇ × n̂|2 + K2q0n̂ · ∇ × n̂, (1)

where q0 is the natural twist of the cholesteric phase, and
K1, K2, and K3 are the Frank constants for splay, twist,
and bend, respectively. Suppose that the surfaces have strong
homeotropic anchoring, which gives the constraint

n̂(x,y,z = ±d/2) = ẑ or − ẑ. (2)

If there were no surface anchoring, the director field would
form a cholesteric helix, with the director depending only on
one coordinate, which we can call x. In terms of the polar
angle θ and azimuthal angle φ, this helix can be written as

n̂(r) = [sin θ (r) cos φ(r), sin θ (r) sin φ(r), cos θ (r)], (3)

with

θ (r) = q0x, φ(r) = −π

2
. (4)

In the presence of surface anchoring, the director field must
be distorted, with a dependence on z, in order to satisfy the
boundary condition of Eq. (2). In Secs. II and III, we consider
the case of helicoids or cholesteric fingers, where n̂ depends
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on x and z but is independent of y. In Sec. IV, we consider the
case of skyrmions or cholesteric bubbles, where n̂ depends on
all three coordinates x, y, and z.

To calculate the structure and energy of a helicoid, we
must minimize the Frank free energy subject to the boundary
condition. For this calculation, we make the usual assumption
of equal Frank constants, K = K1 = K2 = K3. In terms of θ

and φ, the Frank free-energy density becomes

f = 1

2
K

{(
∂θ

∂x

)2

+
(

∂θ

∂z

)2

+ sin2 θ

[(
∂φ

∂x

)2

+
(

∂φ

∂z

)2]

+ 2 sin2 θ sin φ

(
∂θ

∂z

∂φ

∂x
− ∂θ

∂x

∂φ

∂z

)
+ 2q0 sin φ

∂θ

∂x

− 2q0 sin2 θ
∂φ

∂z
+ q0 sin 2θ cos φ

∂φ

∂x

}
, (5)

and the boundary condition becomes

θ (x,y,z = ±d/2) = 0 (mod π ), (6)

with no boundary condition on φ.
With this form of the Frank free-energy density, it is not

obvious whether the azimuthal angle φ should be constant with
respect to x and z. If φ were constant, its optimal value would
be φ = −π/2, in order to minimize the term Kq0 sin φ(∂θ/∂x)
in the free energy. In that case, the director distortion would
be mainly twist, rather than splay or bend, which should be
favorable. Based on these considerations, Ref. [34] made the
assumption that φ = −π/2 throughout the cell. In this section,
we make the same assumption, because it allows some exact
calculations. In Secs. III and IV, we do numerical calculations
without that assumption on φ.

Using the assumption of constant azimuth φ = −π/2, the
Frank free-energy density simplifies greatly to

f = 1

2
K

[(
∂θ

∂x

)2

+
(

∂θ

∂z

)2

− 2q0
∂θ

∂x

]
, (7)

and the corresponding Euler-Lagrange equation becomes

∂2θ

∂x2
+ ∂2θ

∂z2
= 0, (8)

which is just Laplace’s equation for the polar angle θ . This
equation can be solved for a single helicoid or for a periodic
lattice of helicoids.

A. Conformal mapping for single helicoid

To describe a single helicoid, we use the geometry shown
in Fig. 1. Across the helicoid, the director field twists and the
polar angle θ advances by an angle of π . Hence, the boundary
condition of Eq. (6) becomes more specifically

θ (x,y,z = ±d/2) =
{

0 for x < 0,

π for x > 0.
(9)

We can solve Laplace’s equation with the boundary condi-
tion of Eq. (9) using the method of conformal mapping. The

FIG. 1. Single helicoid in the director field of a cholesteric liquid
crystal at x = 0, calculated with the assumption of constant azimuth.
The picture shows the cross section at y = 0; the director field
is extended uniformly forward and backward in y. The symbol D
represents disclinations, which are also extended uniformly forward
and backward in y.

exact solution is

θ (x,y,z) = π + tan−1

(
sin(πz/d) − exp(−πx/d)

cos(πz/d)

)

− tan−1

(
sin(πz/d) + exp(−πx/d)

cos(πz/d)

)
. (10)

This result can be verified by explicit substitution into the
differential equation and boundary condition. It is illustrated
by the director field in Fig. 1.

Note that this solution has a characteristic width in x that
depends on the height z. It is widest at the midplane z = 0,
where the width is of order d. The width becomes narrower
as z approaches the top and bottom surfaces, and it goes to
zero right at the surfaces. Hence, the θ variation becomes
concentrated in a pair of surface disclinations at x = 0 and
z = ±d/2. These disclinations are lines that run along the
surfaces in the y direction. At the disclinations, the director
field itself becomes undefined, as indicated by the D symbols
in the figure.

