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Self-assembly processes of superparamagnetic colloids in a quasi-two-dimensional system
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Superparamagnetic colloids gather depending on the magnitude of the magnetic field applied, forming chains
and ribbons in a quasi-two-dimensional chamber. The results presented in this work are in good agreement with
recent experimental multistable data for the mean length of the aggregates in thermodynamic equilibrium.
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I. INTRODUCTION

Magnetic colloids have been extensively studied in the
framework of ferrofluids. In pioneer works [1,2], the equation
of state and the static correlations of ferromagnetic grains
were studied. It was shown that monomers aggregate forming
chains if the density of ferromagnetic particles is enough low
and if the dipole-dipole coupling is sufficiently strong. In
Ref. [3] a theory for a strongly dipolar fluid at low densities
is developed; the free energy as a functional of the chain
length distribution provides expressions for the energy and
conformal entropy of a long dipole chain considering very
weak interchain interactions. In Ref. [4] extensive Monte Carlo
(MC) simulations of a dipolar hard-sphere fluid are performed
in order to investigate the chain structure at low densities.
MC simulations reveal that self-assembled chains break up
and recombine in typical equilibrium runs. In Ref. [5] the
dipolar forces that affect the structure and phase behavior
of the colloidal suspension are studied. In the present work,
some of the results for the mean length of the chains are
similar to the approximations obtained in the latter reference
[see Eq. (16) therein]. In Ref. [6] by considering straight and
rigid chains the effect of chain-shaped aggregates is studied,
in which the rheological properties of ferrocolloids and the
characteristic time of hydrodynamic relaxation are reviewed.
In Ref. [7] an investigation of spatial and orientational
intrachain correlations and flexibility allows the extension of
basic concepts in polymer physics. Some of the analytic results
for the mean length of the chains obtained in the present article
are similar to the results in the latter reference [see Eqs. (8)
and (9) therein]. In Ref. [8] it is shown that the aggregation
occurs for large enough number of particles. In Ref. [9] the
chain distribution is obtained with a free energy minimization
method, neglecting interchain interactions. A higher ferrofluid
magnetization (in comparison to the Langevin magnetization)
due to chain orientational correlations and chain lengthening
is obtained. The equilibrium length lengthening is solved
analytically in the case of noninteracting flexible chains
and low concentration magnetic fluid. The flexible chain
orientational response is shown to be weaker than in rigid
rodlike chains. In Ref. [10] the model takes into account a
polydisperse suspension; the formation of soft heterogeneous
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chains occurs if sufficiently big particles are present. The
suspension is composed of large ferromagnetic particles and
small superparamagnetic grains, taking into account that
the effective liquid has no magnetoviscous properties. In
Ref. [11] the scenarios of condensation phase transition in
ferrofluids are studied theoretically, and the results show that
the appearance of linear chains precedes the magnetic particle
bulk condensation.

In Refs. [12,13] the aggregation process of superparam-
agnetic colloids under an external magnetic field has been
studied, with an interesting finding: in thermodynamic equi-
librium the formation of chains leads to stable structures such
as ribbons when the magnetic field is increased. Superpara-
magnetic colloids under a constant magnetic field B = Bŷ

in a two-dimensional system building arrays of particles
oriented in the direction of the magnetic field have been
found experimentally and in numerical simulations [14,15].
The dynamical transient that leads to saturated aggregates in
thermodynamic equilibrium has been extensively studied. In
Refs. [16,17] the Smoluchowsky equation is solved using a
numerical method described in Ref. [18], employing a kernel
for magnetic-field-induced aggregation k

mag
ij that depends on

the diameter of the particles, the critical angle θm = 54.7◦,
the average translational diffusion coefficient of rigid rods, the
kinetic viscosity of the liquid phase, and the thermal energy
kBT . The latter considers a mean field approach that takes into
account long-range and anisotropic dipole-dipole interactions.
The theory is in good agreement with experimental measure-
ments of Xn (the concentration of clusters containing n primary
particles φn, normalized by the initial monomer concentration
φ0), and the weight-average chain length of the aggregates s̄(t),
as a function of the exposure time to the magnetic field. It is
noticed that the latter approach depends on a free parameter
h̄ (the effective interaction range averaged over the attractive
region), and the long time saturated regime is not addressed.
Later, the transient and long range equilibrium dynamics are
obtained with Langevin dynamics simulations [14,19,20] and
in experimental results [12,13,16,17,21]. The evolution of the
mean length of the aggregates s̄(t) scales with t z [15] until
the saturation regime, where it converges to a constant value
[s̄(t) → s̄] in thermodynamic equilibrium after a transient time
(t → tsat). The exponent z and the saturation value s̄ depend
on the magnitude of the magnetic field. In the latter regime,
the aggregates interact and exchange particles as a typical
behavior of the dynamic equilibrium, while the mean length
s̄ in the system remains roughly constant; these are called
saturated aggregates.
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Recently [12], in addition to chains, ribbons are found
when the magnetic field magnitude is increased in a quasi-
two-dimensional chamber. In this regime the experiment is
very sensitive to external noise. For instance, the flow around
a small moving air or oil bubble accidentally trapped in the
colloidal suspension can influence the growth process of the
aggregates. Then each experimental realization leads to a
different value of s̄ at constant B in the range B2 = 200 to
700 G2, which provides a multistable region for the mean
length of the aggregates. The system is quasi-two-dimensional,
the diameter of the cylindrical chamber is 5 mm, with a
height of approximately 50 μm, the radius of the particles
is 0.6 ± 0.3 μm, then the aspect ratio of the system is
about 10−2. The present work will be focused on describing
recent experimental findings [12], in the range of parameters
of stable ribbons in thermodynamic equilibrium. The most
important results in this paper are summarized in Sec. III E
where multistable experimental data for the mean length of
superparamagnetic ribbons is described by the multiplicity of
the numerical results, which increase with the magnetic field
magnitude.

