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Impact of interaction range and curvature on crystal growth of particles
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When colloidal particles form a crystal phase on a spherical template, their packing is governed by the effective
interaction between them and the elastic strain of bending the growing crystal. For example, if growth commences
under appropriate conditions, and the isotropic crystal that forms reaches a critical size, growth continues via the
incorporation of defects to alleviate elastic strain. Recently, it was experimentally found that, if defect formation
is somehow not possible, the crystal instead continues growing in ribbons that protrude from the original crystal.
Here we report on computer simulations in which we observe both the formation of ribbons at short interaction
ranges and packings that incorporate defects if the interaction is longer-ranged. The ribbons only form above some
critical crystal size, below which the nucleus is disk-shaped. We find that the scaling of the critical crystal size
differs slightly from the one proposed in the literature, and we argue that this is because the actual morphology
transition is caused by the competition between line tension and elastic stress, rather than the competition between
chemical potential and elastic stress.
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I. INTRODUCTION

Colloidosomes are droplets whose surfaces are densely
packed with colloidal particles [1]. Confinement of the
colloidal particles to the liquid-liquid interface minimizes the
contact area between the two liquids. At high surface coverage,
the colloids pack either in a disordered, glassy fashion or in
an ordered, crystalline fashion [1–4]. In the former, particles
are kinetically trapped. In the latter, the equilibrium packing
of the colloids is determined by the interplay between the
curvature of the droplet and the exact nature of the interaction
between the colloids. This can give rise to various kinds of
defect and defect organizations, producing grain boundary
scars [5–7], pleats [8], and/or growth in ribbonlike shapes
that emanate from isotropic domains without defects at the
boundary between the two [9].

Grain boundary scars and pleats involve point defects in
specific arrangements, where a point defect is a particle that has
fewer or more than six nearest neighbors. Ribbons form when
particles, for whatever reason, refuse to give up local hexagonal
order. One such reason can be elastic stress, resulting from
a short interaction range [9,10]. In macroscopic theory, this
stress manifests itself in an additional elastic term in the
free energy [11,12]. The experimentally observed ribbonlike
crystals of Meng et al. show an initial, almost isotropic growth
that, after a critical size is reached, transitions into the growth
of ribbons protruding from the initial crystal [9]. Similarly,
in phase-field crystal model calculations performed by Köhler
et al., such structures are also found, confirming that growing
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in ribbons indeed leads to a lower free energy [10]. Note that
the crystal growth is continuous along the interface between the
initial nucleus and the ribbon, i.e., there is no grain boundary
between the two because the ribbon preserves the same lattice
vectors.

The reason ribbons form can be understood from a micro-
scopical picture. In a hexagonal crystal, point defects always
have a larger potential energy than sixfold oriented particles
because they cannot be at the optimal lattice site with respect
to all of their neighbors. For a reasonably broad interaction
well, this causes a slight increase in the potential energy that
is not sufficiently punitive to destabilize such a defect.

For very sharp (brittle) potentials, however, the potential
energy penalty for a point defect is so large that it destabilizes
point defects completely. This means that the only crystal
morphology that can form is hexagonal. Since wrapping a
hexagonal lattice on a spherical surface is impossible without
introducing defects, brittle potentials can only achieve this by
introducing vacancies. Therefore, the tears in between ribbons,
as seen in the experiments of Meng et al., can be thought of
as regions in which the elastic penalty for crystal formation is
prohibitively high.

Theoretical arguments for how the largest isotropic domain
should scale with the Young’s modulus and template radius
were given in the aforementioned studies and are based on
finding the optimal size of a circular crystal bent onto a
spherical surface, which is, in this topology, bounded by an
elastic energy penalty [9,10]. The theory predicts that ribbons
form for a sufficiently short range of interaction, for example of
a suitably parametrized Morse potential [13–15], and only then
for sufficiently large domain sizes. For the classical nucleation
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theory proposed in these articles, this critical domain size
follows from the competition between the chemical potential
of the crystal and the elastic bending penalty.

We find by means of computer simulation that the range
of the interaction potential between the particles indeed
dictates whether or not ribbons form. For sufficiently large
interaction ranges, ribbon formation is suppressed in favor
of incorporating defects into the crystal. For shorter ranges
of interaction, the critical size for ribbon formation reduces,
which is consistent with the previous experimental and
theoretical phase-field studies [9,10]. However, the scaling
exponent we observe is slightly different, and it coincides
with the scaling of the optimal width of a pure ribbon on
a spherical surface, proposed more recently by Grason [16].
Interestingly, we do not observe the reentrance of point defects
at the shortest ranges of attraction predicted by Grason [16].
This could be due either to our shortest range of attraction not
being sufficiently short, or to large kinetic barriers between the
ribbonlike structures and an isotropic crystal.

The remainder of this article is structured as follows. In
Sec. II we present in detail classical nucleation theory for
curved crystals, and we derive from them the scaling for the
critical isotropic domain size proposed by Meng et al. and
Köhler et al. [9,10], as well as our critical isotropic domain-
size scaling based on a hybrid crystal with a disklike and a
rectangular region, which coincides with the one proposed by
Grason [16]. In Sec. III we discuss the simulation and analysis
methods. In Sec. IV we discuss our computational findings
and show that we indeed observe a critical domain size and
extract its scaling relations with respect to the potential range
and the radius of curvature. Finally, in Sec. V we underline the
most important implications of our findings.

II. CLASSICAL NUCLEATION THEORY
ON CURVED SURFACES

A. Flat plane

Macroscopically, the formation of a two-dimensional crys-
tal on a flat surface is described by classical nucleation theory
(CNT) [17]. Although this theory is well known, we introduce
it here because we extend later it with elastic terms to describe
crystal formation on curved surfaces. Furthermore, it will serve
as the basis for our two-stage model for ribbon growth, which
we introduce in Sec. II C. In CNT the thermodynamic driving
force toward crystal formation is opposed by a surface tension
that in two dimensions is a line tension. If we assume the line
tension to be invariant to the locally exposed crystal plane, the
free energy of a crystal nucleus is given by �G = N�μ + γL,
where N is the number of particles in the crystal, �μ < 0 is
the chemical potential difference between the crystal phase and
the surrounding liquid or gas, L is the crystal circumference,
and γ is the line tension [17,18].

If we assume a circular crystal, we have L = πa, with a

the diameter of the crystal so that �Gc = N�μ + πaγ . Note
that actual two-dimensional crystals tend to form hexagonal
nuclei instead because the underlying interaction potential
encourages hexagonal bond order that induces anisotropic
growth [17–19]. However, since the area of a circle and
hexagon scale as the number of particles squared, and for the

purpose of extracting scaling laws it is a good approximation.
Limitless growth of the drop occurs if �G < 0, i.e., if N >

−πaγ/�μ. Of course, a = 2
√

N/πρ depends on N through
the equilibrium particle surface density ρ of the crystal. In
other words, limitless growth occurs for N > 4πγ 2/(�μ)2ρ.
Converting the expression for the free energy to the circle
diameter a leads to

�Gc = ρ�μπa2/4 + γπa. (1)

Ribbonlike crystals are better described by a rectangle with
a circumference A = 2(w + l) and a particle number N =
ρwl, leading to

�Gr = ρ�μwl + 2γ (w + l). (2)

Unlike the circle, the ribbon has two parameters w and l, and
the optimal free energy has w = l, as this gives the largest area
for a given circumference. In the flat plane, a circlelike shape
will always be preferred over a ribbonlike shape. This can be
seen by comparing Eqs. (1) and (2) under the constraint that
they have equal areas, wl = πa2/4. Their difference is then
simply the difference of the line tension terms, γ [πa − 2(w +
πa2/4w)], which, if we substitute the optimal w = √

πa/2, is
always negative. Therefore, not surprisingly, in a flat plane, a
ribbon is always destabilized with respect to a circle. However,
as becomes clear later, this trivial conclusion no longer holds
on a curved surface.