To calculate the total free energy of a single helicoid, we
integrate the Frank free-energy density

Fhelicoid =
∫ ∞

−∞
dx

∫ Ly/2

−Ly/2
dy

∫ d/2

−d/2
dzf, (11)

where θ is given by Eq. (10) and Ly is the system length
in the y direction. This integral is logarithmically divergent
because of the disclination lines. To regularize the divergence
in a physical way, we note that the free-energy density can
never exceed a maximum value fmax, which is the free-energy
density for melting the cholesteric phase into the isotropic
phase. Physically, this maximum free-energy density is related
to the disclination core radius a by fmax ≈ K/a2. By imposing
fmax as a hard cutoff on f , we calculate the integral numerically
to obtain

Fhelicoid = πKLy

[
1

2
ln

(
fmaxd

2

K

)
+ 0.4 − dq0

]

= πKLyd(qH − q0), (12)
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where

qH =
1
2 ln(fmaxd

2/K) + 0.4

d
≈ ln(d/a) + 0.4

d
(13)

is the critical twist for a helicoid. With the typical values of
a ≈ 10 nm and d ≈ 1 μm, we obtain qH ≈ 5 μm−1. From this
result, we see that the free energy of a helicoid might be positive
or negative, depending on the natural twist q0 compared with
the critical twist qH .

Case 1. If q0 < qH , then the helicoid has a positive free
energy. By comparison, a uniform vertical state with n̂ = ẑ
everywhere has zero free energy. Hence, a helicoid has a higher
free energy than a uniform vertical state, and we would not
expect to see any helicoids in thermal equilibrium. Of course,
some scattered helicoids may still occur as metastable defects
on the uniform ground state.

Case 2. If q0 > qH , then the helicoid has a negative free
energy compared with the uniform state. In that case, we would
expect to see many helicoids in thermal equilibrium. The
equilibrium density of helicoids depends on the interaction
between neighboring helicoids. To determine this density, we
must consider a periodic lattice of helicoids in the calculation
below.

B. Fourier series for helicoid lattice

We now consider a periodic lattice of parallel helicoids,
running along the y direction, with a spacing of λ in the x

direction. In particular, suppose the centers of the helicoids are
located at x = (m + 1

2 )λ, where m is any integer. To calculate
the director field of the helicoid lattice, we can consider one
unit cell between the helicoids centered at x = − 1

2λ and
x = + 1

2λ. The rest of the director field can then be found
by repeating the unit cell periodically.

For this calculation, we must solve Laplace’s equation (8) in
the rectangular domain − 1

2λ � x � 1
2λ and − 1

2d � z � 1
2d.

The boundary conditions are

θ (x,y,z) =
⎧⎨
⎩

−π/2 for x = −λ/2,

0 for z = ±d/2,

+π/2 for x = +λ/2.

(14)

These boundary conditions imply that the director field rotates
through an angle of π across the unit cell of the structure.
They also require that the director field has disclinations at the
corners of the unit cell, and hence at all x = (m + 1

2 )λ and
z = ±d/2.

In this geometry, Laplace’s equation can be solved by
separation of variables. A general solution with the correct
symmetry is the Fourier series

θ (x,y,z) =
∑

k

Ak sinh kx cos kz, (15)

where k is a separation constant with dimensions of wave
vector. The boundary conditions at z = ±d/2 require that k =
jπ/d, where j is any odd integer. The boundary conditions at
x = ±λ/2 then require that

Ak = 2π sin 1
2kd

kd sinh 1
2kλ

. (16)

To calculate the free energy of the helicoid lattice, we insert
the solution of Eqs. (15)–(16) into the free energy of Eq. (7).
We integrate over the unit cell, and divide by the volume of
unit cell, to obtain the average free energy per volume

Fhelicoid lattice

λLyd
= 1

λd

∫ λ/2

−λ/2
dx

∫ d/2

−d/2
dzf. (17)

This calculation can be done exactly for each term in the
Fourier series, and the result is

Fhelicoid lattice

λLyd
= πK

λd

⎡
⎣

⎛
⎝∑

j odd

2

j
coth

jπλ

2d

⎞
⎠ − q0d

⎤
⎦. (18)

For large λ, this function can be approximated as

Fhelicoid lattice

λLyd
= πK

λd

⎡
⎣

⎛
⎝∑

j odd

2

j

⎞
⎠ + 4e−πλ/d − q0d

⎤
⎦. (19)

