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Nonlinear continuous-wave optical propagation in nematic liquid crystals:
Interplay between reorientational and thermal effects
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We investigate nonlinear optical propagation of continuous-wave (CW) beams in bulk nematic liquid crystals.
We thoroughly analyze the competing roles of reorientational and thermal nonlinearity with reference to self-
focusing/defocusing and, eventually, the formation of nonlinear diffraction-free wavepackets, the so-called spatial
optical solitons. To this extent we refer to dye-doped nematic liquid crystals in planar cells excited by a single
CW beam in the highly nonlocal limit. To adjust the relative weight between the two nonlinear responses, we
employ two distinct wavelengths, inside and outside the absorption band of the dye, respectively. Different
concentrations of the dye are considered in order to enhance the thermal effect. The theoretical analysis is
complemented by numerical simulations in the highly nonlocal approximation based on a semi-analytic approach.
Theoretical results are finally compared to experimental results in the Nematic Liquid Crystals (NLC) 4-trans-
4’-n-hexylcyclohexylisothiocyanatobenzene (6CHBT) doped with Sudan Blue dye.
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I. INTRODUCTION

Liquid crystals (LCs) are a fascinating state of matter,
simultaneously exhibiting physical properties usually asso-
ciated with either solids or liquids. This is due, with some
exceptions [1], to the decoupling between positional and

orientational order of the constituting organic molecules:
Depending on the chemical structure and external physical
conditions (temperature, pressure), molecular position and
orientation are characterized by a different symmetry [2]. In
this paper, we focus on the case in which the position of the
molecules is random on the long range, whereas their direction
shows a finite degree of orientational order, i.e., on the nematic
phase.

Composition and arrangement of LCs reflect on their phys-
ical and optical properties: LCs usually behave as anisotropic
crystals but with a pointwise direction of the principal axes
[2]. At the same time, LCs show a high degree of tunability
through the application of external fields [2]. Thermotropic
LCs are also highly sensitive (including phase transitions)
to temperature changes [3]. All these characteristics have
been exploited for different applications in photonics [4–9].
LCs feature a very strong optical nonlinearity as well [10].
Depending on the excitation, different kinds of nonlinear
mechanisms come into play, such as reorientational, thermal,
photorefractive, electrostrictive, electronic responses, as well
as due to modulation of the order parameter [11–15]. Hence,
on the one hand, LCs are an ideal workbench to investigate
the interplay between different nonlinearities [16–18], on the
other hand nonlinear optics helps studying the properties of
new LC mixtures, including those doped with dyes [19–21].

In the context of nonlinear optics, materials often exhibit
an overall response resulting from the combination of various

*alessandro.alberucci@tut.fi
†assanto@uniroma3.it

processes [22]. The interplay and competition of nonlinear
mechanisms leads to a rich scenario of all-optical phenomena
[23], in many cases adding extra degrees of tunability and
disclosing new ways to optical manipulation and signal
processing [17,24–32].

In this paper we address the interplay and competition of the
two dominant LC nonlinearities when the input is a continuous
wave (CW), that is, reorientational and thermo-optic responses
to light, when the LC is in the nematic phase. We consider a
standard planar cell much longer than the diffraction length
of the input beam in order to study the mutual role of
linear diffraction and nonlinear effects [33]. In fact, both
nonlinearities manifest as pointwise changes in the refractive
index. At the same time, both of them exhibit a highly nonlocal
character, i.e., a light-induced perturbation much wider than
the exciting beam [34–37]. Since reorientation usually domi-
nates over thermo-optical effects in pure LCs, we consider a
specific guest dopant added to the host LC mixture in order
to enhance light absorption in a specific range of wavelengths
[16,18]. Thereby, employing one wavelength inside and one
outside the absorption band of the dye, we can evaluate the
interaction of the two responses when simultaneously excited.
Using the highly nonlocal approximation [34], we model
the behavior of the two nonlinearities when acting alone
or together, considering the propagation of a single beam.
Finally, we compare our theoretical findings with experimental
measurements.

II. NONLINEAR LIGHT PROPAGATION IN NEMATIC
LIQUID CRYSTALS

In the nematic phase (nematic LCs, NLCs), the molecules
lack positional order on the long range but have a high degree
of orientational order on macroscopic distances [2]. NLCs are
usually featured by a cylindrical symmetry around an axis,
termed molecular director n̂. Optically, n̂ is the optic axis
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of the effective uniaxial medium. To determine the values of
each element of the dielectric tensor, the order parameter S

is also required [2]. The two independent eigenvalues of the
dielectric tensor are n2

⊥ and n2
‖, corresponding to plane waves

propagating with phase velocities c/n⊥ and c/n‖, respectively
(c is the speed of light in vacuum) and electric fields oscillating
orthogonal or parallel to n̂ for n⊥ or n‖, respectively. The
strong thermo-optic effect in NLCs stems from the marked
dependence of S on temperature [2], in turn yielding to the
temperature dependence of the refractive indices n⊥ and n‖
[38],

n‖(T ) ≈ A − BT + 2(�n)0

3

(
1 − T

TNI

)β

, (1)

n⊥(T ) ≈ A − BT − (�n)0

3

(
1 − T

TNI

)β

, (2)

where TNI is the temperature of the nematic-isotropic transition
for a given NLC mixture, whereas A, B, β, and (�n)0 are
fitting parameters derived from experimental measurements
[39]. From Eqs. (1) and (2) it is clear that n⊥ increases
with temperature if n‖ > n⊥ [(�n)0 > 0 for positive NLCs],
whereas n‖ decreases at double rate with respect to n⊥.
Fundamental [40] and higher-order solitons [41] based on
thermal nonlinearity have been reported in NLCs.

