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Simulation and observation of line-slip structures in columnar structures of soft spheres
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We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the
main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is
increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly
exhibiting the expected line slip.
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I. INTRODUCTION

Columnar structures are ubiquitous throughout biology:
examples range from viruses, flagella, microtubules, microfil-
aments, as well as certain rod-shaped bacteria [1–5]. However,
they are also increasingly recognized in the physical sciences,
particularly in nanophysics [6–8] in the form of nanotubes
and nanowires. Other notable examples include the helical
self-assembly of dusty plasmas [9], asymmetric colloidal
dumbbells [10], and particles trapped in channels [11]. More
recently, such columnar arrangements have also been found as
components of exotic crystal structures [12,13].

Such columnar structures arise in their most elementary
form when we seek the densest packing of hard spheres inside
(or on the surface) of a circular cylinder [14–20]. A wide
range of structures have been identified and tabulated [16],
depending on the ratio of cylinder diameter D to sphere
diameter d. For each of a set of discrete values of D/d, a
uniform structure is found, and it may be labeled with the
traditional phyllotactic indices (l,m,n)—see [14,16]. Between
these values, the structure is best accommodated by the
introduction of a line slip, which shears two adjacent spirals
with a loss of contacts, as shown in Fig. 1. These features were
first identified by Pickett et al. [21], but they were not termed
“line slip.”

We have become accustomed to thinking of line slips as
being a property of hard spheres, and therefore of limited
relevance to real physical systems. That point of view is
reconsidered here: we demonstrate experimentally the exis-
tence of line-slip arrangements in wet foams (as described
below). These observations constitute conclusive experimental
evidence of such structures (discounting the trivial case
of packing ball-bearings in tubes [16]). Furthermore, our
experiments with foams demonstrate that line-slip structures
can be stable in soft systems, a hitherto unexpected outcome.
The results presented below improve on our previous attempts
with small bubbles in capillaries under gravity, which proved
difficult and in which line slips were not clearly seen [22].

Our work is stimulated in part by the observation of line
slips (albeit rather indistinctly) in some simulations, which use
points interacting by (the relatively complex) Lennard-Jones-
type potentials [12,23]. Here we numerically investigate the
stability of structures formed by soft (elastic) repelling spheres
in cylindrical channels subject to an applied pressure. It has
often been noted that the attractive tail of a pair potential

acts rather like an applied pressure, so our simple model
should have some generality in qualitative terms and could
be compared fruitfully with these earlier simulations.

Our approach enables us to partially map out a rich
phase diagram, consisting of a sequence of continuous and
discontinuous transitions between uniform structures and line-
slip arrangements. We show that in such soft systems, line
slips gradually vanish with an increasing pressure, while at
high pressures only uniform structures remain stable. While
it may seem obvious that line slips must disappear at higher
pressures, the true scenario is complex, as we shall see.

The paper is organized as follows. In Sec. II we describe
our numerical model and present the computed phase diagram.
This is compared with our experimental results in Sec. III (for
further experimental details, see the Appendix). The discussion
of these results is in Sec. IV, followed by a brief concluding
paragraph in Sec. V.

II. NUMERICAL MODEL AND RESULTS

We begin by describing the model system. We adopt an
elementary approach that has proved useful for the description
of foams and emulsions [24]. It consists of spheres of diameter
d, whose overlap δij leads to an increase in energy according
to

ES
ij = 1

2δ2
ij . (1)

Here the overlap between two spheres i and j is defined as
δij = |r i − rj | − d, where r i = (ri,θi,zi) and rj = (rj ,θj ,zj )
are the centers of two contacting spheres in cylindrical polar
coordinates. A similar harmonic energy term EB

i = [(D/2 −
ri) − d/2]2 accounts for the overlap between the ith sphere
and the cylindrical boundary. We conduct simulations using a
simulation cell of length L and volume V = π (D/2)2L. On
both ends of the simulation cell, we impose twisted periodic
boundary conditions (see [16] for details).

Stable structures are found by minimizing the enthalpy H =
E + pV for a system of N soft spheres in the unit cell, where E

is the internal energy due to overlaps ES and EB , as described
earlier. A part of the resulting phase diagram is shown in Fig. 2,
where for a given value of the diameter ratio D/d and pressure
p the enthalpy is minimized by varying the sphere centers, as
well as the twist angle and the volume of the simulations cell.
This is done for some values of N , and the structure with the
lowest enthalpy is chosen.
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FIG. 1. Examples of a columnar hard-sphere structures. For each
pair of images, the first shows the arrangement of hard spheres inside
a tube, while the second shows a skeleton diagram in which sphere
centers are represented by points, and contacts between spheres are
indicated by a line joining the sphere centers. The structures shown
are (a) a uniform arrangement (3,2,1); and (b) a related line-slip
structure (3,2,1). The gaps in (b) correspond to a loss of contact
compared to (a)—the loss of contacts can also be seen clearly in the
skeleton diagrams.