The summation in Eq. (19) is logarithmically divergent.
Physically, the reason for this divergence is that the free energy
includes an integral over the disclinations in the director field
at the corners of the unit cell. To regularize this divergence,
we can cut off the sum at a maximum wave vector kmax, which
is related to the disclination core radius a by kmax ≈ π/a,
and hence at jmax = kmaxd/π ≈ d/a. From the properties of
harmonic numbers Hn [37], we have

jmax∑
j odd

2

j
= H(jmax/2) + ln 4 ≈ ln(2jmax) + γ, (20)

in the limit of large jmax, where γ ≈ 0.577 is the Euler-
Mascheroni constant. Hence, the free energy of the helicoid
lattice becomes

Fhelicoid lattice

λLyd
= πK

λ
(qH − q0) + 4πK

λd
e−πλ/d , (21)

where

qH = ln(2jmax) + γ

d
≈ ln(d/a) + 1.3

d
. (22)

With the numerical estimates a ∼ 10 nm and d ∼ 1 μm, this
calculation gives qH ≈ 6 μm−1.

The first term of the helicoid lattice free energy (21) is
equivalent to the single helicoid free energy (12), divided by the
unit cell volume λLyd. There is a slight numerical difference
in the estimates of qH , which occurs because the disclination
cores are treated somewhat differently here than in Sec. II A,
but that is not important because neither theory gives a precise
description of the cores. More importantly, the lattice free
energy (21) has a new exponential term e−πλ/d , which shows
the extra free energy associated with a helicoid lattice. It can
be interpreted as a repulsive interaction between neighboring
helicoids. It decays exponentially with a decay length of d/π ,
proportional to the cell thickness d.

We can now minimize the average free-energy density
of Eq. (21) to obtain the optimum spacing λ between the
helicoids. If q0 < qH , this calculation gives λ → ∞. In this
case, because each single helicoid is unfavorable compared
with a uniform state, the density of helicoids goes to zero; i.e.,
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FIG. 2. Prediction for the helicoid lattice spacing λ (scaled by
the cell thickness d), as a function of the natural cholesteric twist q0

above the critical twist qH (also scaled by d).

helicoids are not present in thermal equilibrium. By contrast,
if q0 > qH , the minimization gives

4

(
1 + πλ

d

)
e−πλ/d = (q0 − qH )d. (23)

The solution of this equation is shown in Fig. 2. As the natural
twist q0 increases beyond the critical value qH , the helicoid
spacing λ decreases from infinity. Over a wide range of (q0 −
qH ), λ is close to the cell thickness d.

As a specific example, Fig. 3 shows the director field asso-
ciated with the series solution of Eq. (15) when (q0 − qH )d =
0.716, which corresponds to λ/d = 1. In the middle of the
cell, the director field has an almost uniform twist, quite
similar to an unperturbed cholesteric liquid crystal. Away
from the midplane, the twist becomes more concentrated in
the helicoids, and the rest of the director field becomes more
uniform and vertical. At the top and bottom surfaces, the twist
is localized in the disclinations.

FIG. 3. Lattice of helicoids at x = − 1
2 λ, 1

2 λ, 3
2 λ, . . ., in the case

where λ = d . The picture shows the cross sections at y = 0; the
director field is extended uniformly forward and backward in y.

III. HELICOIDS: NUMERICAL SOLUTIONS WITHOUT
ASSUMPTION OF CONSTANT AZIMUTH

We must now reexamine the assumption of constant
azimuthal angle φ = −π/2, which was made in Ref. [34] and
in Sec. II. Physically, φ = −π/2 would be the optimum angle
for twist if the director field depended only on x. However,
we have already seen that the director field depends on z as
well as x. Hence, the cholesteric liquid crystal might be able to
reduce its free energy further by varying φ, so that the director
field can twist as a function of z, in addition to twisting as a
function of x. Indeed, such a variation was recently studied in
cholesteric droplets [36].

Mathematically, we can calculate the functional derivative
δF/δφ(x,z) of the integrated free energy from Eq. (5) with
respect to φ(x,z). This functional derivative is explicitly
nonzero when φ = −π/2 and θ (x,z) is given by Eq. (10)
for a single helicoid or Eq. (15) for a helicoid lattice. Hence,
the director field with constant φ = −π/2 cannot be the exact
minimum of the free energy.

To go beyond the approximation of constant φ, we must
minimize the free energy numerically. For this numerical cal-
culation, we use an algorithm based on relaxational dynamics.
We set up the dynamic equations

∂θ (x,z,t)

∂t
= − 	θ

δF

δθ (x,z,t)
,

∂φ(x,z,t)

∂t
= − 	φ

δF

δφ(x,z,t)
, (24)

and integrate them forward in time until they converge on
a free-energy minimum. The specific choice of dynamic
constants 	θ and 	φ is not important; we set them equal to
each other and choose units of time so that 	θ = 	φ = 1.
When solving the dynamic equations, we use initial conditions
and boundary conditions appropriate for the specific geometry
of a single helicoid or a helicoid lattice.