To see whether or not a ribbon is more likely to be nucleated
than a circle, we consider the kinetic barrier heights. For a
circle, the maximum in �Gc corresponds to a critical diameter
a = −2γ /ρ�μ and is equal to −πγ 2/ρ�μ, where we recall
that �μ < 0. For the ribbon the maximum is located at l =
w = −2γ /ρ�μ and has a value of −4γ 2/ρ�μ. Therefore,
in the flat plane, a ribbonlike crystal is also less likely to
nucleate, as evidenced by a higher nucleation barrier in the
free energy. This means that in a two-dimensional plane, a
disklike crystal will always be favored over a ribbon-shaped
one, both thermodynamically and kinetically.

B. On a sphere

The above picture changes if we consider crystals con-
strained to a spherical surface of radius R. In this case,
an additional energy enters the free energy that takes into
account the elastic cost of bending the crystal to accommodate
the curved template [11,12]. First consider again the circular
crystal. To make the analysis more straightforward, we scale
the free energy to the spherical surface area, 4πR2, times
Young’s modulus Y . This leads to a reduced unit η := a/R

and a dimensionless free energy [9–12],

�gc = 1

4π

[
ρ�μπ

4Y
η2 + πγ

RY
η + π

24576
η6

]
. (3)

Although the elastic term does not influence the kinetic barrier
height or critical diameter significantly [20], it does influence
the thermodynamic stability of the circular crystal. For very
large Y , the elastic term dominates to such an extent that the
local minimum in the free energy that occurs for sizes larger
than the critical nucleus size becomes larger than 0 [10,20,24].
In that case, �gc � 0, and the formation of a circular crystal
is thermodynamically suppressed.
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Furthermore, for Y > 0, there is now an optimal cir-
cle diameter that minimizes the free energy. Under the
assumption γ � RY , this minimum is located at η =
(−6144ρ�μ/Y )1/4 := η0. This value is associated with the
critical isotropic crystal size at which growth transitions to
a ribbon, as circular domains larger than this radius have a
higher free energy [9,10]. We shall refer to this scaling as the
optimal circle scaling. However, as long as �gc < 0, the circle
can in principle continue to grow, for example if there is not
a sufficient amount of material to nucleate a second, stable
disklike cluster.

Unlike in the flat plane, on a sphere a ribbon-shaped crystal
can be more stable than a circle due to a different scaling of the
elastic energy with the crystal dimensions. The dimensionless
free energy for the ribbon on a spherical surface is given in
terms of dimensionless width ω = w/R and length λ = l/R

by [11,12]

�gr = 1

4π

[
ρ�μ

Y
ωλ + 2γ

RY
(ω + λ) + ω5λ

640(1 − ν2)

]
, (4)

where ν is the Poisson ratio of the material. Note that in this
expression, ρ�μλ + 2γ /R has to be negative, and hence it
only holds for ρ�μ < −2γ /Rλ = −2γ /L.

The reason a ribbon can be stabilized over an isotropic
crystal on a curved surface is because although the elastic
strain scales with ω5, it only scales linearly with λ. This leads
to a different scaling with the total crystal area, which becomes
obvious when the free energy of the ribbon is expressed in
terms of the width ω and dimensionless area A/R2 := ζ = ωλ,

�gr = 1

4π

[(
ρ�μ

Y
+ γ

RY

2

ω
+ ω4

640(1 − ν2)

)
ζ + γ

RY
2ω

]
.

(5)

This free energy can in principle be optimized with respect to
ω to obtain an optimal ribbon width for a given area:

4π
∂�gr

∂ω
=

[
− γ

RY

2

ω2
+ ω3

160(1 − ν2)

]
ζ + 2

γ

RY
= 0.

Because the lowest-order term −2γ /RYζω2 is negative, there
will always be some ω that optimizes Eq. (5).

For the ribbon to be stable at some point, the total free
energy should be negative, i.e., �gr < 0. Since 2ωγ/RY > 0,
the ribbon can only be stable when[(

ρ�μ

Y
+ γ

RY

2

ω
+ ω4

640(1 − ν2)

)]
ζ < −2ω

γ

RY
.

Since 0 � ζ � 1, this condition can only be satisfied if at least

ρ�μ

Y
+ γ

RY

2

ω
+ ω4

640(1 − ν2)
+ 2ω

γ

RY
� 0.

The equality can only be achieved for sufficiently small
ρ�μ/Y and γRY , i.e., at sufficiently large Young’s moduli.
When this inequality holds, a ribbon can in principle be
indefinitely large and still have a negative free energy, unlike
an isotropic crystal.

However, the kinetic barrier associated with a ribbon is
always larger than that of a circle. Under the assumption
that the elastic contribution is negligible for crystals smaller

FIG. 1. Two possible modes of growth from a circular nucleus of
diameter a. Either growth continues along an infinitesimal diameter
increase da, or as a ribbonlike structure of width w and length dl

protruding out of the circular nucleus.

than the critical nucleus size, we find that the barrier height,
i.e., the maximum in �g, is located at ηb = −2γ /ρ�μR

for the circle and at ωb = ηb,ζb = ω2
b for the ribbon. The

corresponding free energies are �gb
c = −γ 2/4ρ�μR2 and

�gb
r = −γ 2/πρ�μR2. Hence, the kinetic barrier for forma-

tion of a circle is lower than that of a ribbon by a factor of
π/4.

This implies that, while under certain conditions a ribbon-
shaped crystal has a lower free energy, it is less likely to be
nucleated. A more likely scenario that leads to the formation
of ribbonlike structures is therefore a two-stage nucleation, in
which the ribbon grows out of a disklike nucleus. In such an
event, the crystal has the kinetic energy barrier of a circular
shape and initially grows as such. However, at some point,
the free energy decrease for continued growth as a circle is
smaller than that for growth as a ribbon, and hence the crystal
continues growth into ribbonlike structures. Such a growth
pathway is also more consistent with the experimental results
[9] and crystal phase-field calculations [10]. In Sec. II C we
present a free energy for such a growth type.

C. Two-stage nucleation theory on a sphere

In Sec. II we argue that the free energy of a disklike
crystal is, under certain conditions, lower than that of a
ribbon. Hence, the formation of a pure ribbonlike crystal is
not probable, as ribbons smaller than the transition size are
destabilized with respect to isotropic crystals with equal area.
This motivates us to investigate the possibility of a two-stage
nucleation, meaning that a ribbon-shaped structure grows out
of a preexisting, circular nucleus. For this to happen, the free
energy gain due to a small area increment in the shape of
a ribbon should be smaller than that due to an equal area
increment in the shape of the already existing circle. Both
growth modes are sketched in Fig. 1.