For a given direction of the wave vector k, there are two
eigensolutions of the Maxwell’s equations, the ordinary and
the extraordinary plane waves, respectively. The ordinary elec-
tric field (o-wave) is always orthogonal to the director n̂ and
the phase velocity of the wave is c/no = c/n⊥. Conversely,
the extraordinary (e-wave) electric field is coplanar with the
wave vector k and the director n̂, with a phase velocity
c/ne = c/ne(θ ) which depends on the orientation angle θ

between k and n̂ [38] (ne(0) = n⊥):

ne(θ ) =
(

cos2 θ

n2
⊥

+ sin2 θ

n2
‖

)−1/2

. (3)

Moreover, the extraordinary beam propagates in the plane
(k,n̂) with a Poynting vector tilted with respect to the
wave vector by the walk-off angle δ = arctan[εa sin 2θ/(εa +
2n2

⊥ + εa cos 2θ )] [42], where εa = n2
‖ − n2

⊥ > 0 is the optical
anisotropy, usually positive in NLCs. As already stated, the
dominant nonlinear optical responses in NLCs excited by
CW lasers are thermal and reorientational. Thermal nonlinear
effects occur, for example, when absorption causes a reduction
of the order parameter, with a net decrease (increase) of n‖
(n⊥) [33,43] [Eqs. (1) and (2)]. Instead, the reorientational
nonlinearity originates from collective rotation of molecules
induced by light [10,11,13]. In the case of reorientation, the
electric field E of a light beam induces a molecular dipole
which tends to align to E. The net result is an electromagnetic
torque � = ε0εa(n̂ · E)(n̂ × E). The equilibrium position of
the director is determined by the balance between the torque �

and the elastic forces associated with intermolecular links and
anchoring conditions [11]. When light is purely extraordinary
polarized, the all-optical reorientation of the director n̂ results
in an increase of θ , leading in turn to an increase in ne(θ ), as
stated by Eq. (3). The net effect is beam self-focusing. The
reorientational nonlinearity is polarization dependent as well:

FIG. 1. (a) Sketch of the NLC sample. Two beams (subscripts IR
and vis for λ = 1064 nm and λ = 532 nm, respectively) are launched
collinearly. Inside the anisotropic NLC mixture the Poynting vector
of the extraordinary components are still parallel while the energy
propagates with different walk-off angles. (b) Absorption spectrum
of the mixture of 6CHBT with 0.1% of Sudan Blue dye.

Ordinary input beams orientate the molecules only beyond
the Fréedericksz threshold [44], whereas extraordinary beams
can induce nonlinear effects at very low powers [45]. When
an e-polarized bell-shaped beam propagates in NLCs, self-
focusing at mW excitations can yield light self-confinement
and the generation of bright spatial solitons, also termed
nematicons [46]. Nematicons are self-trapped beams as well
as light induced waveguides for copolarized signal(s) showing
a high degree of tunability and reconfigurability [47–55].
An important feature of self-trapped beams in NLCs is the
high degree of nonlocality characterizing the light-induced
refractive index potential. As a matter of fact, the light-
written index well extends far beyond the beam profile, thus
preventing the insurgence of catastrophic collapse [35,56]. In
this limit, the nonlinear index change �n can be approximated
by a parabolic shape �n = −φ2

2 (x2 + y2), i.e., the system
resembles a quantum harmonic oscillator [34]. In writing
the expression for �n, we assumed k‖ẑ, with the plane xy

normal to the wave vector. Nematicons are shape preserving,
but in general spatial solitons in NLCs breathe with excitation
dependent periodic oscillations in width and peak intensity
[57]. The z dependence of the beam width for light propagating
in a parabolic index well is given by [34,58,59]

n0

2

d4w2

dz4
+ 2φ2

d2w2

dz2
+ 3

dφ2

dz

dw2

dz
+ d2φ2

dz2
w2 = 0, (4)

with n0 the average refractive index and, in the nonlinear case,
φ2 depending on the light distribution.

III. SAMPLE GEOMETRY AND MATERIAL PROPERTIES

The sample is sketched in Fig. 1(a). To contain the NLC
and maintain the desired molecular alignment, a planar cell
was realized with two parallel glass slides separated by
Lx ≈ 50 μm, with the inner interfaces mechanically rubbed
to yield uniform planar anchoring of the director at θ0 =
45◦ with respect to the z axis. The cell was filled with
the host 4-trans-4’-n-hexylcyclohexylisothiocyanatobenzene
(6CHBT) (n⊥ = 1.5021, n‖ = 1.6314 @λ = 1064 nm and
n⊥ = 1.52, n‖ = 1.6746 @λ = 532 nm, room temperature)
doped with 0.1% of the Sudan Blue dye [60], the latter showing
a main absorption peak at λ ≈ 604 nm [see Fig. 1(b)].
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Light attenuation in an NLC sample can be described by
the (intensity) absorption coefficient αov:

αov = αel + α. (5)

According to Eq. (5), the power inside the NLC is P = P0e
−αz,

where P0 is the input power in z = 0. The term αel corresponds
to the Rayleigh-like scattering, thus implying no changes in
temperature. Conversely, the term α accounts for inelastic
scattering, responsible for warming up the sample. When
a resonant dye is added to the NLC host, in the limit of
small concentrations only the term α changes, allowing us
to control the amount of heat generated by light in the NLC.
In addition, the strong NLC anisotropy yields, in general, a
dichroic response, with αov depending on the polarization.

We used two CW laser beams of different wavelengths to
change the relative weight of the two nonlinear responses.
The beam at λ = 1064 nm is away from the dye reso-
nance. The second beam, with wavelength λ = 532 nm, is
within the absorption band of Sudan Blue to enhance the
thermal nonlinearity [16]. The two beams are coupled into
the sample by focusing them with a microscope objective
to a waist of ≈3 μm at the input section z = 0. The beam
evolution is observed by collecting the out-of-plane scattered
light with a Charge-Coupled Device (CCD) camera connected
to a commercial microscope.

IV. COMPARISON BETWEEN REORIENTATIONAL AND
THERMAL NONLINEARITIES

A. Reorientational nonlinearity

The most known all-optical effect in NLC for CW excita-
tions is the reorientational nonlinearity. Describing the director
distribution by the angle θ , molecular reorientation in the
single elastic constant approximation obeys [2]

∇2θ + ε0εa(T )

4K(T )
sin[2(θ − δ(θ,T ))]|E|2 = 0, (6)

where E is the slowly varying envelope of the propagating
field. In Eq. (6) we wrote explicitly the dependence of the
material parameter (εa and the Frank’s elastic constant K) on
the temperature T . Eq. (6) is valid for a linear input polariza-
tion, with the field parallel to x̂ (the ordinary component in
the unperturbed NLC, with reorientation in the xz plane) or to
ŷ (extraordinary component, reorientation in yz). As is well
known, the ordinary wave is subject to the optical Fréedericksz
threshold, that is, the director starts to rotate only beyond
a given optical power [13,33]; conversely, the extraordinary
component undergoes threshold-less reorientation, allowing
for the observation of self-focusing even at modest powers. In
particular, for small reorientations (θ = θ0 + ψ and ψ � θ0)
we can assume θ ≈ θ0 in the sine term in Eq. (6), the latter
thus becoming a Poisson’s equation, linear in beam intensity
I ∝ |E|2. Hereafter we will proceed in the small reorientation
approximation when solving Eq. (6), consistently with the
configuration shown in Sec. III and described by θ0 = π/4
[42].