A. Single helicoid

To model a single helicoid at x = 0, we solve the dynamic
equations on one side of the helicoid, for 0 � x � Lx and
− 1

2d � z � 1
2d. Here, Lx is an arbitrary cutoff far from the

helicoid, so that the director field is effectively vertical there;
we use Lx = 5d. On the other side of the helicoid, for x � 0,
the director field can be found by the symmetry θ (−x,z,t) =
π − θ (x,z,t) and φ(−x,z,t) = φ(x,z,t).

For the boundary conditions, we require

θ (0,z,t) = π

2
, θ (Lx,z,t) = π,

θ

(
x,

d

2
,t

)
= π, θ

(
x, − d

2
,t

)
= π,

φ(0,z,t) = −π

2
. (25)

The values of φ on the right, top, and bottom boundaries are
undefined, because the boundary conditions on θ require that
the director field is vertical there. As part of the numerical
algorithm, we normally use the Dirichlet condition φ = −π/2
along those boundaries. As an explicit check, we also tried
other Dirichlet and Neumann boundary conditions for φ, and
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FIG. 4. Single helicoid at x = 0, calculated numerically without
the assumption of constant azimuth. The picture shows the cross
section at y = 0; the director field is extended uniformly forward and
backward in y.

verified that the results for the director field and the free energy
do not depend on those conditions. For the initial condition, we
use the conformal mapping solution of Eq. (10) for θ (x,z,0),
along with φ(x,z,0) = −π/2.

By integrating the dynamic equations forward in time until
they converge, we obtain the director field shown in Fig. 4.
This picture looks generally similar to the conformal mapping
result shown in Fig. 1. However, we can see that the azimuthal
angle is not fixed, but rather varies somewhat as a function of
both x and z. As a result, the director field has some extra twist
from the bottom to the top of the cell. Because of this extra
twist, the free energy of this structure is lower than the free
energy found with the assumption of constant azimuth.

To calculate the free energy of the helicoid, we substitute
the numerical solution for θ and φ into the free-energy
density of Eq. (5), and integrate over the whole domain.
In this integration, we have the same problem that was
previously discussed in Sec. II: the free energy is dominated
by the disclinations at top and bottom surfaces, where the
integral diverges logarithmically. To solve this problem, we
use the same method as in Sec. II A: we impose a maximum
free-energy density fmax as a cutoff on the integrand. This
approach is physically reasonable, because the Frank free-
energy density can never exceed the free-energy density of
melting the cholesteric phase into the isotropic phase. As noted
previously, fmax is related to the disclination core radius a by
fmax ≈ K/a2.

Figure 5 shows the numerical result for the integrated
free energy of the single helicoid, calculated as a function
of the natural twist q0 (scaled by the cell thickness d),
for fixed fmax = 100K/d2. We can see that this numerical
result has the general form expected from Eq. (12). There
is a critical value qH where the helicoid free energy crosses
from positive to negative. For q0 < qH , a helicoid has higher
free energy than a uniform vertical alignment (which has
F = 0). In that case, helicoids will not form in the ground
state, although they may occur as metastable defects. For
q0 > qH , a helicoid has lower free energy than a uniform
vertical alignment, and hence helicoids will form in the ground
state.

1 2 3 4 5
–15

–10

–5

0

q0d

F
/(

K
L y

)

FIG. 5. Numerical calculation of the free energy of a single
helicoid as a function of the natural twist, without the assumption
of constant azimuth, using the maximum free-energy density fmax =
100K/d2.

The critical value qH depends on fmax. In the example of
Fig. 5, we find qH ≈ 2.8/d with the choice fmax = 100K/d2.
This choice corresponds to d/a ≈ 10; for example, we might
have d ≈ 1 μm and a ≈ 100 nm. This value of the core radius
a is artificially large; it is chosen for numerical convenience, so
that the free-energy density will not be extremely concentrated
in small defect cores. In experiments, a is normally closer to
10 nm. Based on Eq. (12), we expect that this reduced value of
a would increase qH by about (ln 10)/d, leading to qH ≈ 5/d.

B. Helicoid lattice

We now apply the same numerical method to a lattice
of parallel helicoids, with a spacing of λ in the x direction.
Suppose the centers of the helicoids are located at x = mλ,
where m is any integer. We solve the dynamic equations in
a domain between two helicoids, for 0 � x � λ and − 1

2d �
z � 1

2d. The rest of the director field can be found by repeating
this unit cell periodically.