II. REVIEW

In this section a review of the theory that explains saturated
chains in thermodynamic equilibrium will be presented. As
a starting point the Gibbs free energy [22] of the system is
written

F =
∞∑

s ′=1

[
−Ns ′

s ′ (s ′ − 1)εm + kBT
Ns ′

s ′ log

(
Ns ′

s ′A

)]
+ F0,

(1)
where the first term in the sum is the energy of the chains of
length s ′, the second term is −T × the entropy of chains of
length s ′, and F0 is any other contribution to the free energy.
The length s ′ is measured in number of grains s ′ = 1,2, . . . .
Here −εm is the magnetic energy of each first order (nearest
neighbor) bond in a chain, Ns ′ is the number of grains in
chains of length s ′, A = ∑∞

s ′=1 As ′ is the total number of
chains in the suspension, where As ′ is the number of chains
of length s ′, kB is the Boltzmann constant, and T is the
temperature of the system. To compute the chemical potential
of an aggregate μs = (∂F/∂Ns)|(Ns �=Ns′ ,T ,V ) employing (1), the
use of Kronecker delta conventions is required, which yields
after calculation

μs = − (s − 1)

s
εm + kBT

s
log

(
Ns

sA

)
+ μ0 (2)

with μ0 = (∂F0/∂Ns)|(Ns �=Ns′ ,T ,V ), and V is the volume of the
suspension. The volume fraction in absence of magnetic field
(before aggregation) φ0 = NV�/V is equal to the volume
fraction of particles in presence of magnetic field (after
aggregation), which is equivalent to the conservation of grains
in the system

φ0 =
∞∑

s=1

φs, (3)

where V� is the volume of each colloidal particle, N is the
total number of grains (which is a conserved quantity), and
φs = NsV�/V is the volume fraction of particles in chains

of length s. In the case of ribbons, their width is given by
the parameter d, measured in number of grains (d = 2,3,4).
Volume fractions φ0 and φs are smaller than 1 since the total
volume of colloidal particles is smaller than the volume of
the suspension. Equation (2) can be rewritten using μ0

s , the
standard part of the chemical potential (the mean interaction
free energy per particle)

μs = 1

s

[
kBT log

(
φs

s

)
− (s − 1)εm

]
+ μ0

s (4)

with μ0
s = μ0 + αkBT /s and α = log (V/AV�). In the case

of chains, V/AV� = V s̄/Vp > 1 using s̄ = N/A and Vp =
NV� the total volume occupied by the grains, then α > 0.
In the present work s̄ is the saturated mean length of the
aggregates in thermodynamic equilibrium; for the dynamics
of growing aggregates the notation s̄(t) will be used. To under-
stand the use of μ0

s ≡ μ0 as a constant in Ref. [14], a review
of Ref. [22] (chapter 16) is important. In thermodynamic
equilibrium the chemical potential of all the aggregates is
equal, stated by the equation μs = μ1. The rate of association
of aggregates is given by k1φ

s
1, which neglects, for instance,

the possible formation of a pentamer by the union of a dimer
with a trimer. The rate of dissociation is ksφs/s, this implies for
example, that s-mers can only completely dissociate to form
monomers (s = 1), but not a (s − 1)-mer and a monomer.
Also, a pentamer is not allowed to break to form a dimer and a
trimer. The ratio of the reaction rates is defined by Ks = k1/ks ,
known as the equilibrium constant according to the generalized
mass action law. The calculation is simplified by considering
that the particles have no magnetic interaction (εm = 0). In
thermodynamic equilibrium, equations μ1 = μs and (4) state

φs = s
(
φ1e

β(μ0
1−μ0

s ))s = sφs
1Ks, (5)

where β = 1/kBT . The last equality in (5) implies that the
rate of association is equal to the rate of dissociation; this
is known as ideal mixing and is restricted to dilute systems.
Then, for instance, the model cannot capture an equilibrium
state in the absence of monomers, where larger aggregates
may coexist in equilibrium. Considering μ0

s as a constant
is equivalent to impose Ks = 1, which is an approximation
that favours monomers since it yields 0 < φs 	 φ1 < 1. If
μ0

s (in)decreases with s, Eq. (5) shows that the occurrence
of large chains becomes (less)more probable. In the chains
case μ0

s = μ0 + αkBT /s decreases with s and the occurrence
of large aggregates becomes more probable. The equilibrium
constant is Ks = eα(s−1) � 1 since α > 0 and s � 1, regardless
of the value of μ0. In Ref. [14] the aggregation process is
considered mainly magnetic (Ks = 1, εm > 0), following a
similar calculation as in (1)–(5), a useful variable x = φ1e

βεm

allows us to write (3) as

φ0e
βεm =

∞∑
s=1

sxs = x

(1 − x)2
(6)

with 0 < x < 1. In the latter reference, the interaction energy
εm, has been shown to be proportional to � − 1 = βεm by
averaging the magnetic interaction energy

U (r,θ ) = 4�R3

β

(
1 − 3 cos2 θ

r3

)
(7)
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over the attractive region in spherical coordinates, where
� = πχ2R3B2/9μ̄0kBT is the ratio between the magnetic
energy and the thermal energy, and �/β is the magnitude
of the magnetic potential evaluated in r = 2R and θ = 0 (two
particles in contact in a chain). The potential (7) has azimuthal
symmetry. Here μ̄0 is the vacuum permeability; this notation
is used in order to avoid confusion with the chemical potential
μ0, χ is the magnetic susceptibility and R is the mean radius
of the grains in the suspension. It is noticed that in Ref. [12] the
approximation βεm ≈ � is employed, i.e., without considering
averages on the magnetic potential, which also will be used
in the present work. In the case φ0e

βεm 	 1, the decrease of
the interaction energy (εm → 0) in Eq. (6) yields φ0 = x since
there is no formation of chains, in this case φ0 = φ1. In the
case φ0e

βεm � 1 (x → 1), Eq. (6) gives

x � 1 − 1√
φ0eβεm

. (8)

The number of chains of length s, As = Ns/s = φsV/sV� can
be expressed as As = φ1x

sV/xV� [14].