From the typical crystal morphologies presented by Meng
et al. [9] and Köhler et al. [10], it appears that the ribbons grow
out of the initial crystals without distorting the lattice vectors.
Therefore, we assume there is no line tension associated with
the circle-ribbon interface. We furthermore assume that the
line tension associated with the width of the ribbon is the
same as that of the previously exposed circular rim that is now
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covered by the ribbon. This means there is no line tension term
associated with the width, because it is already accounted for
by the original line tension term. With these assumptions, the
total free energy of the hybrid crystal becomes

�gc+r = 1

4π

[
ρ�μ

Y
(Ac + Ar ) + γ

RY

(√
4πAc + 2

Ar

ω

)

+ A3
c

384π2
+ ω4Ar

640(1 − ν2)

]
, (6)

where Ar is the dimensionless ribbon area ωλ, and Ac is
the circle area πη2/4. The free-energy change of the crystal
d�gr+c of growing purely as a circle can be determined by
expanding �gc+r in a Taylor series around Ac for Ar = 0,
leading to

d�gc+r =
(

∂�gc+r

∂Ac

)
dA

= dA

4π

[
ρ�μ

Y
+ γ

RY

√
π

Ac

+ A2
c

128π2

]
. (7)

To determine the free-energy change of growing as a ribbon,
we expand �gc+r in terms of Ar for fixed ω and Ac, leading
to

d�gc+r =
(

∂�gc+r

∂Ar

)
dA

= dA

4π

[
ρ�μ

Y
+ 2γ

RYω
+ ω4

640(1 − ν2)

]
. (8)

The width that gives the optimal free-energy change follows
from optimizing d�gc+r with respect to ω, which leads to
ω = [320(1 − ν2)γ /RY ]1/5.

In other words, the free-energy change due to continued
growth as a circle from an area Ac with increment �A is
given by (∂�gc+r/∂Ac)�A, and the free-energy change due
to growth as a ribbon out of a circular nucleus is given by
(∂�gc+r/∂Ar )�A. Therefore, the difference between Eqs. (7)
and (8), ��g, indicates whether continued growth favors a
ribbon or a circle,

��g :=
(

∂�gc+r

∂Ac

− ∂�gc+r

∂Ar

)
�A

= �A

4π

[
γ

RY

(√
π

Ac

− 2

ω

)
+ A2

c

128π2
− ω4

640(1 − ν2)

]
.

(9)

The absence of �μ in this expression makes it clear that it is the
interplay between the line tension and the elastic stress, rather
than between the elastic stress and the chemical potential, that
determines the morphology, as previously also discussed by
Grason [16].

Continued growth as a ribbon is preferred under two
conditions. First of all, it is necessary that ��g > 0, as
only then is the free-energy gain for growing as a ribbon
preferred over growing as a circle. Secondly, it is required
that �gc+r < 0, as otherwise the formation of any type of
crystal at all is destabilized. Finally, although not technically
a necessity for the initial onset of ribbon formation, we check
whether or not ∂�g/∂Ar < 0. If this is the case, the crystal

can grow indefinitely as a ribbon, since continued growth as a
ribbon will lead to a further decrease in the free energy.

To determine the critical area at which the transition takes
place, we first numerically determine for a range of γ /RY

and ρ�μ the roots of ��g, i.e., the points that satisfy the
first criterion. Then, we determine whether or not �gc+r < 0
and what the sign of ∂�gc+r/∂Ar is. We find that �gc+r < 0
is only satisfied at the roots of Eq. (9) for significantly large
ratios for |ρ�μR/γ |. In particular, we find that a ratio of at
least 6 is required to obtain a transition at an area Ac < 0.6
that satisfies all criteria, corresponding to γ /RY = 2 × 10−4

and ρ�μ/Y = 12 × 10−4. Furthermore, although increasing
Young’s modulus leads to a decrease in the critical area
at which ��g = 0, it also leads to a higher free energy,
occasionally such that �gc+r > 0 at the transition. Hence,
although larger Young’s moduli favor ribbon formation, they
will only actually form at a proportional decrease in the
chemical potential.

To determine how the elastic cost influences the area at
which the transition occurs, we determine how the critical
isotropic area scales with Young’s modulus for various ratios
of the chemical potential and line tension terms. In Fig. 2
we plot our findings, which clearly show that the critical
area scales as Ac ∼ (γ /RY )2/5 and hence the diameter of
the largest isotropic domain size scales as η ∼ (γ /RY )1/5.
Note that all points collapse on the same curve given by Ac =
23.6594(γ /RY )0.4. The relative standard errors in the linear
regression are 1.3 × 10−4% for the prefactor and 3.5 × 10−5%
for the exponent. Both the prefactor and the scaling exponent
are independent of ρ�μ/Y .

We notice a clear breakdown in this scaling for γ /RY >

2 × 10−4. In this regime, the line tension is prohibitively
large and suppresses ribbon formation. There is another
breakdown for sufficiently small γ /RY in combination with
small ρ�μ/Y . In this regime, the chemical potential is not
negative enough to compensate for the combined costs of
bending and the line tension; in other words, there is no
negative free energy �gc+r < 0 anymore.

Hence, our analysis suggests that, if the formation of rib-
bons indeed proceeds as a two-stage, heterogeneous nucleation
of a ribbonlike structure on a preexisting, circular nucleus,
the normalized area of this circular nucleus should scale as
Ac = πa2/16πR2 ∼ (γ /RY )2/5, where a is the diameter of
the circular crystal and R is the radius of the template. This
is different from the scalings previously proposed [9,10], in
which the transition area is associated with the minimum in
�gc, which, in the limit of negligible line tension, scales as
Ac ∼ (ρ�μ/Y )1/4.

The actual scaling of the transition area can be obtained
from computer simulations by determining the largest isotropic
domain size as a function of the spherical template radius, the
chemical potential, the line tension, and Young’s modulus, as
is described in the main text and in the previous sections. We
now describe the simulation methods we used to determine
this scaling.

III. METHODS

We perform Langevin dynamics (LD) simulations of N -
point particles constrained to a spherical surface with radius
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FIG. 2. Scaling of the isotropic domain area (a) and smallest ribbon width (b) at which growth transitions from a disklike crystal to a ribbon
as a function of the dimensionless line tension γ /RY . The legend indicates varying ρ�μR/Y . Note that all points collapse onto the same
curve. For smaller ρ�μR/Y there is no ribbon formation for smaller γ /RY because the free energy is no longer negative. The dashed line
indicates the scaling predicted by theory, Ac ∼ (γ /RY )2/5 (a) and ω ∼ (γ /RY )1/5 (b).

R, using the LAMMPS program and a specialized RATTLE

algorithm [21–23]. The particle number N we couple to the
template radius as Nr2

0 /16R2 = 0.4, such that if we associate
an area πr2

0 /4 with each particle of diameter r0, we have the
same area coverage φ = 0.4 for all template radii. Initially,
the particles are in nonoverlapping, random positions on the
spherical surface.