For low pressures, the minimization was performed with a
very general search algorithm (similar to that used previously
for the densest packing of hard spheres [16]). We found that
the results from these preliminary simulations could be used as

see note in caption∗
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FIG. 2. The form of the phase diagram for the range 2.00 �
D/d � 2.22 and pressures p � 0.02. Seven different structures are in
the plotted range. With increasing pressure, the widths of the line slips
decrease and end in triple points. Discontinuous transitions are dis-
played as solid black lines, and continuous transitions are represented
as dashed lines. The diamond symbols at p = 0 correspond to the
hard-sphere symmetric structures (3,2,1), (3,3,0), and (4,2,2) [16].
A rough estimate of the experimentally observed line-slip structure
is indicated by a circle on this phase diagram. Note that there is also
a very small (3,2,1) line-slip region just below D/d = 2.15 [16], not
resolved in the present simulation.

TABLE I. Hard-sphere packings. Shown is the partial sequence
of densest uniform hard-sphere packings, together with the line-slip
structure, into which they may be transformed (i.e., p = 0), adapted
from Table I of [16].

Range Notation Description

D/d = 2.039 (3,2,1) uniform
2.039 � D/d � 2.1413 (3,2,1) line slip
2.1413 � D/d < 2.1545 (3,2,1) line slip
D/d = 2.1547 (3,3,0) uniform
2.1547 < D/d � 2.1949 (3,3,0) line slip
2.1949 � D/d � 2.2247 (3,2,1) line slip
D/d = 2.2247 (4,2,2) uniform

an initial guess for a much simpler code (based on conjugate
gradient techniques) to map out the higher pressure regions
of the phase diagram. Starting with an initial structure (with
N = 3,4,5), we steadily increased the pressure and minimized
enthalpy. As a further check, we also ran the procedure in the
orthogonal direction, i.e., we start with a seed structure with a
high value of D/d, keep the pressure constant while reducing
D/d in discrete steps, and minimize the enthalpy at each step.
In either case, the structure with the lowest enthalpy for a given
value of D/d and p is given in the phase diagram.

We plot the phase diagram for the range 2.00 � D/d �
2.22 and pressures below p � 0.02, as shown in Fig. 2.
Along the horizontal axis (i.e., p = 0), the red diamonds
indicate the symmetric hard-sphere structures (3,2,1), (3,3,0),
and (4,2,2). Intermediate between them are the associated
line-slip arrangements (see also Table I). The general trend
is that increasing the pressure gradually eliminates the line
slips, which end up in a triple point and are forced into
uniform structures. This transformation equates to a 10–15 %
compression of the hard-sphere packings, in the range shown.

We now discuss the features of the phase diagram in detail.
Continuous transitions, where the structure changes gradually
due to the loss or gain of a contact, are shown in Fig. 2 as
dashed lines. Discontinuous transitions, where the structure
changes abruptly into another, are indicated with a solid line.
Transitions between uniform structures and a corresponding
line slip are continuous. This is echoed by the sequence of
hard-sphere packings (i.e., the structures along the horizontal
axis) as listed in Table I. An explanation for the connections
between symmetric structures and a line slip for hard-sphere
packing can be found in Figs. 10 and 12 of [16].

A typical example of a discontinuous transition is given
by the solid line separating the (3,3,0) and (3,2,1) line-slip
regions. We find in the case of soft spheres that with increasing
pressure the (3,2,1) line slip is first to disappear at a triple point,
followed by the (3,3,0) line slip at a slightly higher pressure.
At still higher pressures, only the (3,3,0) and (4,2,2) uniform
structures remain stable, separated by a discontinuous phase
transition.

At first glance on our phase diagram, the case (3,2,1) →
(3,3,0) seems to be exceptional in that only a single line slip,
the (3,2,1) line slip, is visible. From Table I we would also
have expected to see two line slips separating the uniform
structures (as in the previous case). However, the line-slip
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FIG. 3. Top: an example of the enthalpy H = (E + pV ) as D/d

is varied at a constant pressure p = 0.01. The plot shows a horizontal
cut through the phase diagram of Fig. 2. Bottom: compression ratio
C of the soft packings as a function of the applied pressure. Only the
transition from (3,2,1) to (3,2,1) is continuous and does not involve
a change in the slope of H at the phase boundary.

structure of (3,2,1) exists only in the narrow range 2.1413 �
D/d � 2.1545 for the hard spheres (see Table I) and is not
resolved in Fig. 2.