III. SATURATED AGGREGATES

A. Chains

The saturated mean length of the chains at equilibrium is
computed as an average over all the chains

s̄ = 1

A

∞∑
s=1

sAs =
∑∞

s=1 sxs∑∞
s=1 xs

. (9)

By inspection, Eq. (9) can be written as

s̄ = x
∑∞

s=1 sxs−1∑∞
s=1 xs

= x
d

dx
log

(
x

x − 1

)
, (10)

and then s̄ = (1 − x)−1 =
√

φ0eβεm by using (8). This result
has been celebrated in Ref. [14] and is useful to describe
the growth of the mean size of chains for low and moderate
magnetic field magnitudes (see Fig. 1 and Fig. 2, black thick
line). A superior limit is noticed due to s̄ = (1 − x)−1 <

x/(1 − x)2 when 1/2 < x < 1 (see Fig. 2). Then Eq. (8)
provides a upper bound (upper dotted line in Figs. 1 and 2)

s̄ < φ0e
βεm

(
1 − 1√

φ0eβεm

)
< φ0e

βεm . (11)

In the limit x → 1 Eq. (11) is s̄ < s̄2, which is related to the
minimum size of the chains, which cannot be lower than s̄ = 1.
The first inequality in (11) also can be written as s̄ < s̄2x,
which gives a lower bound (lower dotted line in Figs. 1 and 2)

1 <

(
1 − 1√

φ0eβεm

)−1

< s̄. (12)

In Fig. 1 the expression φ0e
βεm is replaced by C2

2e
C1B

2

following previous findings on the average interaction energy
εm and the volume fraction φ0 [12,13]. The numerical values
C1 = 4.4 × 10−2 G−2 and C2 = 2.1 are employed. One of the
problems of this approach is that the volume fraction before
aggregation is φ0 = C2

2 > 1. Note that the bounds in Eqs. (11)
and (12) are valid when 1/2 < x < 1. At x = 0.5, s̄ and its

FIG. 1. Mean length of saturated chains and ribbons at thermo-
dynamic equilibrium. Experimental data obtained from Refs. [12,13]
[(blue) []]. Solution of Eq. (10) s̄ = √

φ0eβεm (black thick line) [14].
Upper limit provided by central formula in inequality (11) (upper
dotted line). Lower bound given by Eq. (12) (lower dotted curve).
Equation (13) for s̄∞ = 35, 50, 70, 100, 140 (gray dashed curves).
Complete first order solution (27) (gray thick curve) and previ-
ous approximations for φ0 = 4.41. Solutions s̄a1 (33) (dot-dashed
line), (34) for s̄∞ = 100, 140 (black dashed curves), and (35) for
s̄∞ = 50,100 (black thin curves) evaluated at φ0 = 0.81.

upper and lower limits converge to s̄ = 2 as shown in Fig. 2.
Although the findings in [12] (see Fig. 4 therein and Fig. 1) are
in agreement with experimental measurements [(blue) []] until
B2 � 100 G2, there is no theory for the data obtained above
the latter value. One of the main quests on the experimental
results is then related to describing the multistable region of
mean lengths when the magnetic field magnitude is increased.

FIG. 2. Upper limit provided by central formula in inequality
(11) (upper dotted line). Lower bound given by Eq. (12) (lower dotted
curve). Solution of Eq. (10) (black thick line) using (8) [14]. Equation
(13) for s̄∞ = 100 (gray dashed curve).
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The result s̄ =
√

φ0e� is valid only for chains since it diverges
when B increases (black thick line in Figs. 1 and 2). Here it is
shown a mathematical solution of the problem. s̄ = (1 − x)−1

is a good approximation when x < 1, but when x → 1, s̄

diverges. A straightforward solution is given by using (8) and
the series of (1 − x)−1:

s̄ = 1

1 − x
�

s̄∞−1∑
j=0

xj �
s̄∞−1∑
j=0

(
1 − 1√

φ0eβεm

)j

. (13)

Figures 1 and 2 (gray dashed curves) show Eq. (13) for
different values of s̄∞, the convergence value of s̄ when
x → 1 (B � 1). Note that the series is truncated at s̄∞ − 1.
An estimation of s̄ when B increases is given by

lim
x→1

s̄ =
s̄∞−1∑
j=0

1j = s̄∞, (14)

which explains the equivalence between the order of the series
and the convergence value s̄ → s̄∞. In this limit, using the
exact result s̄ =

√
φ0eβεm is equivalent to consider ribbons

of infinite length, which is physically impossible since N is
a conserved quantity. The longest length of a chain in the
system is s = N , in the thought case that all the particles
are aggregated in one chain. In this case the mean length is
equal to the length of the chain s̄ = N [replacing As = δs,N

in (9)]. The latter is not plausible in real experiments. The
asymptotic mean length in thermodynamic equilibrium s̄∞,
can be given then as an experimental parameter by counting
A, the total amount of chains and ribbons in the suspension,
and computing s̄∞ = N/A. The agreement of the result (13)
with experimental measurements in Fig. 1 is given in this case
without any dependency on the width of the ribbons d. It will
be shown in the following Sec. III B that a similar result can be
obtained in the case of ribbons. First and second order magnetic
interactions that provide stable aggregates will be considered
in the following section. The asymptotic value s̄∞ is criticized
under the point of view that the magnetic field can not be
increased up to ∞. The latter supports the suggestion that the
multistable region could grow by increasing B2 > 700 G2. It
is remarked that the result given by Eqs. (13) and (14) is only a
mathematical approach to the problem but does not constitute
its solution, since it does not consider any aspect related to
the physics of ribbons formation or the aggregates interaction
in thermodynamic equilibrium, which will be shown in the
following sections.