We apply a Langevin thermostat with an arbitrary damping
time τL to the particles to keep the system at a constant
temperature T and to make the particles undergo Brownian
motion. τL is the time it takes for the velocity autocorrelation
function of a particle to decay to 1/e of its initial value, and it
is our reference time unit that in effect measures the ratio of
the particle’s mass and the friction constant. For the interaction
potential between particle pairs, we use a truncated and shifted
Morse potential U (r),

U (r) = [UM (r) − UM (rc)]H (rc − r),

where r is the three-dimensional Cartesian interparticle dis-
tance, rc is the cutoff distance, H (rc − r) is the Heaviside step
function that is 1 if rc − r > 0 and 0 otherwise, and UM (r) is
the original Morse potential,

UM (r) = ε[e2α(r−r0) − 2eα(r−r0)],

with a well depth ε, equilibrium spacing r0, and shape
parameter α. Throughout the remainder of this article, we use
r0 as the reference length unit and ε as the reference energy
unit.

To encourage the growth of a single crystal, we lightly
tether the particles to the top of the spherical surface (x,y,z) =
(0,0,R) with a harmonic spring with spring constant κ =
2.5ε/r2

0 . We initialize the structure with this spring in place
for Ns time steps at a temperature of kBT = 0.3ε, after
which we remove the springs. We then equilibrate for another
Ns steps while linearly ramping down the temperature from
kBT = 0.3ε to 0.25ε. We verified that a longer ramping time
had no influence on the formed structures. After this annealing
phase, we sample for Ns time steps at kBT = 0.25ε. We
analyze snapshots that are 5τl apart in time and average over
them to obtain good statistics. For α = 40/r0, a smaller time
step of 0.001τL was required for numerical stability, and we
set Ns = 25 × 106 to guarantee proper equilibration, while for

the other values of α we used Ns = 250 × 103 and a time step
size of 0.005τL.

The parameter α sets how sharp the potential is peaked
around its minimum at r0, as the effective spring constant κ

is given by κ = ∂2U (r)/∂r2|r0 = 2α2ε. See Fig. 3 for a graph
comparing the Lennard-Jones and Morse potentials for various
values of α. If we ignore the impact of multibody interactions,
the Young’s modulus scales linearly with k. This implies that
a larger α leads to a larger Young’s modulus [24]. Therefore,
in our computer simulations we can use the parameter α to
influence the Young’s modulus of our crystal. By studying the
particle vibrations about their lattice site, however, we see that
the pair approximation is not very accurate. Hence, we rely on
the actual vibrations to estimate the effective spring constant.
See Appendix A for a detailed description of the analysis.

For our crystals, it turns out that effective spring constants
κ scale significantly less strongly with α than predicted by the
harmonic approximation κ ∼ α2. We obtain scalings between
κ ∼ α1.3 and κ ∼ α1.6, with an average exponent of (1.52 ±
0.08). The deviation from the pair potential approximation
could be due either to collective effects that are obviously

−1
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0.5
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0.8 1 1.2 1.4 1.6 1.8 2

ULJ

r/r0

α = 4/r0
α = 6/r0
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α = 12/r0
α = 20/r0

FIG. 3. Comparison of Morse (colored lines, symbols) and
Lennard-Jones (dashed black) potentials. Increasing α leads to a
sharper well for the Morse potential. For α = 6/r0 the harmonic
approximation for the Morse potential equals that of the Lennard-
Jones potential.

012611-5



STEFAN PAQUAY, GERT-JAN BOTH, AND PAUL VAN DER SCHOOT PHYSICAL REVIEW E 96, 012611 (2017)

not included in any pairwise approximation, or to the nonzero
temperature in our simulations, which influences the elastic
properties [25]. This is not a complete surprise, as hard
sphere crystals have an effective spring constant that follows
entirely from many-body effects [26]. This shows that it is
critical to measure Young’s modulus or at least the effective
spring constant of the material at hand rather than relying
on the harmonic approximation when performing Langevin
dynamics simulations. With the effective spring constant
determined, we still need methods to determine the scaling
of the chemical potential and the largest isotropic domain size
with α.

For larger values of α at which the crystal forms ribbons,
most of the direct interaction is governed by nearest-neighbor
interactions, as can be inferred from Fig. 3. Because of this,
we assume the line tension arises predominantly from the edge
particles having fewer than six bonds. In this case, we expect
that the line tension and the chemical potential scale similarly
with α, and we only have to determine the scaling of �μ

with α.
To determine the chemical potential, we have to determine

the free-energy difference between a crystal consisting of N

Morse particles and that same crystal in which one of the
bulk particles is changed to an ideal gas particle. This is
problematic because an ideal gas particle tends to explore
all of the spherical surface, while the Morse particle tends
to stay near its lattice site. Therefore, we instead determine
the free-energy difference associated with transforming one
Morse particle into an “Einstein particle,” that is, a particle
that is tethered to its lattice site by a harmonic spring.

As a reference Morse particle, we take the particle that has
the largest minimum distance to the edge particles. By applying
Bennett’s acceptance ratio [27] to the case of N Morse particles
and the case in which we transform this reference particle into
an Einstein particle, we obtain free-energy differences that
we can directly relate to the excess chemical potential. In
Appendix B, a more detailed description of the procedure is
presented. The found scaling is �μ ∼ α(−0.53±0.01). Note that
the free-energy difference goes through an appreciable range
as a function of α, as we find �μ ≈ −0.7/ε for the largest
αr0 = 40, which is a third of that of �μ ≈ −2.2/ε for the
smallest αr0 = 4. It is thus important to take this scaling into
account when assessing the scaling for the largest isotropic
domain size at which the growth transitions to ribbons.

With the scalings for the effective spring constant κ and
hence Young’s modulus Y and that of the chemical potential
�μ and line tension γ determined, we can now determine
how the largest isotropic domain sizes scale as a function of
the aforementioned parameters, provided that we can extract
what the largest isotropic domain size is. We describe our
approach now in brief.

Finding the largest isotropic domain size involves iden-
tifying the edge of what constitutes a circular domain and
extracting the distance from that edge to the center of the
domain, which can be reasonably approximated by finding
the particle that is the farthest away from all edge particles.
We calculate for all particles the shortest distance to the edge.
The particle that is the farthest away from the edge we then
consider to be the center of an isotropic domain, and we take
its distance from the edge to be the radius of the largest circular

FIG. 4. Top view of typical crystals obtained from the simulation
protocol at an area coverage of 40%. The figures correspond to
R/r0 = 30 and αr0 = 4 (a), 8 (b), 16 (c), and 32 (d). Color codes
for the number of nearest neighbors (coordination). Images rendered
by Ovito [28]. The back of the spherical template is not covered
except by particles in a gaseous phase that forms for αr0 � 16. Note
that for αr0 = 4 the crystal incorporates dislocations and point defects
in the structure, as well as some entropically excited vacancies. For
αr0 � 8 the only defects occur as tears and holes between patches of
a hexagonal lattice.

domain. Note that this particle is the same as the one for which
we determine the chemical potential.

Incidentally, the largest isotropic domain size also gives
a good indication of the transition from incorporated point
defects to ribbons, as it scales differently with the range param-
eter α when the crystal incorporates point defects, as we shall
see in Sec. IV. We perform all of the aforementioned analysis
via postprocessing, according to the procedure described in
Appendix C. With all the methods discussed, we now present
our results.