B. Thermal nonlinearity

Simultaneously to the torque exerted on the NLC
molecules, the beam heats the sample through absorption.
Neglecting convection [61], the temperature fulfills a Poisson’s
equation

∇2T = − αjnj

2κZ0
|E|2 (j = ext,ord), (7)

where Z0 is the vacuum impedance. In Eq. (7) both the optical
absorption αj and the refractive index nj change according
to the polarization [with ordinary index n⊥ or extraordinary
index given by Eq. (3)] of the propagating wave. In writing
Eq. (7), we neglected the spatial anisotropy of the thermal
conductivity κ in NLC [38].

C. Interplay between heat flow and molecular reorientation

Equations (6) and (7) allow us to compute the nonlinear
perturbation of the temperature distribution and the director
field. Once T and θ are known, Eqs. (1)–(3) allow us to describe
the overall index well—ne(θ,T ) or no(T ) according to the
input polarization—induced by light.

The relative weight of the two nonlinearities and their
consequent interplay can be addressed assuming a Gaussian
intensity profile I = 2P

πw2 exp[−2(x2 + y2)/w2] and neglect-
ing the derivative in the propagation direction in Eqs. (6) and
(7): In this limit a closed-form solution can be found for the
Poisson’s equation. The maximum transverse reorientation θm

and temperature Tm (on beam axis) in the highly nonlocal limit
w � Lx are then [62]

θm(θ0,w,P,Tm) = θ0 + Cθ (θ0,Tm)P

×
∞∑
l=0

1

2l + 1
erfc

[
π (2l + 1)w

2
√

2Lx

]
, (8)

Tm(T0,w,P ) = T0 + C
j

T P

∞∑
l=0

1

2l + 1
erfc

[
π (2l + 1)w

2
√

2Lx

]
,

(9)

where Cθ (θ0,Tm) = ε0εa (Tm)Z0 sin[2(θ0−δ0(Tm))]
2πK(Tm)ne(θ0,Tm) cos2 δ0(Tm) , C

j

T = αj

πκ
, T0 is

the room temperature, and P is the beam power. Noteworthy,
neither θm nor Tm depend explicitly on the wavelength. We
stress that if the boundary conditions applied to Eqs. (6) and
(7) are the same [63], the spatial profile of the nonlinear
perturbation is the same for both the nonlinear mechanisms.
This is true when the glasses at the cell interfaces conduce
heat much more than the liquid crystal (see Appendix A 4)
and whenever the anisotropy in the elastic properties and in the
thermal conductivity of the NLC is neglected. In other words,
the ratio between reorientational and thermal contributions
does not vary point by point, at least for small variations
of Tm and θm across the sample. A key parameter is the
magnitude of the parabolic index well φ2, unambiguously
determining the intensity distribution of a single beam in
the highly nonlocal limit. A simple analytical relationship
between φ2 and the beam intensity peak can be easily found
by a Taylor’s expansion [57]. For the reorientational and the
thermal cases we respectively find
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φ2,θ (θ0,w,P,Tm) = Cθ (θ0,Tm)

η

dne

dθ

∣∣∣∣
Tm,θ0

P

w2
, (10)

φ
j

2,T (θ0,w,P,Tm) = C
j

T

η

dnj

dT

∣∣∣∣
Tm,θ0

P

w2
(j = ext,ord), (11)

with η a fit coefficient (equal to 2) introduced to improve
the matching between the Snyder-Mitchell model and exact
solutions [64,65].

The two quantities φ2,θ and φ2,T can be substituted into
Eq. (4) to find how the beam radius varies along z. Assuming
φ2 = �/w2 in agreement with Eqs. (10) and (11), the beam
width evolves according to [59]

d4w2

dz4
+ 2�

n0w2

d2w2

dz2
− 2�

n0w4

(
dw2

dz

)2

= 0. (12)

Let us now discuss the character—focusing or defocusing—of
the two nonlinearities with respect to the initial temperature
T0 of the NLC layer. The coefficient φ2,θ is always positive be-
cause reorientation increases the refractive index. Conversely,
φ

j

2,T can be either positive or negative, in agreement with
Eqs. (1) and (2). In particular, φord

2,T is negative, whereas φext
2,T

changes its sign as the director orientation θ varies via the
coefficient dnext/dT = dne/dT , with θ changing the relative
weight of n⊥ and n‖ in determining ne(θ ) [see Eq. (3)] [38].
Since for small anisotropy εa we can write

ne(θ ) ≈ n⊥ + εa

2n⊥
sin2 θ ≈ n⊥ + (n‖ − n⊥) sin2 θ, (13)

Equations (1) and (2) yield

dne

dT
≈ −B −

[
(�n)0β

3TNI

(
1 − T

TNI

)β−1]
(2 − 3 cos2 θ0).

(14)

Equation (14) states that, in our configuration with θ0 = π/4,
the thermo-optic response for the extraordinary component
is defocusing when B > 0. When B < 0 the response is

defocusing if T > [1 − ( 6TNI|B|
β(�n)0

)
1/(β−1)

]TNI is satisfied. For
example, at λ = 1064 nm in the mixture 6CHBT with θ0 =
π/4, Eq. (14) is negative only for temperatures above 307 K.
Finally, the magnitude of the nonlinear effects increases as the
temperature approaches the transition temperature TNI [38].

D. Ordinary polarization

The ordinary case is simpler than the extraordinary case:
Below the Fréedericksz threshold, only the thermal nonlinear-
ity is active, thus light undergoes self-focusing (defocusing)
when dn⊥/dT > 0 (dn⊥/dT < 0) [15], with beam dynamics
determined by Eqs. (9) and (11). Reorientation occurs above
the threshold, so both the nonlinear mechanisms take place
at the same time. A crucial issue is whether reorientation or
nematic-isotropic transition takes place first. With respect to
the reorientational nonlinearity, the Fréedericksz threshold is
expected to be first order due to the finite size of the beam
and the presence of self-focusing [66]. Nonetheless, our case
is more complicated than Ref. [66] due to the simultaneous
excitation of the ordinary and the extraordinary components
above threshold, yielding a polarization precession on the scale

FIG. 2. Plot of log10(�) versus temperature for αord = 102, 8 ×
102, and 9 × 103m−1, from lower to upper curves, respectively. Here
λ = 532 nm, κ = 1.7 × 10−1 Wm−1K−1, and T0 = 22 ◦C.

of the birefringent length λ
(n‖−n⊥) ≈ 8λ [67]. The width of the

Green function of the full 3D system is approximately given by
Lx [42,58], and thus the elastic response is expected to smooth
out these fast variations in the director distribution. At variance
with Ref. [67], the threshold value should not significantly
vary between the planar and the homeotropic case. Let us
now assume that the 3D spatial profile of the beam undergoes
negligible variations before the lowest threshold, i.e., that the
thermal focusing is negligible. The power Pth corresponding
to the Fréedericksz threshold is found from Eq. (8) by setting
θ0 = 0. The optical threshold power Pth is then [68]

Pth(Tm) = πn⊥(Tm)K(Tm)

ε0εa(Tm)Z0

×
[ ∞∑

l=0

1

2l + 1
erfc

(
π (2l + 1)w

2
√

2Lx

)]−1

.