B. Ribbons

In the previous part an approach that describe the experi-
mental outcomes is given by approximation of the series in the
parameter x. Although the theoretical results fit the obtained
data, the latter model is built for superparamagnetic chains
in thermodynamic equilibrium, and it is not valid in order
to describe the physics of ribbons in this regime. One of the
main problems with the latter approximation in Sec. III A is
that s̄∞ is a fixed value considered as a free parameter given
by experimental measures, then each gray dashed curve in
Fig. 1 is given by a different value of s̄∞. Calculating s̄∞
for high magnitudes of the magnetic field in one experimental

FIG. 3. Symmetric aggregates of length s = 4,5 and width
d = 1,2,3,4 oriented in the direction of the magnetic field. The
number of first order bonds (short lines) is given by n

(1)
b = 3(n − 1) −

p = d(s − 1) + (d − 1)(2s − 1); the amount of second order bonds
(long lines) is n

(2)
b = (d − 1)(2s − 3) + (d − 2)s. Perimeter grains p

are filled (blue color). Negative potential interactions are presented
with solid (blue) lines and positive potential interactions with dashed
lines.

realization will provide a curve within the ribbons region. This
implies that the mean length of the ribbons s̄ is a defined curve
instead of a multistable region of mean lengths, as shown by
the experimental results. In this section a similar to Eq. (9) will
be computed with a dependency on d, the width of the ribbons.
The equilibrium mean length s̄ is now computed by counting
A, the total amount of chains and ribbons in the suspension

A =
dmax∑
d=1

∞∑
s=d

Ad,s, (15)

where Ad,s is the number of chains or ribbons of length s and
width d, and dmax is the maximum width of a ribbon considered
in the colloidal suspension; experimental observations state
dmax = 4. Here the summation limits imply Ad,s = 0 for s <

d, i.e., the aggregates considered in the computation of s̄ are
those oriented parallel to the magnetic field direction (see
Figs. 3 and 4). The total number of grains in the suspension is
given by

N =
dmax∑
d=1

∞∑
s=d

dsAd,s, (16)

which contains the implicit consideration that each aggregate
has a number of particles n = ds (symmetric approximation;
see following text). The equation s̄ = N/A is not valid in the
case of ribbons. Equations (15) and (16) are employed for
computing the mean number of particles of the aggregates
n̄ = N/A for any value in the range 0 < x < 1. In order to
compute the mean length of chains or ribbons, s is averaged.
For a sake of simplicity only symmetric aggregates are taken
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FIG. 4. Asymmetric ribbons labeled in nondimensional coordinates (ρi,x,ρi,y) for d = 2,3,4 and s = 4. The rest n mod d particles are filled
(blue). The particle n0 = d2 (dashed line circles) indicates the smallest ribbon aligned parallel to the direction of the magnetic field, considered
in the fit of the numerical results (29) employing ud,n = 2(ad − bdn)/n.

into account in this section, which means that each column
in a ribbon has the same number of particles (or length) (see
Fig. 3). Then the formula for s̄ is

s̄ = 1

A

dmax∑
d=1

∞∑
s=d

sAd,s . (17)

The following part will be devoted to define Ad,s as a
function of d,s, and x. The number of particles in all the
ribbons of length s and width d is Nd,s = dsAd,s , the volume
fraction φd,s = V�Nd,s/V gives then Ad,s = φd,sV /(dsV�).
The volume fraction φd,s will be computed as a function of φ1,1

and x = φ1,1e
βεm by employing μ1,1 = μd,s in thermodynamic

equilibrium. The Gibbs free energy is

F = F0 +
d ′

max∑
d ′=1

∞∑
s ′=d ′

Ad ′,s ′ [Ud ′,s ′ − T Sd ′,s ′ ], (18)

where Ud ′,s ′ is the magnetic energy of the ribbons, Sd ′,s ′ is the
entropy of the aggregates, and F0 is any other contribution to
the free energy. The magnetic energy is specified by counting
n

(1)
b , the amount of bonds in a ribbon considering only nearest

neighbors and n
(2)
b , the number of bonds at second order

(see Fig. 3), third and higher order interactions are neglected
in this calculation. Experimental observations state that one
or two particles can sometimes aggregate on top of another
agglomerate. Nevertheless, larger structures formed by two
planes one on top of the other have not been observed;
then the aggregates are mainly two-dimensional and rarely
three-dimensional. Each chain and ribbon aggregate in a two
dimensional plane; then the first order (short lines) and second
order (long lines) distances are measured in the middle plane
of the particles parallel to the direction of the magnetic field. In
the chains case (dmax = 1), Us = −(s − 1)εm will be retrieved;
in this case there are no positive interaction potentials. For
chains and ribbons, first order interaction energies are negative
only in the direction of the magnetic field. First, second and
higher order neighbors balance the summation of attractive
and repulsive forces in the aggregates. This is due to the form
of the magnetic potential energy (7), which is negative for
θ < θm = 54.7◦ and positive for θ > θm. Equation (7) defines
negative (solid (blue) lines) and positive (dashed lines) bonds,
considering that the dipolar angle θ increases from the y axis

(magnetic field direction). The first order magnetic energies
are

ε
(1)
m− = U |(r=2R,θ=0) = −�

β
,

ε
(1)
m+ = U |(r=2R,θ=π/3) = �

8β
. (19)

In Refs. [12,13] and in this work the approximation
εm � �/β is employed, which is equivalent to ignore averages
on the magnetic potential, defining εm as the magnitude of the
magnetic energy for two particles in contact in a chain. The
second order potentials are

ε
(2)
m− = U |(r=2

√
3R,θ=π/6) = − 5�

24
√

3β
,

ε
(2)
m+ = U |(r=2

√
3R,θ=π/2) = �

6
√

3β
. (20)

The magnetic energy of a chain or ribbon is then
Ud,s = ∑imax

i=1(n(i)
b−(d,s)ε(i)

m− + n
(i)
b+(d,s)ε(i)

m+), in this case the
summation index i is the order of the interaction that runs up
to the highest order imax. It is remarked that the asymmetric
cases are not taken into account in this section. These are
any case with a nonsymmetric form, where the lengths
of the columns in a ribbon are uneven; some asymmetric
cases are presented in Fig. 4. Experimental observations state
that the superparamagnetic particles in ribbons aggregate in
hexagonal lattices to achieve maximum compaction [12,13].
Nevertheless, defects in the lattices may occur, and then the
aggregates are not regular in general. Strongly asymmetric
ribbons have been observed in experiments when a chain joins
a ribbon in the dynamics of the thermodynamic equilibrium
regime; these cases are also neglected in this work. By counting
n