IV. RESULTS

In Fig. 4 we show typical crystal structures we observe
as a function of the range parameter α. The figures show
the top half of the spherical template that is covered with
particles. For αr0 = 4, the crystal incorporates various defects,
predominantly dislocations [Fig. 4(a)], although there are
some small, entropically excited vacancies. At around αr0 =
8, a transition from incorporated defects to hexagonal packings
occurs. From this point on, the defects are only located at
the edge or around holes [Fig. 4(b)]. Increasing α further
to αr0 = 16 [Fig. 4(c)] and αr0 = 32 [Fig. 4(d)] leads to a
clear formation of ribbonlike structures separated by larger
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FIG. 5. Top view of crystals illustrating the transition from incorporated defects at αr0 = 4 (a) through an intermediate at αr0 = 6 (b) to a
predominantly branched structure at αr0 = 8 (c) for 450 Morse particles interacting with varying α at an area coverage of 12.5%.

tears. Furthermore, the width of the ribbons reduces, which is
qualitatively consistent with the scalings presented by Meng
et al., Köhler et al., and Grason [9,10,16]. Note that because
of the entropically excited vacancies for small α, we do not
find structures that only contain disclinations or dislocations
as defects, and hence the exact onset of ribbon formation is
difficult to pinpoint.

The structures we obtain fluctuate significantly during the
annealing phase. Even for the lower temperature at which
we sample, there are still rearrangements of particles at the
crystal edges. This makes us confident that the structures
we sample are well-equilibrated and not kinetically trapped.
The same simulation protocol applied to a flat plane leads to
only hexagonal crystals, which is another indication that our
structures are not kinetically trapped.

From Fig. 5 we see that at larger α the effective temperature
of the particles appears to have increased slightly, in the sense
that more particles appear in a gaslike phase on the side of
the template that is not covered by the crystal. The motion of
the particles inside the crystal, however, diminishes due to the
increased steepness of the potential well depth, although there
are still edge rearrangements.

Our crystals are reminiscent of the ones observed in
simulations by Cong et al. [29]. For αr0 � 8, we observe
hexagonal patches separated by tears and holes, i.e., ribbons.
Below that, the crystal incorporates pleats and point defects,
which are reminiscent of those observed experimentally [5–8].
Hence, as shown experimentally by Meng et al. and consistent
with the phase-field crystal calculations of Köhler et al.,
ribbons only form when the elastic strain, regulated by the
range of the potential, prevents the formation of point defects
[9,10]. Interestingly, we do not seem to observe the fourfold
branching found in the phase-field crystal model, possibly due
to the thermal fluctuations in our simulations, which are absent
in the phase-field calculations.

In Fig. 5 we show an illustrative example of the difference
between ribbons and incorporated point defects, obtained
by applying the protocol of Sec. III to N = 450 particles
on a template of radius R = 15r0 for αr0 = 4, 6, and 12.
This example is obtained at an area coverage to 12.5% to
illustrate more clearly the different structures. For αr0 = 4,
the crystal is roughly circular and incorporates some defects.
For αr0 = 6, we see the onset of a ribbon that is branching out

of the initial bulk while there are still defects in the original
nucleus as well. Hence, there appears to be a region where
there is “coexistence” between incorporated defects and ribbon
formation. For larger αr0 = 8, we see clear branching, and the
defects in the bulk are significantly reduced.

We now analyze the size of the largest isotropic domain.
All simulation results, from which the largest isotropic domain
size is extracted below, correspond to a larger area coverage
of 40% rather than the 12.5% that served as an illustration
of the morphology in Fig. 5. First we consider the scaling of
the largest isotropic domain size a with the spherical template
radius R. Figures 6(a) and 6(b) reveal that a scales sublinearly
with R. Fitting a power law reveals the scaling exponent to be
(0.83 ± 0.06), which is inconsistent with the scaling proposed
by Meng et al. and Köhler et al. [9,10]. It does match the
scaling of the optimal ribbon width proposed by Grason [16],
as well as our own theory based on heterogeneous nucleation
of a ribbonlike structure on a disklike nucleus, presented in
Sec. II. The reason for this is that in the models proposed by
Grason [16] and ourselves, it is the competition between the
line tension and the elastic penalty that determines the crystal
morphology. Hence, while the theories proposed by Meng
et al., Köhler et al., Grason, and us all assume the formation of
a ribbon out of a disk-shaped crystal, the morphology of our
crystals appears to be determined by the interplay between line
tension and bending [9,10,16]. The main difference is that in
our theory we explicitly assume a hybrid shape for the crystal,
while Grason determines a rectangular crystal, at which point
an isotropy between the width and length leads to a lower free
energy. Both lead to the same scaling for the largest isotropic
domain size.

Note that, although they are based on different underlying
assumptions, the competition between chemical potential and
bending energy leads to a scaling of the isotropic domain size
of a ∼ R(ρ�μ/Y )1/4, while the competition between between
line tension and bending energy leads to a ∼ R(γ /RY )1/5.

A similar analysis is also possible for the average ribbon
widths. Like the optimal circular domain diameter, the ribbon
width is also expected to take on an optimal value, weq.
However, this optimal width scales differently for a fixed area
ribbon and a ribbon whose length is unbounded [16]. The
latter case can be thought of as a single ribbon in a grand-
canonical ensemble. Since in our simulations the total number
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FIG. 6. Scaling of the critical isotropic domain diameter a with
the template radius R for a constant area coverage of 40%. Both the
linear (a) and log-log scale (b) reveal that a decreases with increasing
R and decreases with increasing α. Note that the scaling with R

appears sublinear. The error bars represent the sampled standard error.

of particles is fixed but the particles are free to exchange
between crystalline regions, it is of interest to determine the
exact scaling of weq with R and α. For unbounded ribbons
weq ∼ R, while for a constant area ribbon weq ∼ R4/5 [16].
Details of our calculations are given in Appendix D. We find
that within our parameter range, the equilibrium ribbon width
scales sublinearly with R, following a trend similar to the
largest isotropic crystal diameter. Hence, we conclude that our
crystals are closer to the fixed area limit than the free boundary
limit.

From Fig. 6 it is not only clear that the optimal circular
domain size increases with R, it also shows that the largest
isotropic domain size decreases with increasing α, at least
beyond the onset of ribbons at αr0 � 8. This is qualitatively
consistent with either model [9,10,16]. In Fig. 7, we plot
the observed largest domain diameter divided by the scaling
argument presented by Meng et al. [9] [Fig. 7(a)] and the
heterogeneous nucleation model of Appendix D [Fig. 7(b)].

For αr0 � 6, where the crystal incorporates point defects,
the domain size appears to be independent of αr0. This makes
sense, as the largest isotropic domain will only depend on the
number of particles in the crystal, which, for our simulation
setup, scales linearly with R. Since the scaling of the largest
domain size with α is clearly not relevant in this regime, we
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FIG. 7. Scaling of the critical isotropic domain size a with the
potential shape parameter α (a) at a constant area coverage of 40%.
Dividing out R4/5 collapses all data onto one line (b). The scaling
converges to a ∼ α−0.33 (dashed line) for large α. The transition from
incorporated defects to ribbons at around αr0 = 8 is apparent from
the different scaling with α. The error bars represent the sampled
standard error.

omit the data for αr0 < 8 in the following analysis of the
largest isotropic domain size.