(15)

Similarly, starting from Eq. (9), the power PNI required to
reach the nematic-to-isotropic transition is

PNI = πκ(TNI − T0)

α

[ ∞∑
l=0

1

2l + 1
erfc

(
π (2l + 1)w

2
√

2Lx

)]−1

.

(16)

As expected, the ratio � = Pth/PNI, determining which phe-
nomenon occurs first, does not depend on the beam width
w but only on material parameters, the latter depending
on wavelength and temperature. The logarithm of the ratio
Pth/PNI is graphed in Fig. 2 versus sample temperature for
three values of absorption. When � is lower than 1, the
threshold is overcome before the transition to the isotropic
phase. Conversely, when � > 1 the Fréedericksz transition is
preceded (hence, washed out) by the phase transition from the
nematic to the isotropic state.

012703-4



NONLINEAR CONTINUOUS-WAVE OPTICAL PROPAGATION . . . PHYSICAL REVIEW E 96, 012703 (2017)

FIG. 3. Competition between reorientational and thermal nonlin-
earities for extraordinary waves in 6CHBT when (a) λ = 532 nm and
(b) λ = 1064 nm, evaluated from Eq. (18) with θ0 = π/4. Dashed
black line and solid lines are the left-hand side and the right-hand
side of Eq. (18) versus sample temperature, respectively. The thermal
nonlinearity is computed for αext = 1 × 102 m−1 (bottom blue solid
lines), 1 × 103 m−1 (middle green solid lines), and 9 × 103 m−1

(top red solid lines). Triangles correspond to the exact expressions,
Eqs. (10) and (11).

E. Extraordinary polarization

The extraordinary polarization case is more complicated
than the previous one due to direct competition of two
nonlinearities with opposite signs [see Eq. (14)]. The overall
nonlinear response will be focusing if φ2 = φ2,θ + φ2,T > 0.
Using Eqs. (10) and (11) we find

Cθ (θ0,Tm)
dne

dθ

∣∣∣∣
Tm,θ0

> −CT

dne

dT

∣∣∣∣
Tm,θ0

. (17)

Using Eqs. (13) and (14), conserving only the lowest-order
terms in εa , Eq. (17) can be recast as

ε2
a (Tm) sin2(2θ0)

16cn2
⊥(Tm)K(Tm)

+ αext(2 − 3 cos2 θ0)

4κ

(�n)0β

3TNI

×
(

1 − Tm

TNI

)β−1

>
αextB

4κ
. (18)

Typical results are illustrated in Fig. 3 for parameters
corresponding to the mixture 6CHBT. The overall nonlin-
earity will be defocusing (i.e., thermal heating prevailing on
molecular reorientation) in the presence of a large absorption.
When the absorption reduces, reorientation becomes domi-
nant. The relative weight of the two mechanisms depends on
temperature: thermal effects undergo a steep increase close
to TNI, and thus reorientation dominates over heating for
temperatures far below the transition. The temperature interval
where the torque prevails on heating gets wider as absorption
diminishes becomes very narrow for undoped NLC (αext

ov ≈
αext

el ≈ 102 m−1). Figure 3 also shows that reorientational
effects are lower in the green than in the IR if the thermal
absorption is supposed to be the same at the two wavelengths.

F. Scalar fundamental soliton in dye-doped 6CHBT

Let us now specialize our general considerations to the
sample we used in experiments and detailed in Sec. III. For
the sake of simplicity, we neglect NLC dichroism and take α

FIG. 4. Soliton width versus input power for infrared beam with
extraordinary (a) and ordinary (b) polarization and ordinary green
(c). We considered doped 6CHBT with θ0 = π/4 and absorption α of
102 m−1 (IR) and of 9 × 103 m−1 (green), respectively. The marked
values are the initial temperatures T0 in Kelvin. The dashed lines in
the center panel correspond to overcoming the Fréedericksz threshold,
inhibiting the observation of a purely thermal soliton.

independent from the wave polarization. Such a choice is due to
the limited amount of experimental data about linear dichroism
in 6CHBT within the visible spectrum. We note, however,
that a different absorption between the two polarizations does
not imply any quantitative change in our results but only a
different scaling with power. Incidentally, due to the different
observable effects associated with absorption and scattering
losses, the interplay between reorientational and thermal
nonlinearities could become a novel approach to measure
optical absorption coefficients in NLCs. We can estimate a
strong absorption α � αel, equal to about 9 × 103 m−1, for
λ = 532 nm due to the presence of the dopant. At λ = 1064 nm
no resonance with the dye is excited (negligible α) and
αov ≈ 102 m−1, as in standard NLC. Figure 4 graphs the width
of the fundamental (single-humped) soliton versus input power
of the beams at the two wavelengths. These solitary waves are
scalar, i.e., they encompass only one polarization (ordinary or
extraordinary) at a given wavelength. The soliton features have
to account for both nonlinearities with a twofold interplay: on
one side, a direct competition between the two nonlinear index
wells, i.e., between the two all-optical wave-guiding effects
quantified by Eqs. (10) and (11) and plotted in Fig. 3 for the
extraordinary polarization; and, on the other side, an increase
in temperature changes the material properties, including the
elastic response (via the effective Frank’s constant K) and
the dielectric response according to Eqs. (1) and (2) (see Ap-
pendix A2 and Fig. 11 in the Appendix for more details) [69].