(1)
b (short lines) without repetition (see Fig. 3) n

(1)
b = 3(n −

1) − p is obtained, where p = 2(s + d − 2) is the number
of particles that defines the perimeter of the aggregate [filled
(blue) particles]. For d = 2 the amount of central and border
grains are equal (n = p). For d = 1, n

(1)
b = s − 1 is retrieved,

and p = 2(s − 1) is meaningless. For instance, the cases
(d,s) = (3,5) and (d,s) = (4,6), yield n

(1)
b = 30 and n

(1)
b = 53,

respectively. The amount of first order bonds can be also
computed by counting the number of negative bonds [short
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solid (blue) lines] and positive bounds (short dashed lines)
for nearest neighbors, n

(1)
b− and n

(1)
b+, respectively. Then n

(1)
b =

n
(1)
b− + n

(1)
b+. Similarly for second order interactions [long solid

(blue) lines and long dashed lines], n
(2)
b = n

(2)
b− + n

(2)
b+. After

counting various cases, the formulas are n
(1)
b− = d(s − 1),

n
(1)
b+ = (d − 1)(2s − 1), n

(2)
b− = (d − 1)(2s − 3), n

(2)
b+ = (d −

2)s for 1 < d � s and n
(2)
b+ = 0 for d = 1. The entropy of

the ribbons is Sd,s = −kB log (Ad,s/A), and then the Gibbs
free energy (18) is

F = F0 +
d ′

max∑
d ′=1

∞∑
s ′=d ′

Nd ′,s ′

d ′s ′

[
Ud ′,s ′ + kBT log

(
Nd ′,s ′

d ′s ′A

)]
.

(21)

Note that Ud,s do not depend on Nd,s , so the calculation of
μd,s = (∂F/∂Nd,s)|(Nd,s �=Nd′,s′ ,T ,V ) is similar to the previous
one in Sec. II. Using delta Kronecker conventions μd,s yields

μd,s = 1

ds

[
kBT log

(
φd,s

ds

)
+ Ud,s

]
+ μ0

d,s (22)

with μ0
d,s = μ0 + αkBT /(ds). In this case α =

log(V/AV�) > 0 since V/AV� = n̄/φ0 > 1. In
thermodynamic equilibrium and considering μ0

1,1 = μ0
d,s

yields φd,s = dsφds
1,1e

βεmu(d,s), where u(d,s) = −Ud,s/εm is
the normalized dimensionless magnetic energy magnitude. In
this section the second order potential energy is employed,
which is rearranged as u(2)(d,s) = ds − 1 − (d − 1) − (d −
1)(2s − 1)/8 + 5(d −1)(2s − 3)/24

√
3 − (d − 2)s/6

√
3. In

the latter, the last term is not taken into account for d = 1,
since second order interactions appear only in ribbons. Then
the volume fraction of ribbons of length s and width d is

φd,s = dsxds φ1,1

x
r

(2)
d,s , (23)

where r
(2)
d,s = e

−βεm(d−1)[1+ (2s−1)
8 − 5(2s−3)

24
√

3
+ (d−2)s

6(d−1)
√

3
] is a term that

applies only in ribbon cases (d > 1). The conservation of
magnetic grains in the system [similar to Eq. (3) including
ribbons] as a function of x0 = φ0e

βεm implies

x0 =
dmax∑
d=1

∞∑
s=d

dsxdsr
(2)
d,s ,

{
r

(2)
d,s = 1 for d = 1,

r
(2)
d,s < 1 for d > 1.

(24)

The right-hand side of (24) is obtained by computing each
summation term d = 1, . . . ,dmax. After an expansion in series
at x = 1 the solution for chains [14] is obtained, including
additional terms

x0 = c0(β,εm) + 1

(1 − x)2
− 1

(1 − x)
+ O(x − 1), (25)

where c0 evaluated at experimental parameters is a negligible
value, and it decreases when the magnetic field increases. The
aggregates mean length s̄ is then computed using Eqs. (23)
and Ad,s = φd,sV /(dsV�) = xdsφ1,1r

(2)
d,sV /xV� into (17),

which yields

s̄ = 1

a0

dmax∑
d=1

∞∑
s=d

sxdsr
(2)
d,s = c1(β,εm) + 1

1 − x
+ O(x − 1),

(26)

where a0 = ∑dmax
d=1

∑∞
s=d xdsr

(2)
d,s . The summation is also com-

puted for each term d = 1, . . . ,dmax. Expanding the result in
powers of (x − 1) the last equality in Eq. (26) is obtained.
The parameter c1 also decreases with the magnetic field and
is negligible for experimental values. Using (25) and (26)
in the limit x → 1 the result s̄ =

√
φ0eβεm is retrieved. The

contributions of the ribbons in the calculation are not relevant
in order to provide the latter result. The complete first order
solutions of (25) and (26) give

s̄ = 1

2
+

√
1

4
+ φ0eβεm, (27)

correcting the solution at low values of the magnetic field [see
Fig. 1 and Fig. 6 (gray thick curve)]. Two problems in the latter
equation are recalled. The first one is the employed volume
fraction φ0 = C2

2 > 1. The second is that Eq. (27) is valid
only for low magnetic field magnitudes in the chains regime.