Note that the data presented in Fig. 7(b) collapse onto a
single curve, giving a strong indication that, in the parameter
range to which we have access, two-stage nucleation is the
main pathway for ribbon formation, and that their morphology
follows from the competition between line tension and elastic
stress as Grason’s [16] and our own competing theories imply,
rather than the chemical potential and the elastic stress as
put forward by Meng et al. and Köhler et al. [9,10]. For
αr0 � 8, fitting a power law gives us access to the scaling
exponent associated with α of (−0.332 ± 0.005). Combining
the scaling exponents for α and that of (0.83 ± 0.06) for
R quantifies our observed scaling of a ∼ R0.83α−0.33. The
heterogeneous nucleation model predicts, with our empirical
scaling of Y and γ with α, that the scaling exponent for α

should be (−0.41 ± 0.02), whereas the scaling argument of
Meng et al. and Köhler et al. leads to a scaling exponent for α of
(−0.51 ± 0.02) [9,10]. Again, the heterogeneous nucleation,
line-tension-driven model seems to better fit our observations,
although the scaling with the interaction range is certainly
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less convincing than the scaling with the spherical template
radius R.

V. DISCUSSION AND CONCLUSION

We performed Langevin dynamics simulations of Morse
particles of diameter r0 on spherical surfaces of varying radius.
We can tune the range of interaction between the particles
with a parameter α, where larger values of α represent shorter
ranges of attraction. We only consider a single interaction
strength ε = 4kBT , at which we obtained well-equilibrated
crystals. Below a critical αr0 � 6, the crystals that form are
disklike and incorporate dislocations and point defects. Above
this critical value, the crystals instead exhibit smaller, defect-
free, circlelike nuclei with protruding, ribbonlike structures.
This provides a confirmation of the suggestion put forward
in previous works [9,10], namely that the formation of the
ribbons is indeed driven by the elastic instability.

Although in the present work we have limited ourselves
to positive, constant Gaussian curvature, we hypothesize that
for a general surface of nonzero curvature, the onset of the
instability from isotropic disklike crystals to an anisotropic
crystal should still be governed by the same physics. After all,
although the exact form of the elastic penalty will depend on
the shape of the template, the energy penalty still scales as the
square of the radius of curvature, and hence it is independent
of the sign of the curvature of the surface [16]. The shape of the
anisotropic crystals is, however, difficult to predict, especially
for surfaces with nonconstant curvatures.

We quantified the scaling of the size of isotropic domains
as a function of both the template radius R and the range
parameter α, and we find that the largest circular domain
diameter scales as a ∼ R(0.83±0.06)α(−0.33±0.01). This is close
to, but not consistent with, scalings proposed in the literature
that assume the critical isotropic domain size follows from the
global minimum in the free energy due to the elastic penalty
[9,10]. Rather, we find that the scaling is more consistent with
a heterogeneous nucleation model, where the transition is not
dictated by the global minimum in the free energy but rather by
the fact that for a sufficiently large circular domain, continued
growth as a ribbon is energetically more favorable than as a
circle because the line tension becomes negligible with respect
to the elastic penalty. However, as we varied both parameters

through at most one decade, further studies on larger crystals
are required to determine the full parameter range over which
the model is valid.

Finally, more generally, our findings indicate that, in addi-
tion to its well-known influence on the number of local minima
and liquid phase stability in free space [13,14,30,31], the range
of attraction also influences the morphology of the formed
crystal on a curved surface. This has important consequences
for, e.g., the formation of virus capsids, whose building blocks
interact through short-ranged interactions [32] but are typically
modeled by a long-ranged Lennard-Jones potential [33].
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APPENDIX A: EXTRACTING EFFECTIVE
SPRING CONSTANTS

To estimate the scaling of Young’s modulus, we require the
effective spring constant κ that keeps the particles in place
in the crystal. For a single-particle pair, this can be found
analytically by harmonically approximating the pair potential
around the minimum. For the case of the Morse potential, this
leads to κ = 2α2ε. However, this simple approximation does
not take into account collective effects. Therefore, we extract
effective spring constants from our simulation data.

From our simulation trajectories, we determine a running
average of the particle positions x by applying an exponentially
weighted average to obtain for a time step tn the average
xa(tn) = (1 − ξ )x(tn) + ξxa(tn−1). The parameter ξ controls
how fast the past positions are “forgotten.” At each time
step, we determine the squared deviation of the particles
from the average from the previous frame, δx2(tn) := [x(tn) −
xa(tn−1)]2. This serves as an approximation of the squared
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deviation of the particle from its average lattice site while
taking into account that the lattice site might drift in time.
Typical squared displacement values we find are of the order
of 0.05r2

0 . We empirically tuned ξ to a value of 0.9 at which
the fast motions about the average lattice site are suppressed.

This produces for each particle a time trace of the quantity
δx2, which can be averaged in time to obtain 〈δx2〉. If
we assume particles are bound to their lattice site by a
harmonic spring, the effective spring constant then follows
from equipartition as 1

2κ〈δx2〉 = kBT . In Fig. 8, we present
distributions for the squared deviation and effective spring
constant for four values of α.

In Fig. 9, we present the effective spring constants for all
parameter values. Note that for very large α the scaling breaks
down. This is because the script used to determine the peak in
the histogram simply determines the numerical maximum as
an approximation for the mean. This breaks down for noisy and
particularly wide distributions, which we obtain for large α, as
can be seen from the gray and red distributions in Fig. 8(b).

APPENDIX B: DETERMINING THE
CHEMICAL POTENTIAL

To determine the chemical potential of a particle in the
crystal, we determine the free-energy difference between the
original crystal of N Morse particles and a hybrid Morse-
Einstein crystal in which the particle that is most representative
of the bulk of the crystal is replaced by an Einstein particle
tethered to its initial lattice site with a harmonic spring.
To determine the most representative particle, we apply the
analysis to extract the largest isotropic domain size, which we
discuss in Appendix D. This analysis finds the particle that
is the farthest away from all edge particles, which is the best
available representative of the bulk.

We set the spring constant to k = 50ε/r2
0 , at which

the Einstein particle and the original Morse particle have
comparable root-mean-square deviations from the average
lattice site, calculated following the procedure detailed in
Appendix A. We apply Bennett’s acceptance criterion [27]

to the two different cases, whose total potential energies are

U0 =
N−1∑
i=0

N−1∑
j>i

U (rij ) +
N∑

i=0

U (riN ),

U1 =
N−1∑
i=0

N−1∑
j>i

U (rij ) + UE(xN )

with

rij := ‖xi − xj‖,
U (r) = [UM (r) − UM (rc)]H (rc − r),

UM (r) := ε[e−2α(r−r0) − 2e−α(r−r0)],

and

UE(xN ) = 1
2κ[xN − xN (0)]2.

Here, U0 is the original truncated, shifted Morse potential U

with cutoff distance rc, well depth ε, and range parameter α

acting on all N particles with diameter r0, while U1 is the
original Morse potential acting on N − 1 particles combined
with an “Einstein potential” UE applied to the N th particle.
H (x) is the Heaviside function with H (x) = 1 for x > 0 and
0 otherwise. The Einstein potential is, of course, a harmonic
spring with spring constant κ that attaches the N th particle
to its initial position xN (0). Finally, rij is the scalar distance
between particles i and j , located at positions xi and xj .