The distinction between continuous and discontinuous
transitions can be illustrated directly via the enthalpy H . An
example of H in terms of D/d at constant pressure p = 0.01 is
given in Fig. 3. Continuous transitions, such as (3,2,1) uniform
(indicated in purple) to (3,2,1) line slip (indicated in blue), are
not apparent in the variation of H . However, discontinuous
transitions such as the (3,2,1) line slip to (3,3,0) uniform
(green) show a change in slope of H at the transition.

Also shown for comparison in Fig. 3 is the compression
of the packing subject to the applied pressure. We define the
compression as C = [V0 − V (p,D)]/V0, where V (p,D) is the
volume of the unit cell of the soft-sphere packing (for the
chosen pressure and diameter ratio) and V0 is the volume of
the corresponding hard-sphere structure. In the case of uniform
structures, the volume of the unit cell in the hard-sphere case
has a unique value [17]. However, for the line-slip structures
this is not the case (since the length of the unit cell depends on
D/d), and instead we compare against the smallest volume of
the unit cell for a given hard-sphere arrangement of this type
[17].

It is illustrative also to consider the orthogonal trajectory,
i.e., variation in the enthalpy H in terms of p at constant
diameter ratio. As an example of this, we show in Fig. 4 a
vertical cut through Fig. 2, where we hold the diameter ratio at a
constant D/d = 2.1 and vary the pressure. The corresponding
compression ratio is also shown. The trajectory passes through
a transition from (3,2,1) to (3,3,0) and then from (3,3,0) to
(4,2,2)—both of these are discontinuous transitions; while the
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FIG. 4. Top: an example of the enthalpy H = (E + pV ) as P is

varied at a constant D/d = 2.1. The plot shows a vertical cut through
the phase diagram of Fig. 2. Bottom: compression ratio C of the soft
packings as a function of the applied pressure. All the transitions
shown are discontinuous, however the change in the slope at the
phase boundaries can only be detected by numerically computing the
derivative.

change in the slope cannot be determined by inspection from
Fig. 4, it nevertheless can be clearly observed by taking the
derivative of H with respect to p along the trajectory.

III. EXPERIMENTS

We now describe our experimental procedure and results
(for further details of the setup, see the Appendix). For a
convenient experimental counterpart, we choose to observe
structures of columns of bubbles under forced drainage,
that is, a steady input of liquid from above [25–27]. In the
past, this has been studied extensively for columns of bulk
foam where D/d was very large. It was found to undergo
convective instability for flow rates that gave rise to higher
liquid fractions, confining experiment to relatively dry foam
[28]. The corresponding theory was therefore developed using
approximations appropriate in the dry limit, that is, in terms
of flow in a network of narrow plateau borders.

The present work leads us to consider columns of wet
foams, that is, with the drainage rate high enough to produce
near-spherical bubbles. We find no such instability in the
case of the confined columnar structures of large bubbles
considered here, hence the wet limit can be reached at a certain
flow rate. Below that point, the liquid fraction can be varied,
producing ordered columnar structures closely analogous to
those described above.

For the experimental setup [25,29], monodisperse bubbles
are produced by using a bubbling needle in a commercial
surfactant Fairy Liquid. The surfactant solution contains 50%
of glycerol in mass to increase the viscosity, smooth the
transition between structures, and to allow us to observe more
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FIG. 5. Observation of columnar structures of bubbles under
forced drainage, showing about 40 bubbles. Left: (3,2,1) uniform
structure occurring at a relatively low flow rate. Right: bubbles adopt
the (3,2,1) line-slip structure at a relatively high flow rate. It is similar
to the line-slip structure of Fig. 1(b). The coloring highlights the two
interlocked spirals of the (3,2,1) and (3,2,1) structures. The circle
marked in Fig. 2 corresponds roughly to its estimated position on the
phase diagram.

easily unstable bubble arrangements. Tuning the flow rate
(q0 ∼ 1 mL/min) allows us to produce monodisperse bubbles
(d ∼ 2.5 mm). The diameter of the bubbles is measured
afterward by squeezing a small amount of a monolayer foam
between two plates separated by a controlled gap. The size of
each bubble is determined from a photograph of the top plate
(see the Appendix).