C. Magnetic energy per particle

The normalized magnetic energy per particle of an aggre-
gate UN (similar to Ud,s/εmn) was computed in Ref. [12]
as a function of n, taking into account the position of each
particle and all the possible interactions in aggregates with
grains ordered from bottom to top and from left to right (see
Fig. 4), but several asymmetric cases are still neglected. This
approach is more complete than the previous in Sec. III B
since it includes interactions at any order and it considers
some asymmetric cases, for instance, n = ds + 1, n = ds + 2,
and n = ds + 3 for d = 4. The formula for UN is not useful
here since its dependence on s is not provided, although it
can be approximated, and it will be employed in order to
recompute Eq. (23). In Ref. [12], the computation of UN

up to n = 50 shows that the most stable structure changes
from chains to ribbons when the magnetic field magnitude
increases. The formulas (25) and (26) are obtained by using
the second order energy u(2)(d,s), which does not provide
the complete information regarding the change in the most
stable aggregate as function of n (see Fig. 5), this is important
in the computation of s̄. By considering interactions up to
second order, the curves do not cross, this means that third
and higher order interactions have to be taken into account
in order to compare UN and u(d,n) around nd = 30, 113,
263 for d = 2,3, and 4, respectively. Since the computation
of the magnetic energy per particle has been performed in
Refs. [12,13], including all the interactions in symmetric and
in some nonsymmetric cases, a review of the calculation is
presented here and it will be used in Eqs. (23) and (26). Each
particle in an aggregate is labeled with the index i (see Fig. 4),
related to its position �ρi = (ρi,x,ρi,y) where

ρi,x(d) = cos
(π

6

)
([i − 1]mod d),

ρi,y(d) = int

(
i − 1

d

)
+ sin

(π

6

)
([i − 1]mod d)mod 2

(28)
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FIG. 5. Normalized magnetic energy per particle u(d,n) of one
chain or ribbon computed employing Eq. (29) up to n = 700 at d = 1
(circles), d = 2 [(blue) []], d = 3 [(red) #], and d = 4 (gray circles).
Fit ud,n = 2(ad − bdn)/n for d = 1 (gray line), d = 2 (dashed curve),
d = 3 (dot-dashed line), and d = 4 (dotted line). Inset: u(d,n)
computed up to n = 500 particles, the most stable aggregate changes
at about nd = 30, 113, 263 for d = 2,3,4 respectively.

are the normalized coordinates of �ρi = �ri/2R for i = 1,2 . . . n

which is valid for any integer value of d. a mod b is the modulus
operator (the rest of the integer division a/b), and int(x) returns
the integer part of x. The number of particles in an aggregate
is related to its length and width by n = ds + n mod d. The
position of the first particle is (0,0), and the grains are ordered
from bottom to top and from left to right. The distance between
two grains is ρij = | �ρj − �ρi |, and the normalized magnetic
energy u0(i,j ) = U (i,j )/U0 (with U0 = �/2β) is obtained
employing Eq. (7), then the complete magnetic energy per
particle in an aggregate is computed (see Fig. 5) with

u(d,n) = 1

n

n−1∑
i=1

n∑
j=i+1

1

ρ3
ij

[
1 − 3(ρj,y − ρi,y)2

ρ2
ij

]
. (29)

Previous findings in Ref. [12] suggest that the complete
energy of an aggregate Ud,s is necessary in order to compute
s̄. The dependence of the magnetic energy on s can be
obtained by approximating the numerical results given by (29).
The symmetric approximation n = ds is exact in the cases
n mod d = 0 (when n is a multiple of d), and it is applicable
since 0 � n mod d � d − 1 	 n. The magnetic energy per
grain is computed up to n = 700 employing Eq. (29). Chains
are the most stable aggregate for n < 30, and ribbons appear
at about n2 = 30 for d = 2, n3 = 113 for d = 3, and n4 = 263
for d = 4. From the latter numerical results a fit for the
magnetic energy of an aggregate is obtained by minimizing
the difference between u(d,n) and ud,n = 2(ad − bdn)/n for
each value of d; the coefficients (ad,bd ) are given in Table I.
It is taken into account that aggregates with a number of
particles n0 = d2 (dashed line circles, Fig. 4) are the smallest
ribbon or chain aligned parallel to the magnetic field direction
since d � s 	 n, then the fit is performed for each data
set (29) starting from n = n0 for d = 1, . . . ,4. Numerical
results for n < d2 do not have physical meaning since they
represent aggregates aligned perpendicular to the magnetic

TABLE I. List of coefficients that depend on d . The order of the
numerical solutions omax depends on dmax.

d \ dmax ad bd sd nd omax

1 1.30536 1.19968 2 1 2
2 3.76001 1.28793 5 30 8
3 6.69634 1.31679 6 113 18
4 10.02290 1.33089 7 263 32

field direction. The numerical results of (29) at d = 1 (circles),
d = 2 [(blue) []], d = 3 [(red) #] and d = 4 (gray circles)
are fitted in good agreement with ud,n at d = 1 (gray line),
d = 2 (dashed curve), d = 3 (dot-dashed curve), and d = 4
(dotted line). The latter fit is a coarse-grained approach,
which is equivalent to the symmetric approximation in the
sense that it does not describe the details obtained from the
rest n mod d particles observed in the numerical results (local
groups of data for d > 1; see inset of Fig. 5). The explicit
dependency of ad and bd on d and s can be provided with
an approach such as the one given in Sec. III B, with a
development up to fourth or higher order. The symmetric
approximation n = ds is used in the magnetic potential, then
Ud,s = nU0ud,n = εm(ad − bdds), and the complete volume
fraction [similar to Eq. (23)]

φd,s = dsxds φ1,1

x
rd,s (30)

is provided with rd,s = exp [βεm(1 − ad + (bd − 1)ds)], and
an onset value sd = int[(ad − 1)/(bd − 1)d] before rd,s > 1.
In Eqs. (24) and (26) the mean length s̄ and x0 are defined. Due
to the coarse-grained approximation, it is possible to compute
the series s0d and a0d since (ad,bd ) do not depend on s; then

s0d =
∞∑

s=d

sxdsrd,s = a0d

(
d + ζ d

d

1 − ζ d
d

)
, (31)

a0d =
∞∑

s=d

xdsrd,s = eβεm(1−ad ) ζ d2

d

1 − ζ d
d

, (32)