For the boundary conditions, we require

θ (0,z,t) = π

2
, θ (λ,z,t) = 3π

2
,

θ

(
x,

d

2
,t

)
= π, θ

(
x, − d

2
,t

)
= π,

φ(0,z,t) = −π

2
, φ(λ,z,t) = −π

2
. (26)

The values of φ on the top and bottom boundaries are undefined
because the director field is vertical there. In the numerical
algorithm, we normally use the condition φ = −π/2 along
those boundaries; we verified that the results do not depend on
that boundary condition. For the initial condition, we construct
a combination of two helicoids using displaced versions of the
conformal mapping solution (10),

θ (x,z,0) = π + tan−1

(
sin(πz/d) − exp(−πx/d)

cos(πz/d)

)

− tan−1

(
sin(πz/d) + exp(−πx/d)

cos(πz/d)

)
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FIG. 6. Numerical calculation of the average free energy per
volume of a helicoid lattice, as a function of the periodicity λ, using
the natural twist q0 = 3/d and the maximum free-energy density
fmax = 100K/d2, without the assumption of constant azimuth.

− tan−1

(
sin(πz/d) − exp(−π [λ − x]/d)

cos(πz/d)

)

+ tan−1

(
sin(πz/d) + exp(−π [λ − x]/d)

cos(πz/d)

)
,

(27)

along with φ(x,z,0) = −π/2.
By integrating the dynamic equations, we calculate the

director field for several values of the periodicity λ. We then
perform a numerical integration to determine the free energy
of the helicoid lattice. The results depend on λ as well as the
natural twist q0 and maximum free-energy density fmax. As an
example, Fig. 6 shows the free energy per volume F/(λLyd)
(scaled by K/d2), as a function of λ (scaled by d), for q0 = 3/d

and fmax = 100K/d2. For these parameters, the free energy
per volume has a minimum at λ ≈ 2d, and hence the helicoid
lattice will form with that optimum spacing. Figure 7 shows
the director field that corresponds to this minimum free energy
per volume. It is a periodic sequence of helicoids, separated by
regions where the director field is predominantly vertical. Each
helicoid in the lattice has variation in both θ and φ, similar to
the single helicoid shown in Fig. 4.

FIG. 7. Lattice of helicoids at x = −λ, 0, λ, . . ., calculated nu-
merically without the assumption of constant azimuth. This example
is constructed using the natural twist q0 = 3/d and the maximum
free-energy density fmax = 100K/d2, and hence the periodicity is
λ ≈ 2d . The picture shows the cross section at y = 0; the director
field is extended uniformly forward and backward in y.

We now repeat the helicoid lattice calculation for different
values of the natural twist q0 and the maximum free-energy
density fmax. In each case, we determine the optimum helicoid
spacing λ, as well as the free energy per volume at that spacing.
For any fixed fmax, the dependence of λ on q0 is similar to the
prediction of Fig. 2. When q0 is slightly above the critical
value qH , the helicoid spacing λ is large. As q0 increases, λ

decreases. Over a range of q0, λ is close to the cell thickness d.
The critical value qH increases as fmax increases. The results
for free energy per volume at the optimum helicoid spacing
will be used to compare the lattice of helicoids with the lattice
of skyrmions discussed in the next section.

IV. SKYRMIONS: NUMERICAL SOLUTIONS WITHOUT
ASSUMPTION OF CONSTANT AZIMUTH

Apart from helicoids, another way for a cholesteric liquid
crystal to adapt to confinement within a thin cell is to form
skyrmions. While a helicoid is narrow in x and extended in y,
a skyrmion is narrow in both x and y, so that it is a pointlike
object in the xy plane. As discussed in Ref. [34], the director
field associated with a skyrmion is vertical in the center, then
twists going radially outward, then becomes vertical again far
from the center.

Here, as in Ref. [34], we will assume that a skyrmion is
axisymmetric, i.e., rotationally symmetric about its central
axis. For that reason, it is most convenient to represent the
director field of a skyrmion in cylindrical coordinates (ρ,�,z),
so that

n̂ = x̂ sin θ (x,y,z) cos φ(x,y,z)

+ ŷ sin θ (x,y,z) sin φ(x,y,z) + ẑ cos θ (x,y,z)

= ρ̂ sin θ (ρ,z) cos δφ(ρ,z)

+ �̂ sin θ (ρ,z) sin δφ(ρ,z) + ẑ cos θ (ρ,z). (28)

Here, φ is the angle with respect to the x axis, while δφ =
φ − � is the angle with respect to the local radial direction ρ̂.
If the skyrmion is axisymmetric, then θ and δφ can only be
functions of ρ and z; they must be independent of �.