We apply Bennett’s acceptance criterion [27] with energy
offset C = 2.4ε and sample

e−β(F1−F0−C) = 〈f [β(U1 − U0 − C)]〉0

〈f [β(U0 − U1 + C)]〉1
, (B1)

where β is the reciprocal thermal energy 1/kBT , f (x) is
the Fermi function f (x) = 1/[1 + exp(x)], and the subscripts
0 and 1 mean that the average is obtained by sampling
the potential energy function U0 and U1, respectively. The
value of C corresponds roughly to the average potential
energy difference between the two potential energy functions,
C = 〈U1〉1 − 〈U0〉0. We determined this value for α = 16/r0

but applied it for all α. For varying α, the averages 〈U1〉 and
〈U0〉 do differ significantly, but the method remains usable for
this one fixed value of C.

Applying Bennett’s acceptance ratio means that we gener-
ate trajectories corresponding to both U0 and U1, and we aver-
age f [β(U1 − U0 − C)] over the trajectory generated by U0,
while we average f [β(U0 − U1 + C)] over the trajectory gen-
erated by U1. This can then be converted straightforwardly into
an estimate for the free-energy difference between the Morse
and the Morse-Einstein crystal. The excess chemical potential
of the Einstein particle μex

E can be calculated analytically from
the partition function and is μex

E = kBT ln(κA/2πNkBT ),
where κ is the spring constant, A is the spherical template
area, N is the number of particles on the template, and kBT

is the thermal energy. Hence, the free-energy difference can
directly be converted into an excess chemical potential by
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FIG. 10. Calculated excess chemical potential for N Morse particles in linear (a) and log-log (b) scale. The symbols denote different
spherical template radii. Note that increasing α leads to a higher chemical potential (lower absolute value), and the scaling appears to be
independent of the spherical template radius.

adding μex
E , which we present in Fig. 10. The free-energy

difference appears to scale as μex
E ∼ α−0.52, independent of

the spherical template radius.

APPENDIX C: EXTRACTING THE LARGEST
DOMAIN SIZE

To analyze the ribbon widths, a series of steps is required.
Each of them is explained in detail here. First, we construct a
network of nearest neighbors. Particles are considered nearest
neighbors if their distance is less than 1.3r0 apart. This distance
coincides with the minimum after the first peak in the pair
correlation function. From this information, we can identify
“edge particles,” i.e., particles that do not have six nearest
neighbors.

With this information, we can compute for all particles
that are not edge particles the distance to the nearest edge
particles. The largest of these distances we take as an estimate
for the largest isotropic domain size, as it represents the
largest possible circle diameter that fits inside the crystal. This
assumption breaks down for α sufficiently small to allow for
incorporation of defects inside the lattice, rather than at the
edge. This is observed for α � 6 in Fig. 3(a). In Fig. 11, we
present snapshots of the different stages of analysis. With the
aforementioned steps, we obtain a value for the largest circular

domain diameter for each combination of spherical template
radius R and potential range parameter α.

APPENDIX D: SCALING OF RIBBON WIDTHS

To determine how the average ribbon widths scale as a
function of α and R, we apply the same scheme as described
in Appendix C to extract the largest domain size. However,
now, instead of only extracting the largest distance, we extract
all local largest distances. In other words, we determine for
each particle if the shortest distance from that particle to the
edge is larger than that distance for any of its neighbors. If so,
this particle represents a local maximum in terms of distance
to the edge, and twice this distance is an approximation for the
local width of the ribbon. Averaging all these quantities leads
to an average ribbon width.

The interest in the average ribbon width comes from
the fact that the optimal ribbon width scales differently in
the constant area limit, where the number of particles per
ribbon is fixed, and the free boundary limit, in which the
ribbon length can grow indefinitely while the width adopts
an optimal value weq. In the case of fixed area, weq ≈
2R(γ /RY )1/5 ∼ R4/5/Y 1/5, while for the free boundary limit
it is weq ≈ (288�μρ/Y )1/4R ∼ R/Y 1/4 [16]. Hence, it is
interesting to see whether our simulations agree with either of

FIG. 11. Different analysis stages of the same snapshot (a) obtained for α = 20/r0, R = 15r0 at area coverage φ = 0.4. (b) The coordination
nc (number of nearest neighbors) identifies bulk particles (nc = 6) and edge particles (nc 	= 6). (c) We calculate for each bulk particle the
shortest distance to the edge particles (color-coded, units of r0).
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FIG. 12. Scaling of the average ribbon width. Dividing out the scaling expected for the free boundary limit (a) reveals that out data do not
match this theory perfectly. In (b) we divide the expected scaling for the constant area model and find a very good agreement.

these predictions. After all, although we have a fixed number
of particles on the spherical template, the number of particles
per ribbon is not necessarily constant. Note that both scalings
are qualitatively the same and quantitatively close. We plot the
average widths in Fig. 12.

From Fig. 12 it is clear that our data match the qualitative
prediction of either limit well. If we divide out the free

boundary limit scaling, we find that the curves do not all
collapse on the same curve, unlike when we divide out the
constant area scaling. Hence, we conclude that our data are
best described by the constant area limit. Finally, note that
the average widths scale the same way with α as the largest
circular domain sizes a (Fig. 5 in the main text), namely as
α−1/3R4/5.

[1] A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez,
A. R. Bausch, and D. A. Weitz, Science 298, 1006 (2002).

[2] F. Sausset, G. Tarjus, and D. R. Nelson, Phys. Rev. E 81, 031504
(2010).

[3] C. J. Burke, B. L. Mbanga, Z. Wei, P. T. Spicer, and T. J.
Atherton, Soft Matter 11, 5872 (2015).

[4] C. J. Burke and T. J. Atherton, arXiv:1605.09478.
[5] A. R. Bausch, M. J. Bowick, A. Cacciuto, A. D. Dinsmore,

M. F. Hsu, D. R. Nelson, M. G. Nikolaides, A. Travesset, and
D. A. Weitz, Science 299, 1716 (2003).

[6] P. Lipowsky, M. J. Bowick, J. H. Meinke, D. R. Nelson, and
A. R. Bausch, Nat. Mater. 4, 407 (2005).

[7] T. Einert, P. Lipowsky, J. Schilling, M. J. Bowick, and A. R.
Bausch, Langmuir 21, 12076 (2005).

[8] W. T. M. Irvine, V. Vincenzo, and P. M. Chaikin, Nature
(London) 468, 947 (2010).

[9] G. Meng, J. Paulose, D. R. Nelson, and V. N. Manoharan,
Science 343, 634 (2014).

[10] C. Köhler, R. Backofen, and A. Voigt, Phys. Rev. Lett. 116,
135502 (2016).

[11] S. Schneider and G. Gompper, Europhys. Lett. 70, 136
(2005).

[12] C. Majidi and R. S. Fearing, Proc. R. Soc. London, Ser. A 464,
1309 (2008).

[13] J. P. K. Doye, D. J. Wales, and R. S. Berry, J. Chem. Phys. 103,
4234 (1995).

[14] J. P. K. Doye and D. J. Wales, J. Phys. B 29, 4859 (1996).

[15] S. Paquay, H. Kusumaatmaja, D. J. Wales, R. Zandi, and P. van
der Schoot, Soft Matter 12, 5708 (2016).

[16] G. M. Grason, J. Chem. Phys. 145, 110901 (2016).
[17] D. Kashchiev, Nucleation (Butterworth-Heinemann, Oxford,

UK, 2000).
[18] D. T. Wu, Solid State Phys. 50, 37 (1996).
[19] A. A. Chernov, J. Cryst. Growth 24, 11 (1974).
[20] L. R. Gomez, N. A. Garcia, V. Vitelli, J. Lorenzana, and D. A.