The bubbles are observed to self-organize into ordered
structures in a vertical glass tube, the diameter of which is 5 mm
and the length is 1.5 m. The resulting foam column is put under
forced drainage by feeding it with surfactant solution from the
top (flow rate Q up to ∼10 mL/min). We estimate the capillary
pressure for the bubbles to be of the order of approximately
10 Pa, which is an order of magnitude smaller than the
hydrostatic pressure, thus the bubbles are in the regime
whereby they can easily be deformed, and the foam can be
treated as a packing of relatively soft objects; see the Appendix.

We show in Fig. 5 an example of the observation of the
(3,2,1) line-slip structure in accord with expectations based on
the soft-sphere model, described above. Note that the bubbles
are distorted into smooth ellipsoids by the flow. The extent of
the loss of contact in the observed line-slip structure is roughly
equal to that of the simulated structure at the position marked
with a circle in the phase diagram. This is also consistent with
our estimates of equivalent pressure p and equivalent D/d,
where the equivalent pressure is determined from the local
hydrostatic pressure, the capillary pressure, and the bubble
diameter. Similarly, the equivalent diameter is also estimated
but is not yet clear on account of the oblate shape of the
bubbles.

The shape distortion due to flow, together with that due
to the forces between bubbles, and hence the equilibrium
structure itself, will be analyzed in a subsequent paper, together
with a wide range of observations. Those forces are only very
crudely modeled in the present paper. The necessary theory of
drainage of stable structures of wet foam has not previously
been formulated.

IV. DISCUSSION

Considering that our original study of hard-sphere arrange-
ments in a cylinder was motivated by a packing problem [14],
it may have seemed plausible that the structures described
above would only be of importance close to the incompressible
athermal limit. Recently, however, these original findings
have been found to be relevant in the self-assembly of hard
spheres in cylindrical channels [30]. Remarkably, it is found
that at finite temperature and pressure, both uniform and
line-slip arrangements can be observed: a steadily increasing
pressure can induce transitions between structures, while at
a high compression rate some arrangements are found to be
dynamically inaccessible [30]; these results are illustrated in
terms of a phase diagram that bears a resemblance to the results
presented here. This is due to the fact that the thermally agitated
hard spheres have an effective radius that scales with the mean
free path. This leads to an effective interaction reminiscent of a
soft potential. These results only indirectly hint at the manner
in which the hard-sphere results are modified in the presence
of soft interactions. The present results have the advantage of
directly addressing the stability of line-slip arrangements in
softly interacting systems.

These results may also be fruitfully compared with previous
studies employing the Lennard-Jones potential, where both
uniform structures and line-slip arrangements are observed
[23]. On the other hand, in the case of very soft potentials, such
as the Yukawa interaction, line-slips have not been predicted
to exist [31], nor are they observed in experiments [32].
Determining the robustness of the phase diagram presented in
Fig. 2 as a function of the hardness or softness of the interaction
potential remains an open question.

Another related study is that of Rivier and Boltenhagen
[33], who observed structural transitions in cylindrical dry
foam under pressure, well outside of the range of our
investigation.

V. CONCLUSIONS

In conclusion, questioning the relevance of hard-sphere
properties to physical systems consisting of soft spheres has
led us into a new territory not previously explored. We have
shown that line-slip arrangements are a feature of soft systems
(even in the absence of thermal agitation), thus extending their
usefulness to encompass a range of commonly encountered
substances, including dusty plasmas, foams, emulsions, and
colloids. It is of direct relevance to some physical systems
(foams, emulsions) and offers a qualitative interpretation in
others. It extends into another dimension (that of pressure) the
elaborate table of hard-sphere structures previously found.

These results are strictly only relevant to a microscopic
system that is in thermal equilibrium. For some systems,
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such as those currently under investigation [9–11,30–32,34–
36], many observed structures will be metastable (i.e., not
structures of lowest enthalpy). We therefore are engaging in
complementing the work of this paper by exploring the wider
context of metastable structures and transitions between them.
This will establish a full comparison with various experiments
(also on the way). We will furthermore in due course also use
the methods developed here to investigate the phase diagram
for higher D/d up to D/d � 2.7379, beyond which the nature
of the hard-sphere packings changes [16,20], and to higher
pressure.