Inserting the director field (28) into the Frank free-energy
density (1) gives

f = 1

2
K

{(
∂θ

∂z

)2

+
(

∂θ

∂ρ

)2

+ sin 2θ

ρ

∂θ

∂ρ
+ sin2 θ

ρ2

+ sin2 θ

[(
∂δφ

∂ρ

)2

+
(

∂δφ

∂z

)2]

+ 2 sin2 θ sin δφ

(
∂θ

∂z

∂δφ

∂ρ
− ∂δφ

∂z

∂θ

∂ρ

)

− 2 sin2 θ cos δφ

ρ

∂θ

∂z

+ 2q0 sin δφ
∂θ

∂ρ
− 2q0 sin2 θ

∂δφ

∂z

+ q0 sin 2θ cos δφ
∂δφ

∂ρ
+ q0 sin 2θ sin δφ

ρ

}
. (29)
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The integrated free energy in cylindrical coordinates is

F =
∫

2πρdρdzf (ρ,z). (30)

We now have a situation similar to Eq. (5) for helicoids, but in
cylindrical coordinates. It is not obvious whether the azimuthal
angle δφ should be constant with respect to ρ and z. If δφ were
constant, its optimal value would be δφ = −π/2, in order to
minimize the term Kq0 sin δφ(∂θ/∂ρ) in the free energy. In
this case, the director distortion would be mainly twist, rather
than splay or bend. Based on these considerations, Ref. [34]
made the assumption that δφ = −π/2 throughout the cell,
and calculated the resulting director configuration around the
skyrmion. However, in Sec. III, we found that helicoids can
reduce their free energy by allowing their azimuthal angle
to vary. Hence, we now apply the same numerical method to
determine whether skyrmions can also reduce their free energy
by allowing the azimuth to vary.

For this calculation, we set up the dynamic equations

∂θ (ρ,z,t)

∂t
= −	θ

δF

δθ (ρ,z,t)
,

∂(δφ(ρ,z,t))
∂t

= −	δφ

δF

δ(δφ(ρ,z,t))
. (31)

We set the dynamic constants 	θ and 	δφ equal to each other,
and choose units of time so they are 1. We use initial conditions
and boundary conditions appropriate for the geometry of
a single skyrmion or a skyrmion lattice, and integrate the
dynamic equations forward in time until they converge on
a free-energy minimum.

A. Single skyrmion

To model a single skyrmion at the origin, we solve
the dynamic equations in the domain ρmin � ρ � ρmax and
− 1

2d � z � 1
2d. Here, ρmin is a short-distance cutoff to

avoid a singularity in the numerical method at ρ = 0, and
ρmax is a long-distance cutoff where the director field is
effectively vertical. We use ρmin = 0.001d and ρmax = 10d.
The appropriate boundary conditions are

θ (ρmin,z,t) = 0, θ (ρmax,z,t) = π,

θ

(
ρ,

d

2
,t

)
= π, θ

(
ρ, − d

2
,t

)
= π. (32)

The boundary conditions on δφ are undefined because the
director field is vertical along all the boundaries. In the
numerical algorithm, we normally use the boundary condition
δφ = −π/2; we verified that the results do not depend on that
boundary condition.

For the initial condition, we use a modified version of the
conformal mapping solution from Eq. (10),

θ (ρ,z,0) = π + 2 tan−1

(
sin(πz/d) − exp[−πρ/(2d)]

cos(πz/d)

)

− 2 tan−1

(
sin(πz/d) + exp[−πρ/(2d)]

cos(πz/d)

)
,

(33)

FIG. 8. Director field of a single skyrmion, calculated numeri-
cally for natural twist q0 = 3/d . Images show the horizontal cross
section at z = 0 and the vertical cross section at y = 0. The symbol
D represents point defects on the top and bottom surfaces.

along with δφ(ρ,z,0) = −π/2. We recognize that this expres-
sion for θ (ρ,z,0) is not the exact solution of any problem in
cylindrical coordinates, but it has the correct topological form
for a skyrmion and is useful as a starting point for the numerical
algorithm.

We integrate the dynamic equations until they converge
on the director field of a single skyrmion. Figure 8 shows an
example, calculated for natural twist q0 = 3/d, with both a
horizontal cross section at z = 0 and a vertical cross section at
y = 0. In this configuration, the director field twists radially
outward from the central axis, and it also twists from the
bottom to the top of the cell. The director field has point defects
where the central axis intersects the top and bottom surfaces,
at ρ = 0 and z = ±d/2. These point defects are exceptions to
the general rule that the magnitude of nematic order is constant
everywhere in a skyrmion.