with s̄ =s0/a0, a0 =∑dmax
d=1 a0d , s0 =∑dmax

d=1 s0d , x0 =∑dmax
d=1 x0d ,

x0d = ds0d , and ζd = xeβεm(bd−1). By truncation of the series
a0, s0 and x0 in the chain case dmax = 1, and using a1 = b1 = 1
it is obtained r1,s = 1, ζ = x, s̄ = (1 − x)−1, x0 = x(1 − x)−2,
and the solution (27) is retrieved. In Table I we see that 1 <

bd < ad , which provides the complete solution in the case
dmax = 1, it is obtained s̄(s̄ − 1) = xa1 employing Eqs. (31)
and (32), giving

s̄a1 = 1

2
+

√
1

4
+ xa1 (33)

and xa1 = φ0e
βεma1 . The latter result allows us to decrease

the value of the volume fraction in absence of magnetic
field to φ0 = 0.81 [dot-dashed line in Fig. 1 and dot-dashed
(red) line in Fig. 6]. In mixed cases (chains and ribbons)
dmax = 2,3,4, a polynomial equation for s̄ is obtained by
using the series s̄ and x0. Each ζd can be written as
ζd = eβεm�bd ζ1 where �bd = bd − b1. The equations for s̄
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FIG. 6. Mean length of saturated chains and ribbons at thermody-
namic equilibrium. Solutions s̄ = √

φ0eβεm (black thick line) [12,14],
(27) (gray thick curve), and s̄a1 (33) [dot-dashed (red) line] evaluated
at φ0 = 0.81. Absolute value of numerical solutions obtained using
(31) and (32) up to dmax = 2 [(blue) points]. Inset: Absolute value of
numerical solutions up to dmax = 3 ((blue) points).

and x0 are written employing Eqs. (31) and (32), which is
a set of two polynomials solved numerically for variables
(ζ1,s̄). The maximum number of solutions (the order of the
polynomials) omax = 8,18,32 for s̄, depends on dmax = 2,3,4
respectively. The number of solutions also depends on the
value of the magnetic field, since two or more solutions can
merge at a certain value of B, and bifurcate again for a
higher value; then the amount of solutions vary in [0,omax]
for each value of B and dmax. The latter explains the numerical
intervals with fewer points. The Eqs. (31) and (32) are solved
using the original parameter C1 = 4.4 × 10−2 [G−2] [12]
and the reduced value C2 = φ

1/2
0 = 0.9 for each value of B

from B2 = 1 to B2 = 700 G2 with a step �B = 0.2 G. The
absolute value of the solutions is computed due to negative
and imaginary parts that have no physical sense (s̄ � 1). In
Fig. 6 are presented the absolute value of numerical solutions
at dmax = 2,3 obtained using Eqs. (31) and (32) [(blue) points].
Some solutions at dmax = 2 and at dmax = 3 match the solution
(33) at dmax = 1 [dot-dashed (red) line], since this case is
included in the series a0, s0, and x0 for dmax � 1. A part
of the solutions provide the lower limit s̄ = dmax − 1. It is
noticed that the latter bound is a numerical solution without
physical sense since d � s. Nevertheless, in a recent work
[23] it has been shown that if the mean length s̄(t) is scaled
with a characteristic time [21], the time evolution curves s̄(t)
collapse and then s̄ as a function of the magnetic field is roughly
constant, which could be related to the constant numerical
solution (see Figs. 6 and 7); this will be the subject of a future
work. At dmax = 4 the number of solutions increases up to the
maximum omax = 32, we employ �B = 1 G, φ0 = 0.09, and
C1 = 4.4 × 10−2 G−2. It is observed that the magnitude of
the solutions decreases by reducing the monomers volume
fraction from φ0 = 0.81 [(green) #] to φ0 = 0.09 (circles)
(see Fig. 7). It is possible to reduce the magnitude of
φ0 to the experimental value φ0 = 2 × 10−3 by using the

FIG. 7. Mean length of saturated chains and ribbons at thermo-
dynamic equilibrium. Absolute value of numerical solutions obtained
using (31) and (32) up to dmax = 4 for φ0 = 0.81 [(green) #]. Absolute
value of numerical solutions for φ0 = 0.09 (circles). Inset: Numerical
solutions diverge as B increases. The magnitude of |s̄| grows with
φ0 [24].

average magnetic energy εm = (� − 1)/β; nevertheless the
numerical solutions do not match experimental results in
the multistable region by including the complete magnetic
interaction energy. The latter will be achieved by considering
Kd,s �= 1, presented in Sec. III E. Since some solutions match
s̄a1 (33), an approximation similar to Eq. (13) is performed
using (31), (32), (33), and ζ1 � 1 − s̄−1

a1 into

s̄ = s01

a01
= 1

1 − ζ1
�

s̄∞−1∑
i=0

ζ1
i �

s̄∞−1∑
i=0

(
1 − 1

s̄a1

)i

(34)

�
s̄∞−1∑
i=0

(
1 − 1√

e−βεm(b1−1)xa1

)i

� 1. (35)

Equations (33) (dot-dashed line) and (34) (dashed black curve)
depend only on a1 (see Fig. 1). Equation (35) is obtained with
x0 = s01 and (31) in the limit x → 1 (black thin lines); in the
case B = 0 it yields s̄ � 1, and it depends on a1 and b1, which
is a lower bound of (34) for b1 = 1.19968.