The IR beam is able to excite a bright soliton with either
input polarizations. When the polarization is extraordinary
(y-polarized beam) reorientation overcomes thermal effects
[see Fig. 3(b)]. An upper bound for soliton power exists due to
the isotropic-to-nematic transition [see Eq. (16)]. The soliton
width does not decrease monotonically with power, due to
a decrease in the reorientational response via heating [see
Fig. 3(b)]. The ordinary wave can also excite a soliton of
purely thermal origin, even if such solitons are much wider
than reorientational ones (tens of microns with respect to a
few microns for typical powers, see Fig. 4). With reference to
the reorientational soliton, the thermal effect increases as the
transition to the isotropic phase is approached (Fig. 10). Note-
worthy, to ensure the observability of a scalar thermal soliton,
the power must remain below the Fréedericksz threshold, the
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latter given by Eq. (15) once the waist of the corresponding
soliton is used instead of the generic beam width w. In Fig. 4
(center panel) the existence branches where the Fréedericksz
threshold is surpassed are marked by dashed lines.

Due to the much larger absorption and the different
dispersion, self-trapping of green waves strongly differs from
the infrared case. First, the extraordinary component never
forms a bright soliton due to the dominant defocusing of
thermal origin (Fig. 3). Conversely, an ordinary-wave thermal
soliton can be formed. Due to the magnitude of the absorption,
the soliton can be very narrow (see Fig. 12), the self-trapping
can take place at very small powers (less than 1 mW) and in
a very narrow range dependent on the initial temperature T0.
Similarly to the IR case, the power upper bound corresponds
to the nematic-to-isotropic phase transition at T > TNI. The
lower bound is associated with the peculiar dispersion of
n⊥ at this wavelength: For T < 300.15 K the ordinary index
decreases with temperature (see Fig. 10 in the appendix), thus
a bright soliton can exist only when the power inverts the
sign of the nonlinearity and yields self-focusing. In agreement
with this, the existence curves for solitons shift towards lower
powers as the initial temperature increases.

V. EVOLUTION OF THE BEAM WIDTH

In this section, using Eqs. (4), (10), and (11), we use the
semianalytical model of Ref. [70] to study theoretically how a
fundamental Gaussian beam propagates in doped NLC, con-
sidering both polarizations separately and two wavelengths,
one off-resonance (IR) and one (green) strongly absorbed. As
input, we will take a Gaussian beam of input width w0 and
input power P0 and possessing a flat phase profile in the input
section z = 0.

A. IR beam alone

The behavior of the IR beam width versus z was computed
numerically by solving Eq. (4) for different input powers
and is plotted in Fig. 5. The behavior of the extraordinary
component is shown in Figs. 5(a) and 5(b). In the calculation
we included the thermal modulation of the NLC parameters
(refractive indices and elastic constants) through absorption. In
agreement with previous literature, strong self-focusing yields
spatial solitons at a few mW powers. The dynamics of soliton
formation depends on the input beam width: self-focusing of
wider beams is eased due to less diffraction [70]. Losses due
to Rayleigh scattering (not contributing to thermal heating)
affect self-trapping and increase both the average beam width
in propagation and the oscillation period (see solid and dashed
lines in Fig. 5).

In the ordinary polarization, the beam follows a similar
dynamics induced by the thermal nonlinearity, which is the
only one active for powers below the Fréedericksz transition
[expressed by Eq. (15)]. Even though the power required for
self-focusing is much higher because of a lower nonlinearity,
the influence of scattering losses and input beam width is
analogous to the extraordinary case.

B. Green beam alone

The behavior of the green beam, when the input polarization
is ordinary, is plotted in Fig. 6. At low powers, small increases

FIG. 5. Beam width versus z when λ = 1064 nm for α = 102 m−1

and an input width w0 = 2 μm [(a) and (c)] and w0 = 6 μm [(b)
and (d)], respectively. [(a) and (b)] Extraordinary wave subject to
reorientational and thermal nonlinearity for input power P0 = 1 mW
(blue lines), 3 mW (green lines), 5 mW (red lines), and 10 mW
(cyan lines). [(c) and (d)] Ordinary wave subject to a purely thermo-
optic nonlinearity for input power P0 = 1 mW (blue lines), 8 mW
(green lines), 30 mW (red lines), and 50 mW (cyan lines). Solid and
dashed lines correspond to zero Rayleigh scattering αel = 0 and to
αel = 4 × 102 m−1, respectively. The black line with triangles plots
the linear diffraction; the initial temperature T0 is 295.15 K.

in beam divergence are observed due to the defocusing sign of
dn⊥/dT for T < 300.15 K (see Fig. 10). At higher powers, the
thermal nonlinearity becomes self-focusing. Due to the higher
absorption α in the green, self-lensing is stronger near the input
interface with respect to the infrared case, but self-trapping
fades away more rapidly due to larger losses. In fact, as the
absorption α increases (e.g., larger concentration of dopants),
the minimum beam width gets smaller but, at the same time, the
beam starts to freely diverge after shorter propagation distances
z. This effect is prominent for small input beam widths [see
Figs. 6(a) and 6(c)]. For wider input beams, self-trapping is
more prone to occur and survives on larger distances from the
input interface as well [Figs. 6(b) and 6(d)].

The propagation of the extraordinary green beam is more
involved than in the infrared case: Due to the large absorption,
thermal and reorientational nonlinearities are comparable, and
both have to be accounted for simultaneously. The top row
in Fig. 7 plots beam width versus z for an input width of
6 μm and four absorption coefficients α. For small absorption,
reorientation is dominant and an overall focusing takes place.
Between α = 2 × 103 m−1 and α = 3 × 103 m−1, the thermal
response overcomes the reorientational nonlinearity, yielding a
monotonic increase in beam divergence versus input power as
compared to the linear case, i.e., self-defocusing in agreement
with Fig. 3. Due to the large increase in temperature, an
extraordinary beam is also able to change its own trajectory: the
light-induced temperature increments Tm − T0 yield a power-
dependent change in walk-off via Eqs. (1) and (2). In particular,
for θ0 = 45◦ walk-off decreases with power due to the higher
temperature: the wave-fronts remain unperturbed (the average
wave vector remains normal to ẑ) but the Poynting vector
changes direction. The bottom row of Fig. 7 shows the com-
puted walk-off angle δ = δ(θ0 = π/4,T = Tm) versus z. For
z � 1/αov, the walk-off tends to δ = δ(θ0 = π/4,T = T0),
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FIG. 6. Beam width versus z and input power when the input wave
is purely ordinary at 532 nm and scattering losses are neglected. The
thermal absorption α is 9 × 102 m−1 [(a) and (b)] and 3 × 103 m−1