To calculate the free energy of the skyrmion, we substitute
the numerical solution for θ and δφ into the free-energy density
of Eq. (29), and integrate over the whole domain. Although the
free-energy density diverges at the point defects on the top and
bottom surfaces, we can integrate over these divergences be-
cause they are only points in 3D. For that reason, the total free
energy of the skyrmion is not sensitive to the maximum free-
energy density fmax; it has a well-behaved limit as fmax → ∞.
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FIG. 9. Free energy of a single skyrmion as a function of natural
twist q0.

We verify numerically that the total free energy does not
depend significantly on fmax for fmax > 100K/d2. Hence, we
only report the skyrmion free energy in the limit of large fmax.

Figure 9 shows the integrated free energy of the single
skyrmion as a function of the natural twist q0, scaled by
the cell thickness d. This plot is similar to Fig. 5 for a
single helicoid. Here, the skyrmion free energy crosses from
positive to negative at a critical value qS ≈ 3.3/d. For q0 < qS ,
a skyrmion has higher free energy than a uniform vertical
alignment (with F = 0), and hence skyrmions will not form
in thermal equilibrium, although they may occur as metastable
defects. For q0 > qS , a skyrmion has lower free energy than
a uniform vertical alignment, and hence many skyrmions will
be present in thermal equilibrium. To find the favored density
of skyrmions, we must consider a periodic lattice of skyrmions
below.

In addition to the structure with point defects on the top and
bottom surfaces [as in our Fig. 8, or in Ref. [22], Fig. 1(g)], we
also studied a similar structure with ring defects on the surfaces
[Ref. [22], Fig. 1(f)]. However, the ring defect had a higher
free energy than the point defect, presumably because of its
extended length. We have not yet studied structures with ring
defects in the interior [Ref. [22], Fig. 1(e)], because the director
theory cannot represent structures with singularities inside the
domain. Such structures will require further modeling with a
tensor theory that can describe those singularities.

B. Skyrmion lattice

Suppose that a liquid crystal has a periodic lattice of
skyrmions. A two-dimensional lattice of pointlike objects
normally has a hexagonal structure, as shown in Fig. 10.
To describe this lattice, we should calculate the director
configuration within a hexagonal unit cell, and integrate the
free-energy density over the unit cell. This calculation is
difficult because the hexagon is not exactly axisymmetric, and
hence the director field and free-energy density depend slightly
on the angular coordinate � as well as on ρ and z.

To avoid this difficulty, we use the circular cell approxima-
tion, as is done in Ref. [34] and in many papers on magnetic
skyrmions. We approximate the hexagonal unit cell by a circle
of radius ρmax, as shown in red in Fig. 10. We then have

ρmax

FIG. 10. Hexagonal lattice of skyrmions. The hexagonal unit cell
is approximated by a circle of radius ρmax.

the much simpler problem of calculating the director field and
integrating the free-energy density in the axisymmetric circular
cell, where the director field and free-energy density depend
only on ρ and z.

Following this approximation, we solve the dynamic
equations in the domain ρmin � ρ � ρmax and − 1

2d � z � 1
2d,

with the boundary conditions of Eq. (32). Evidently, this is the
same numerical problem that we solved for a single skyrmion
in Sec. IV A. The only difference is in the interpretation of
the radius ρmax. In Sec. IV A, we considered the limit of very
large ρmax, much greater than the cell thickness d, and we
calculated the free energy of a single skyrmion in an effectively
infinite domain. Here, we consider ρmax as a lattice spacing,
comparable to d, and calculate the free energy per volume of
each cell in the skyrmion lattice.

By integrating the dynamic equations, we determine the
director field for several values of ρmax, and then perform a
numerical integration to find the free energy of each unit cell.
The results depend on ρmax as well as the natural twist q0.
As an example, Fig. 11 shows the free energy per volume
F/(πρ2

maxd) (scaled by K/d2), as a function of ρmax (scaled
by d), for q0 = 4/d. For this natural twist, the free energy per
volume has a minimum at ρmax = 2d, and hence the skyrmion
lattice will form with that optimum unit cell radius.

5 10 15 20
–1

0

1

2

3

4

5

6

ρmax/d

F
/(

K
π
ρ

m
ax

2
d

−1
)

FIG. 11. Average free energy per unit volume of the skyrmion
lattice F/(πρ2

maxd) (scaled by K/d2), as a function of the unit cell
radius ρmax (scaled by d), using the natural twist q0 = 4/d .
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FIG. 12. Phase diagram indicating the uniform vertical, skyrmion
lattice, and helicoid lattice phases, as functions of the natural twist q0

and maximum free-energy density fmax. The symbols V , S, and H

indicate numerical calculations of the lowest free-energy structure,
while the lines are guides to the eye. As discussed in the text, the
vertical axis can also be interpreted as the ratio of the cell thickness
d to the disclination core radius a.