Vega, Nat. Commun. 6, 6856 (2015).
[21] S. Plimpton, J. Comput. Phys. 117, 1 (1995).
[22] H. C. Andersen, J. Comput. Phys. 52, 24 (1983).
[23] S. Paquay and R. Kusters, Biophys. J. 110, 1226 (2016).
[24] V. Vitelli, J. B. Lucks, and D. R. Nelson, Proc. Natl. Acad. Sci.

USA 103, 12323 (2006).
[25] D. Squire, A. Holt, and W. Hoover, Physica 42, 388 (1969).
[26] H. Löwen, J. Phys.: Condens. Matter 2, 8477 (1990).
[27] C. H. Bennett, J. Comput. Phys. 22, 245 (1976).
[28] A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18, 015012

(2010).
[29] C. Qiao, Ph.D. thesis, Brandeis University, 2016.
[30] J. P. K. Doye and D. J. Wales, Science 271, 484 (1996).
[31] M. H. J. Hagen, E. J. Meijer, G. C. A. M. Mooij, D. Frenkel,

and H. N. W. Lekkerkerker, Nature (London) 365, 425 (1993).
[32] V. A. Parsegian, Van der Waals Forces (Cambridge University

Press, Cambridge, 2005).
[33] R. Zandi, D. Reguera, R. F. Bruinsma, W. M. Gelbart, and

J. Rudnick, Proc. Natl. Acad. Sci. USA 101, 15556 (2004).

012611-12

https://doi.org/10.1126/science.1074868
https://doi.org/10.1126/science.1074868
https://doi.org/10.1126/science.1074868
https://doi.org/10.1126/science.1074868
https://doi.org/10.1103/PhysRevE.81.031504
https://doi.org/10.1103/PhysRevE.81.031504
https://doi.org/10.1103/PhysRevE.81.031504
https://doi.org/10.1103/PhysRevE.81.031504
https://doi.org/10.1039/C5SM01118C
https://doi.org/10.1039/C5SM01118C
https://doi.org/10.1039/C5SM01118C
https://doi.org/10.1039/C5SM01118C
http://arxiv.org/abs/arXiv:1605.09478
https://doi.org/10.1126/science.1081160
https://doi.org/10.1126/science.1081160
https://doi.org/10.1126/science.1081160
https://doi.org/10.1126/science.1081160
https://doi.org/10.1038/nmat1376
https://doi.org/10.1038/nmat1376
https://doi.org/10.1038/nmat1376
https://doi.org/10.1038/nmat1376
https://doi.org/10.1021/la0517383
https://doi.org/10.1021/la0517383
https://doi.org/10.1021/la0517383
https://doi.org/10.1021/la0517383
https://doi.org/10.1038/nature09620
https://doi.org/10.1038/nature09620
https://doi.org/10.1038/nature09620
https://doi.org/10.1038/nature09620
https://doi.org/10.1126/science.1244827
https://doi.org/10.1126/science.1244827
https://doi.org/10.1126/science.1244827
https://doi.org/10.1126/science.1244827
https://doi.org/10.1103/PhysRevLett.116.135502
https://doi.org/10.1103/PhysRevLett.116.135502
https://doi.org/10.1103/PhysRevLett.116.135502
https://doi.org/10.1103/PhysRevLett.116.135502
https://doi.org/10.1209/epl/i2004-10464-2
https://doi.org/10.1209/epl/i2004-10464-2
https://doi.org/10.1209/epl/i2004-10464-2
https://doi.org/10.1209/epl/i2004-10464-2
https://doi.org/10.1098/rspa.2007.0341
https://doi.org/10.1098/rspa.2007.0341
https://doi.org/10.1098/rspa.2007.0341
https://doi.org/10.1098/rspa.2007.0341
https://doi.org/10.1063/1.470729
https://doi.org/10.1063/1.470729
https://doi.org/10.1063/1.470729
https://doi.org/10.1063/1.470729
https://doi.org/10.1088/0953-4075/29/21/002
https://doi.org/10.1088/0953-4075/29/21/002
https://doi.org/10.1088/0953-4075/29/21/002
https://doi.org/10.1088/0953-4075/29/21/002
https://doi.org/10.1039/C6SM00489J
https://doi.org/10.1039/C6SM00489J
https://doi.org/10.1039/C6SM00489J
https://doi.org/10.1039/C6SM00489J
https://doi.org/10.1063/1.4962629
https://doi.org/10.1063/1.4962629
https://doi.org/10.1063/1.4962629
https://doi.org/10.1063/1.4962629
https://doi.org/10.1016/S0081-1947(08)60604-9
https://doi.org/10.1016/S0081-1947(08)60604-9
https://doi.org/10.1016/S0081-1947(08)60604-9
https://doi.org/10.1016/S0081-1947(08)60604-9
https://doi.org/10.1016/0022-0248(74)90277-2
https://doi.org/10.1016/0022-0248(74)90277-2
https://doi.org/10.1016/0022-0248(74)90277-2
https://doi.org/10.1016/0022-0248(74)90277-2
https://doi.org/10.1038/ncomms7856
https://doi.org/10.1038/ncomms7856
https://doi.org/10.1038/ncomms7856
https://doi.org/10.1038/ncomms7856
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1016/0021-9991(83)90014-1
https://doi.org/10.1016/0021-9991(83)90014-1
https://doi.org/10.1016/0021-9991(83)90014-1
https://doi.org/10.1016/0021-9991(83)90014-1
https://doi.org/10.1016/j.bpj.2016.02.017
https://doi.org/10.1016/j.bpj.2016.02.017
https://doi.org/10.1016/j.bpj.2016.02.017
https://doi.org/10.1016/j.bpj.2016.02.017
https://doi.org/10.1073/pnas.0602755103
https://doi.org/10.1073/pnas.0602755103
https://doi.org/10.1073/pnas.0602755103
https://doi.org/10.1073/pnas.0602755103
https://doi.org/10.1016/0031-8914(69)90031-7
https://doi.org/10.1016/0031-8914(69)90031-7
https://doi.org/10.1016/0031-8914(69)90031-7
https://doi.org/10.1016/0031-8914(69)90031-7
https://doi.org/10.1088/0953-8984/2/42/024
https://doi.org/10.1088/0953-8984/2/42/024
https://doi.org/10.1088/0953-8984/2/42/024
https://doi.org/10.1088/0953-8984/2/42/024
https://doi.org/10.1016/0021-9991(76)90078-4
https://doi.org/10.1016/0021-9991(76)90078-4
https://doi.org/10.1016/0021-9991(76)90078-4
https://doi.org/10.1016/0021-9991(76)90078-4
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1126/science.271.5248.484
https://doi.org/10.1126/science.271.5248.484
https://doi.org/10.1126/science.271.5248.484
https://doi.org/10.1126/science.271.5248.484
https://doi.org/10.1038/365425a0
https://doi.org/10.1038/365425a0
https://doi.org/10.1038/365425a0
https://doi.org/10.1038/365425a0
https://doi.org/10.1073/pnas.0405844101
https://doi.org/10.1073/pnas.0405844101
https://doi.org/10.1073/pnas.0405844101
https://doi.org/10.1073/pnas.0405844101