[(c) and (d)], the input beam width w0 is 2 μm [(a) and (c)] and
6 μm [(b) and (d)], respectively. Effects of scattering losses for w0 =
2 μm (e) and w0 = 6 μm (f). Solid and dashed lines correspond
to αel = 0 and αel = 1 × 103 m−1, respectively. Red (triangle) and
blue (square) lines corresponds to α = 9 × 102 m−1 and α = 3 ×
103 m−1, respectively. Input powers are chosen at the edge of the
isotropic-to-nematic transition. From (a)–(d) in (e) it is P0 = 5.8
mW for α = 9 × 102 m −1 and P0 = 1.8 mW for α = 3 × 103 m−1.
In (f) it is P0 = 5.8 mW for α = 9 × 102 m−1 μm and P0 = 2.6 mW
for α = 3 × 103 m−1. The initial temperature T0 is 298.15 K.

i.e., the beam direction with respect to z corresponds to the
linear case. Power-driven variations in walk-off mimic the
trend of the maximum temperature Tm, with an exponential
decay along z with slope given by the overall losses αov.

VI. COPROPAGATION OF A WEAK PROBE AND
AN INTENSE IR BEAM

In this section we will investigate experimentally the light
propagation when the impinging wavelength is outside the

dye absorption band: We employed a diode-pumped solid
state Nd:YAG laser emitting at λ = 1064 nm as an intense
IR beam and frequency-doubled Nd:YAG laser operating at
λ = 532 nm as a weak copropagating green beam. Both beams
were coupled in the NLC cell after focusing with a microscope
objective to a waist of about 3 μm. The width of both beams
before the microscope objective was chosen to provide the
same waist after focusing with a microscope objective. The
beam evolution in the yz plane was analyzed by collecting
the out-of-plane scattered light. To this extent, we used an
optical microscope and a CCD camera, inserting a proper
filter to let only the IR or green light through, whenever
required. We launched a linear polarization exciting either
ordinary (x-polarized) or extraordinary (y-polarized) waves.

Figure 8 illustrates the propagation of a weak probe
(green) beam at Pvis = 100 μW, unable to excite either the
reorientational nonlinearity or appreciable thermal effects,
co-polarized and co-launched with an intense IR beam. The IR
beam impinges normally to the sample, both for extraordinary
and ordinary polarizations; the probe is launched so that its
path in the NLC overlaps with the IR. Thus, the green beam
wave vector in the extraordinary polarization is tilted so that the
two waves share the same Poynting vector direction, regardless
of dispersion and walk-off (Fig. 10).

Let us start with the ordinary polarization. The beam evolu-
tion for various IR beam powers is plotted in Figs. 8(a)–8(d).
Figure 8(e) shows the normalized beam width w/w0 and the
beam shift �y with respect to the input section versus the input
IR power, measured at a distance z = zp = 0.25 mm from the
input interface. No appreciable variations are observed, neither
in beam size nor in trajectory. Regarding the latter, no changes
are expected as the walk-off is zero for this polarization. With
reference to the beam size, Fig. 4 predicts a minimum soliton
width of about 7 μm around P = 20 mW; due to the fact that
the input waist is about 3 μm, the ordinary wave is negligibly
affected by thermal self-focusing. Such behavior is also
confirmed by the calculated width in Fig. 5(c) in the presence
of scattering losses (dashed lines), where even for P = 50 mW
the beam undergoes spreading at zp = 0.25 mm. Furthermore,
the Fréedericksz transition, estimated at powers just below
20 mW (Fig. 4), is not observed up to PIR = 50 mW, when
detrimental effects from heating (like formation of isotropic

FIG. 7. Beam width w (top row) and walk-off angle δ (bottom row) versus z and the input power P0 when the input polarization is
extraordinary at 532 nm. Thermal absorption α is 1 × 103 m−1, 2 × 103 m−1, 3 × 103 m−1, and 4 × 103 m−1 from left to right, respectively. T0

is 298.15 K and w0 is 6 μm.
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FIG. 8. Experimentally acquired photographs of a green probe
beam copolarized and copropagating with an IR beam in the yz

observation plane of a planar cell. When the two beams are ordinary
waves [(a)–(d)], the Fréedericksz transition inhibits changes in either
width [normalized to the initial value w0 = w(z = 0)] and Poynting
vector; the IR power is (a) P = 1 mW, (b) 3 mW, (c) 6 mW, and (d)
10 mW. Panel (e) summarizes normalized beam width and transverse
displacement [�y ≡ y(z = zp) − y(z = 0)] due to walk-off in z =
zp = 250 μm. If the beams are extraordinary waves [see panels (f)–
(i)], reorientation causes self-focusing and a nematicon guides the
probe when (f) P = 1 mW, 3 mW (g), 6 mW (h), and 10 mW (i). (j)
Same as in (e) but for extraordinary waves. The lower limit for the
accuracy is about 1 μm and 0.2 for the position and the normalized
width, respectively.

bubbles related to the isotropic-nematic transition in NLC
regions) take place. Aside from the approximations pointed
out in the Sec. IV D, such discrepancy between theory and
experiments can be attributed to inhomogeneities in director
distribution at the cell entrance, possibly through the formation
of a meniscus at the interface air-NLC. Such imperfections can
affect reorientation more than the thermal flow.

The evolution of the extraordinary wave is shown in
Figs. 8(f)–8(i) at four powers. For the sake of a quantitative
discussion, Fig. 8(j) graphs the normalized beam width w/w0

and lateral shift �y in z = zp. The extraordinary polarized
beam at low powers has its Poynting vector at a walk-off
angle δ(π/4) ≈ 4.5◦ (the theory predicts 4.8◦ at T = 295 K).
Small variations can be observed in the beam trajectories with
increasing powers, as lower walk-off is associated to a slightly
reduced anisotropy in regions with higher temperatures (see
Fig. 10). The width of the probe versus z shows appreciable
changes for PIR > 1 mW due to the waveguide induced by
molecular reorientation. The beam width at z = zp = 0.25 mm
is about the same as at the input section when PIR ≈ 4 mW.
This is in good agreement with Fig. 5(a), where the beam
width reacquires the same value inside the NLC cell for

FIG. 9. Experimentally acquired photographs of the propagating
visible beam (no IR). Ordinary wave propagation for P = 0.4 mW
(a), 3 mW (b), 4 mW (c), and 6 mW (d), respectively, showing
thermal self-focusing. (e) Normalized beam width w/w0 and beam
displacement �y versus input power P . Propagation of extraordinary
wave beam for P = 0.4 mW (f), 3 mW (g), 4 mW (h), and 6 mW
(i), respectively: The extraordinary undergoes self-defocusing and
power-dependent changes in trajectories. (j) Normalized width w/w0

and transverse displacement �y of the extraordinary beam versus
input power. The lower limit for the accuracy is about 1 μm and 0.2
for the position and the normalized width, respectively.

powers between 3 and 5 mW. For higher powers, consistently
with Fig. 5(a) the width measured in zp oscillates around the
size of a shape-preserving soliton, between 1.5 μm and 4 μm
for 5 mW < P < 40 mW according to the leftmost panel in
Fig. 4.