We now repeat the skyrmion lattice calculation for different
values of the natural twist q0. For each q0, we determine the
optimum cell radius ρmax, as well as the free energy per volume
at that radius. In the next section, the free energy results will
be used to compare the lattice of skyrmions with the lattice of
helicoids.

V. PHASE DIAGRAM

In the previous two sections, we calculated the average free
energy per volume for two topological structures, the helicoid
lattice and the skyrmion lattice. These free energies are both
calculated with respect to the uniform vertical configuration,
which has F = 0, and they are both scaled by the same factor
K/d2. Hence, we can compare them to determine which
structure is favored: the helicoid lattice, the skyrmion lattice,
or the uniform vertical configuration.

The phase diagram of Fig. 12 shows the favored structure
as a function of two parameters: the natural twist q0 (scaled
by cell thickness d) and the maximum free-energy density
fmax (scaled by K/d2). When fmax is small, there is a
direct transition from the uniform vertical configuration to
the helicoid lattice as q0 increases. For larger fmax, there is one
transition from uniform vertical to skyrmion lattice, and then
another transition from skyrmion lattice to helicoid lattice. The
value of q0 needed to obtain the helicoid lattice increases as
fmax increases.

The structure of this phase diagram can be understood
intuitively through the following argument. The advantage
of the helicoid lattice compared with the skyrmion lattice is
that it has a lower bulk free energy. The helicoid lattice is
closer to the perfect cholesteric helix, which is the equilibrium
phase in the bulk. By comparison, the advantage of the
skyrmion lattice compared with the helicoid lattice is that
it has a lower surface free energy. The skyrmion lattice has
only point defects in the director field on the surface, while
the helicoid lattice has disclination lines running along the

surface, with an energy per unit length that is proportional to
ln(fmaxd

2/K). Hence, the helicoid lattice is favored for large q0

and small fmax (where the bulk free energy dominates), while
the skyrmion lattice is favored for large fmax and smaller q0

(where the surface free energy dominates). When q0 becomes
even smaller, compared with d, the benefit from the chiral
terms in the free energy becomes smaller than the cost of
director gradients from the nonchiral terms, and the uniform
vertical configuration is favored over either type of chiral
lattice.

Although we have only done calculations for the limit
of infinitely strong homeotropic anchoring on the surfaces,
we can anticipate what would happen if the homeotropic
anchoring had only a finite strength W per unit area. If W were
reduced, it would be easier to form line defects on the surface,
and hence it would be easier to form the helicoid lattice. As
a result, the helicoid lattice would occur for a lower value of
q0. In Fig. 13, the vertical axis should really be interpreted
as the free-energy cost of surface defects. That free-energy
cost is controlled by ln(fmaxd

2/K) or ln(Wd/K), whichever
is smaller. In this paper, we have done calculations for W →
∞, so that ln(fmaxd

2/K) is the relevant scale. For weaker
anchoring, ln(Wd/K) might become the relevant scale instead.
[In terms of the disclination core radius a ≈ (fmax/K)−1/2

and the surface extrapolation length b ≈ K/W , the scale is
ln(d/a) or ln(d/b), whichever is smaller. Hence, the relevant
length is a or b, whichever is larger. In this paper, we have
done calculations for b → 0, so that a is the relevant length.
For weaker anchoring, b might become the relevant length.]

We should point out one peculiar discrepancy between
our results and Leonov et al. [34]. In our phase diagram,
the sequence of structures is uniform vertical, then skyrmion
lattice, then helicoid lattice. By contrast, in their phase
diagram, the sequence of structures is isolated skyrmions (i.e.,
uniform vertical with metastable skyrmions), then helicoid
lattice, then skyrmion lattice. Of course, their system is
somewhat different from our system, because they have an
applied electric field and we do not. Even so, it is surprising that
the sequence of structures would be different. Resolving this
discrepancy should be a subject for future theoretical research,
as well as comparison with experiment.

In conclusion, we have developed a theory for helicoids
and skyrmions in cholesteric liquid crystals that are confined
between surfaces with homeotropic anchoring. Our work ex-
tends previous theoretical research by deriving exact solutions
for helicoids with constant azimuth, by calculating numerical
solutions for helicoids and skyrmions with varying azimuth,
and by interpreting the results in terms of competition between
different terms in the free energy. It provides specific examples
of the general principle that complex topological structures are
induced by geometric frustration, as seen in chiral magnets as
well as liquid crystals.
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