Finally, it is worth noting that there is considerable current
interest in columnar crystals, of the type described here. Ap-
plications include various helical biological microstructures,
such as viruses [1] and bacteria [5]. In addition, there are a
range of problems involving the self-assembly (or packing)
of spheres and particles in tubes [30–32,34–36]. The context
of this work is further expanded by the recently demonstrated
analogy between line-slip structures and dislocations in the
crystalline phase on a cylinder [37].
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APPENDIX

Here we briefly discuss the experimental setup used to
produce the columnar arrangement of bubbles. We begin by
describing a method for generating monodisperse foams in a
column. We then discuss how the liquid fraction of the foam
can be controlled, and its effect on the morphology of the foam.

As shown in Fig. 6(a), a steady stream of monodisperse
bubbles is produced by a bubbling needle dipped in a
surfactant solution. Tuning the flow rate (q0 ∼ 1 mL/min)
allows us to produce monodisperse bubbles. The bubbles
are approximately of diameter d ∼ 2.5 mm with a standard
deviation of σ = 0.03 mm. The diameter of the bubbles is
measured by squeezing a small amount of a monolayer foam
between two plates separated by a controlled gap. The size of
each bubble is determined from a photograph of the top plate.

The bubbles are collected in a cylindrical tube and form a
columnar foam. For a bubble in our experiments, the capillary
pressure is

Pcap = γ /r,

where γ = 0.03 N m−1 is the surface tension and r = d/2 is
the radius of the bubble. The hydrostatic pressure,

Phyd = ρgx,

FIG. 6. Setup for producing the columnar structures. (a) Bubbling
at a constant flow rate q0 into a cylindrical column, (b) forced drainage
of the foam at a constant flow rate Q; here H is the height of the entire
foam column, h is the height of the submerged foam, and x is an
arbitrary point in the foam as measured by height from the liquid/air
interface.

for a given bubble depends on the height x of the bubble in
the column, as measured from the liquid/air interface [see
Fig. 6(b)], as well as the density of the surfactant ρ and
gravity g. A simple calculation suggests that the hydrostatic
pressure balances the capillary pressure for x ≈ 1 mm, while
the column used for experiments is approximately 1.5 m. Thus,
we can safely assume that the hydrostatic pressure dominates
in the experiments, and the foam can be regarded as soft
packing of bubbles.

The resulting foam column is put under forced drainage by
feeding it with surfactant solution from the top with a flow rate
Q up to Q ∼ 10 mL/min. As shown in Fig. 6(b), the relevant
experimental parameters are the height of the foam (H ), the
height of the dipped foam (h), and the position in the foam (x)
(which is taken from the liquid/air interface). By Archimedes’
principle, the liquid fraction of the foam is given by φ = h/H ,
i.e., the fraction of the dipped foam compared with the entire
body of the foam.

In addition to φ, the local liquid fraction φloc is determined
from the photographs of the structure (see Fig. 7). The diameter
of the tube is D, the diameter of the bubbles is d, and the
thickness of the tube slice is T (where by thickness we mean
T = 	x, i.e., the length of a considered section of the tube).
Hence, we have

φloc =
[
Nπd3

6

][
4

πD2T

]
, (A1)

where N is the number of bubbles observed in the considered
section of the tube.

We find that the type of structure observed in the column
depends strongly on both the liquid fraction and the position x

in the column. A partial list of observed structures as a function
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FIG. 7. The structure is highly dependent on both φ and x. (a)
These photographs show two foams at the same height (x = 15 cm)
but for different liquid fractions: φ ∼ 0.03 [left, (3,2,1)] and φ ∼ 0.50
[right, (2,2,0)]. (b) These photographs show two foams at the same
liquid fraction φ ∼ 0.48 but for different heights: x = 15 cm [left,
(2,2,0)] and x = 30 cm [right, (3,2,1)]. Bubble size d ∼ 2.5 mm. For
more details, see Table II.

of liquid fraction and height x are tabulated below. Varying
the liquid fraction can produce foams that are either dry or

TABLE II. Partial list of observed structures as a function of
liquid fraction and height.

Structure x (cm) φ φloc Q (mL/min)

(3,2,1) 15 ∼0.03 ∼0.03 ∼0
(2,2,0) 15 ∼0.50 ∼0.38 ∼10
(2,2,0) 15 ∼0.48 ∼0.46 ∼2
(3,2,1) 30 ∼0.48 ∼0.48 ∼2

wet. Such variations in the liquid fraction may also lead to
transitions between structures; see Fig. 7(a). On the other hand,
the local hydrostatic pressure acting on the foam depends on
the height, i.e., the position x in the column. Consequentially,
we find that foams with identical liquid fractions can have
different structures depending on the value of x, as shown in
Fig. 7(b).
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