VII. LIGHT PROPAGATION AT WAVELENGTH WITHIN
THE ABSORPTION BAND OF THE DYE

When the green probe propagates by itself in the cell, the
observed behavior drastically changes, as predicted. Let us
first analyze the evolution of the ordinary component, shown
in Figs. 9(a)–9(d) with quantitative features in Fig. 9(e). When
the green power is above 3 mW, the beam experiences thermal
self-focusing; for P = 6.5 mW, the beam shrinks down to
a size close to the initial value; further increases in power
eventually lead to the nematic-isotropic transition. This agrees
well with the theoretical results plotted in Fig. 6. Finally, the
transverse position of the ordinary beam slightly depends on
the input power, due to slight variations in wave vector near the
NLC-air interface and probably to a meniscus (as speculated in
the previous case above), with slightly asymmetric boundary
conditions near the beam entrance.

Considering the extraordinary polarization, graphed in
Figs. 9(f)–9(j), a quasilinear increase of beam width versus
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input power is observed [see Fig. 9(j)], associated with
defocusing for P > 1 mW. The lateral displacement �y at
P = 6.5 mW is twice smaller than in the linear regime (low
powers). According to the results reported in Fig. 7, such a de-
flection cannot be ascribed solely to thermally induced changes
in walk-off. These experimental results prove that the wave
vector undergoes a nonlinear deflection as well, analogously
with what we previously described for green ordinary waves.

VIII. CONCLUSIONS

We investigated the interplay between two competing opti-
cal nonlinearities in NLCs, the reorientational and the thermal
one. In the highly nonlocal limit and for small light-induced
rotations of the director, the two effects share the same profile
for the nonlinear perturbation. As a direct consequence, in the
highly nonlocal regime the relative weight of the two responses
does not depend on the the spatial profile of the input beam
and it is spatially uniform across the NLC layer. We discussed
theoretically the interplay between the two nonlinearities and
its dependence on initial temperature and material absorption
considering a monochromatic excitation. In particular, using
the Green’s function formalism, we computed for both the
nonlinearities the effective nonlocal Kerr coefficients [42],
the latter providing the width of the corresponding shape-
preserving soliton. Using the Ehrenfest’s theorem applied to
the first- and second-momentum of the beam [59], we then
generalized our results to the case of z-variant nonlinear waves
(i.e., breather solitons).

We demonstrated that there are two different aspects to
account for: (i) a direct competition on forming the overall
nonlinear index well and (ii) a modulation of the parameters
determining the NLC response to light. We showed that
mechanism (i) plays a relevant role only in doped NLCs
or in undoped NLCs very close to the isotropic-nematic
transition. With reference to the case (ii), light-induced
changes in temperature significantly affect the formation of
reorientational solitons even in the undoped case, including
the existence of solitons in a limited power range and a
nonmonotonic soliton width versus power. The qualitative
behavior has been experimentally confirmed investigating
both ordinary and extraordinary propagation in a doped NLC
(6CHBT plus Sudan Blue dye) with two different beams at
1064 nm (non-resonant with the dye) and at 532 nm (resonant
with the dye).

Our findings widen the perspective on the unique optical
properties of NLCs, the latter being an ideal workbench for the
study of nonlinear optics and the interaction between nonlin-
earities [23,71]. Future developments include the simultaneous
propagation of two beams at different wavelengths and with
different profiles [18]. Generalizations to nonlinearities acting
on distinct time scales can be envisaged as well when using
pulsed sources [17]. Our results, together with semianalytic
models accounting for self-lensing and its dynamics in propa-
gation, show how nonlinear optics in long samples is an impor-
tant tool for the complete characterization of NLC mixtures.
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APPENDIX

1. Linear optical parameters of the mixture 6CHBT

Figures 10(a) and 10(b) shows the comparison between
actual measurements carried out with an Abbe refractome-
ter and fitting curves given by Eqs. (1) and (2) for the
two wavelengths we used in this work. A best-fit proce-
dure provides A = 1.5295, B = −5.1364 × 10−5, (�n)0 =
0.2767, and β = 0.2719 for λ = 1064 nm, whereas we find
A = 1.7098, B = 4.6545 × 10−4, (�n)0 = 0.2345, and β =
0.1483 for λ = 532 nm. Having ascertained the quality of the
fitting curves, the latter can be used to compute the derivative of
n‖ and n⊥ with respect to temperature, as shown in Fig. 10(c).
Finally, Fig. 10 provides a direct comparison between the
approximated formula (14) and the exact expression

dne

dT
=

(
cos2 θ

n2
⊥

+ sin2 θ

n2
‖

)− 3
2
[

cos2 θ

n3
⊥

dn⊥
dT

+ sin2 θ

n3
‖

dn‖
dT

]
.

(A1)

2. Elastic properties of the mixture 6CHBT

When anisotropy of the elastic properties of the NLC
is accounted for, the reorientation induced by an optical
wavepacket invariant along z is given by

(K1 cos2 θ + K3 sin2 θ )
∂2θ

∂y2
+ K2

∂2θ

∂x2

+ (K3 − K1) sin(2θ )

(
∂θ

∂y

)2

+ ε0εa

4
sin [2(θ − δ)]|E|2 = 0. (A2)
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FIG. 11. (a) Measured elastic constants K1 (blue stars), K2 (red
crosses), and K3 (black triangles) versus temperature. (b) Average
elastic constant Kav versus temperature (blue symbols) computed
from the data shown in panel (a); the black solid line is the
corresponding linear interpolation. (c) Behavior of the reorientational
nonlinearity ε0εa/(4Kav) versus temperature for λ = 1064 nm (red
dashed line) and 532 nm (blue solid line).