D. Discussion

The latter results obtained by including the complete
magnetic interaction energy contain part of the physics
involved in the structure of the aggregates but lack three
important aspects, (a) Although one point at s̄∞ allows us
to draw a curve for s̄, this does not explain the multistable
region or the range of asymptotic values for s̄∞, which
depend on the experimental parameters, (b) the values of φ0

employed in analytic and numerical results are much greater
than the experimental value, and (c) the numerical findings
including the magnetic interaction energy up to dmax = 4 do
not match the experimental data in the multistable region.
An ideal result is to obtain a set of two polynomials [such
as Eqs. (31) and (32)] solved numerically for the variables
(ζ1,s̄) with asymptotic solutions at B � 1 G. The divergence

012608-8



SELF-ASSEMBLY PROCESSES OF SUPERPARAMAGNETIC . . . PHYSICAL REVIEW E 96, 012608 (2017)

of the previous numerical results can be attributed to a number
of approximations made in Secs. III B and III C, these are,
for instance, the following: (1) Considering aggregates with
a number of particles n = ds + n mod d and neglecting cases
such as completely nonsymmetric ribbons built when a chain
leaves a ribbon and merges with another one, as a typical
behavior of dynamical equilibrium [12]. (2) Considering
the mean interaction free energy per particle as a constant
μ0

1,1 = μ0
d,s . (3) The formation process of the aggregates

has not been addressed. This can be studied numerically
(Langevin dynamics simulations [14,19,20]) and theoretically
(Smoluchowsky rate equations [16,17,21]). (4) The respective
cases of the formation process and energy barriers should
be taken into account [25]. (5) Irreversible aggregation due
to electrostatic stabilization could be important, although the
reversibility of the aggregation has been shown in experiments
[13] by measuring the density of particles in a chain after the
magnetic field is turned off.

E. The equilibrium constant

In this section the previous points (a), (b), (c), and (2) in
Sec. III D will be addressed. In a similar procedure as in (22),
the thermodynamic equilibrium equation μd,s = μ1,1 holds.
Now μ0

d,s , the standard part of the chemical potential (the
mean interaction free energy per particle) is not neglected, and
employing the symmetric approximation n = ds the volume
fraction φd,s yields

φd,s = dsxds φ1,1

x
rd,sKd,s, (36)

where x = φ1,1e
� and Kd,s = e−βds(μ0

d,s−μ0
1,1) is known as the

equilibrium constant according to the generalized mass action
law. Since μ0

d,s = μ0 + α/(βds) and α = log(V/AV�) =
log(n̄/φ0) > 0, then Kd,s = (n̄/φ0)ds−1. Several approxima-
tions for n̄ in Kd,s can be employed. In previous sections
Kd,s = 1, which is equivalent to consider n̄ = φ0. This is a
very rough approximation since n̄ � s̄ > 1 and 0 < φ0 < 1.
Using Eqs. (16), (17), and (36) the mean number of particles
and length of the aggregates are n̄ = x0/a0 and s̄ = s0/a0,
where a0, s0, and x0 are defined following Eqs. (31) and (32).
In this case a0d = ∑∞

s=d xdsrd,sKd,s , s0d = ∑∞
s=d sxdsrd,sKd,s

and x0d = ds0d . Equation (31) remains unchanged and (32) is
scaled with the factor φ0/n̄:

a0d = φ0

n̄
e�(1−ad ) ζ d2

d

1 − ζ d
d

, (37)

where ζd = (n̄/φ0)xe�(bd−1) in this case. In this section is
considered the approximation n̄ � ds̄ and a constant value
for s̄ � 50 in Kd,s , then ζd � de��bd ζ1. The numerical step
�B = 1 G, the experimental value φ0 = 0.002, and a lower
value of C1 = 0.2 × 10−2 G−2 are employed (see Fig. 8). The
height of the chamber is approximately 50 μm, about 25 to 100
particle diameters. However, the particles are located mostly
in a layer of about 2 μm near the bottom of the chamber due to
sedimentation. The effective volume fraction is then estimated
between 0.002 and 0.085 due to thermal fluctuations of the
thickness of the sedimentation layer and a wide distribution
of particle radii, in agreement with the employed value of
φ0. The original value of C1 = 4.4 × 10−2 G−2 employed

FIG. 8. Mean length of saturated chains and ribbons at thermo-
dynamic equilibrium. Experimental data obtained from Refs. [12,13]
[(blue) []]. Absolute value of selected solutions s̄4 to s̄12 (circles) and
completely real numerical data from solutions s̄4 to s̄18 [(green) #]
using (31) and (37) up to dmax = 4 for φ0 = 0.002 and C1 =
0.2 × 10−2 [G−2].

previously [12] could only be justified by using the upper
and lower values of the measures of χ and R. By using
the mean values of these independent measurements, a value
C1 = 0.12 × 10−2 G−2 is obtained. Therefore the employed
value of C1 = 0.2 × 10−2 G−2 corresponds to the experimen-
tal mean particle measurements of χ and R. The multiplicity of
the solutions rises up to the maximum omax = 32. The absolute
value of the selected solutions s̄4 to s̄12 (circles) and the real
positive numerical data from solutions s̄4 to s̄18 [(green) #]
are compared with experimental measurements [(blue) []].
The multistability of the experimental findings is provided
by the multiplicity of pure real positive numerical solutions
and the absolute value of complex solutions, which increases
with the magnetic field magnitude. The lack of precision of the
numerical data for low values of B is improved by computing
the absolute value of the selected solutions, which provides
more accurate results in the range 0 < B � 10 G.

IV. SUMMARY AND CONCLUSIONS

In Sec. III A a mathematical approach is presented con-
sidering that the total number of particles in the system is
conserved, which is used in following sections. In Sec. III B the
magnetic interaction potential up to second order is introduced.
The first analytic results considering symmetric aggregates are
obtained. Section III C shows the first numerical and analytic
results employing the complete magnetic interaction potential
and a coarse grained approximation for dmax = 1,2,3 and
dmax = 4, considering in addition some asymmetric aggre-
gates. In Sec. III D the assets and deficiencies of the obtained
findings are reviewed. Points (1), (3), and (4) will be studied in
future research. In Sec. III E the mean interaction free energy
per particle μ0

d,s is taken into account [point (2) Sec. III D] by
employing the approximation Kd,s = (50d/φ0)ds−1 in good
agreement with experimental measurements (see Fig. 8), here
the multistability of experimental data for superparamagnetic
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ribbons in thermodynamic equilibrium is described by the
multiplicity of the numerical results, which increase with the
magnetic field magnitude. The equation n̄ = x0/a0 can be
added to the set s̄ = s0/a0, x0 = ∑4

d=1 x0d . These equations
will be solved numerically for (ζ1,s̄,n̄) in future work. In the
latter case the multiplicity of the solutions decreases to the
maximum omax = 22.
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