For small optical reorientations the term proportional to
(∂θ/∂y)2 can be neglected. Thus, for an initial angle θ0 = π/4
an effective elastic constant equal to the average of the three
elastic constants can be assumed. The elastic constants for
6CHBT are plotted in Fig. 11(a), as measured by all-optical
methods [72]. All three elastic constants decrease monoton-
ically versus temperature. Figure 11(b) shows the average
Frank’s constant Kav = (K1 + K2 + K3)/3: For temperatures
not too close to the transition TNI, Kav can be satisfactorily
approximated by a linear polynomial with coefficients Kav =
−0.2173T + 71.4828. Finally, Fig. 11(c) graphs the ratio
of the optical anisotropy and the average elastic constant.
All-optical reorientation is stronger at shorter wavelengths and
increases with temperature up to T = 40 ◦C.

3. Width of solitons supported by a single nonlinearity

In the highly nonlocal approximation, fundamental soli-
tons feature a Gaussian profile with waist determined by
[4/(n0k

2
0 |φ2|)]1/4, where n0 is the unperturbed refractive index

and k0 the vacuum wave number. From Eq. (10), the existence
curve of a soliton in the perturbative regime and due to a
reorientational nonlinearity alone is

wsol
θ (P ) = 1

k0

√
8ηπK cos2 δ0

Z0ε0εa sin[2(θ0 − δ0)] dne

dθ

∣∣
θ0

1√
P

, (A3)

whereas the thermal self-focusing provides an ordinary-wave
soliton with

wsol
T (P ) = 1

k0

√
4ηπκ

n⊥αord
dn⊥
dT

1√
P

. (A4)

The soliton width versus power as predicted by Eqs. (A3)
and (A4) is plotted in Fig. 12 for a fixed sample temperature.
The interaction between the two nonlinearities is neglected,
considering only the reorientational effect for the extraor-
dinary wave, and the thermal effect for the ordinary wave.
For the infrared beam, corresponding to α ≈ 102 m−1, the
reorientational soliton is much narrower than the thermal one;
the extraordinary self-trapped wave widens as the temperature
approaches the transition value TNI. The size of the ordinary-

FIG. 12. Soliton existence curves in the plane width-power for
extraordinary (left, reorientational nonlinearity) and ordinary (right,
thermal nonlinearity) waves, as predicted by Eqs. (A3) and (A4). The
first and second rows correspond to 6CHBT doped with Sudan Blue
for λ = 1064 nm and 532 nm, respectively, with θ0 = π/4. Blue lines
with triangles, green solid lines, and dashed red lines correspond to
sample temperatures of Tm = 295 K, 305 K, and 315 K, respectively.
The ordinary-wave green soliton at T = 295 K does not exist because
at low temperatures as the thermal response is defocusing, according
to Fig. 10.

wave thermal soliton is comparable with the extraordinary-
wave soliton (i.e., a few microns) when the sample is close to
the nematic-isotropic transition. For the green component, due
to the large absorption, the roles are inverted. Green ordinary
solitons can theoretically reach subwavelength size due to the
large absorption, and this effect becomes more marked as
the temperature approaches the nematic-to-isotropic transition
TNI. In actual samples these waves are ruled out by the large
losses associated with α and by the fact that strong absorption
destroys the nematic phase.

FIG. 13. Cross section on the cell midplanes of the temperature
distribution versus x/Lx (a) and versus y/Lx (b) for three different
thicknesses L/Lx of the glass interface. Maximum temperature
change Tm − T0 (normalized with respect to the value computed for
L = 0 μm) (c) and temperature difference between the glass-NLC
interface and the environment TB − T0 (d) versus glass thickness
L/Lx (each point corresponds to a numerical simulation). The optical
excitation is a Gaussian beam of waist w/Lx = 0.02. Here we
assumed κglass = 10κ .
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4. Role of glass interfaces in the heat dissipation

In the main text, for the thermal problem we supposed
that the temperature at the interface NLC-glass is equal to
the environment temperature T0, i.e., we set the conditions
T (x = Lx/2,y) = T (x = −Lx/2,y) = T0. The assumption
corresponds to consider an infinite thermal conductivity for
the glass. In real samples, the conductivity of the glass is 5–10
times larger than the NLC conductivity [38]. However, the
actual thermal resistance of the glass depends strongly on the
glass thickness and the punctual distribution of temperature.
In the highly nonlocal limit, we expect that the heat flux is
maximum away from the interfaces, and thus the approxi-
mation should be quite accurate. To estimate the accuracy of
our approximation, we focus on the point y = 0, where the
heat flux between glass and NLC is maximum for symmetry
reasons. Setting TB = T (x = Lx/2,y = 0) and supposing a
linear behavior for the temperature in the glass, the boundary
condition at the interface reads TB − T0 = L κ

κglass

∂T
∂x

|
NLC

,
where L and κglass are the thickness and thermal conductivity
of the glass, respectively. We define the effective thermal
length of the NLC layer as leff(w) ≡ (Tm − TB)/ ∂T

∂x
|
NLC

. The

boundary condition now reads TB−T0
Tm−TB

= L
leff

κ
κglass

. Thus, the

condition TB ≈ T0 corresponds to leff
κ

� L
κglass

. Using Eq. (9)

and results from Ref. [62], in the highly nonlocal limit we
find

leff(w)

Lx

≈ 1

π

∑∞
l=0

1
2l+1 erfc

[
π(2l+1)w

2
√

2Lx

]
∑∞

l=0 (−1)l erfc
[

π(2l+1)w
2
√

2Lx

] . (A5)

Equation (A5) provides leff/Lx ≈ 1.35 for w/Lx = 0.02.
Temperature distribution in the sample for different normalized
glass thickeness L/Lx is plotted in Figs. 13(a) and 13(b). We
considered a Gaussian beam of normalized waist w/Lx = 0.02
and, due to the linearity of the Poisson equation, arbitrary
amplitude. Moreover, we assumed κglass = 10κ , in agreement
with typical NLC samples [38]. Temperature distribution
undergoes a vertical shift as L is changed, whereas the shape in
the NLC region stays almost unvaried. Figure 13(c) shows that
the maximum of the optically induced perturbation Tm − T0

increases monotonically, saturating when L/Lx > 2. Equation
(A5) holds valid up to L/Lx ≈ 0.7, that is, until the growth of
Tm − T0 is linear. In Fig. 13(d) the behavior of TB is plotted.
In agreement with Eq. (A5), at L/Lx = 0.1 the temperature
of the glass-NLC interface is about 0.7% times higher than
for L/Lx = 0. Real samples correspond usually to L/Lx > 2,
where the variation in the maximum temperature change is
already saturated and equal approximately to 5%.
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